summaryrefslogtreecommitdiffstats
path: root/src/internal/trace/gc.go
blob: cc19fdf8912d298a0ba8d0b8e8322d74956b5bc4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package trace

import (
	"container/heap"
	"math"
	"sort"
	"strings"
	"time"
)

// MutatorUtil is a change in mutator utilization at a particular
// time. Mutator utilization functions are represented as a
// time-ordered []MutatorUtil.
type MutatorUtil struct {
	Time int64
	// Util is the mean mutator utilization starting at Time. This
	// is in the range [0, 1].
	Util float64
}

// UtilFlags controls the behavior of MutatorUtilization.
type UtilFlags int

const (
	// UtilSTW means utilization should account for STW events.
	UtilSTW UtilFlags = 1 << iota
	// UtilBackground means utilization should account for
	// background mark workers.
	UtilBackground
	// UtilAssist means utilization should account for mark
	// assists.
	UtilAssist
	// UtilSweep means utilization should account for sweeping.
	UtilSweep

	// UtilPerProc means each P should be given a separate
	// utilization function. Otherwise, there is a single function
	// and each P is given a fraction of the utilization.
	UtilPerProc
)

// MutatorUtilization returns a set of mutator utilization functions
// for the given trace. Each function will always end with 0
// utilization. The bounds of each function are implicit in the first
// and last event; outside of these bounds each function is undefined.
//
// If the UtilPerProc flag is not given, this always returns a single
// utilization function. Otherwise, it returns one function per P.
func MutatorUtilization(events []*Event, flags UtilFlags) [][]MutatorUtil {
	if len(events) == 0 {
		return nil
	}

	type perP struct {
		// gc > 0 indicates that GC is active on this P.
		gc int
		// series the logical series number for this P. This
		// is necessary because Ps may be removed and then
		// re-added, and then the new P needs a new series.
		series int
	}
	ps := []perP{}
	stw := 0

	out := [][]MutatorUtil{}
	assists := map[uint64]bool{}
	block := map[uint64]*Event{}
	bgMark := map[uint64]bool{}

	for _, ev := range events {
		switch ev.Type {
		case EvGomaxprocs:
			gomaxprocs := int(ev.Args[0])
			if len(ps) > gomaxprocs {
				if flags&UtilPerProc != 0 {
					// End each P's series.
					for _, p := range ps[gomaxprocs:] {
						out[p.series] = addUtil(out[p.series], MutatorUtil{ev.Ts, 0})
					}
				}
				ps = ps[:gomaxprocs]
			}
			for len(ps) < gomaxprocs {
				// Start new P's series.
				series := 0
				if flags&UtilPerProc != 0 || len(out) == 0 {
					series = len(out)
					out = append(out, []MutatorUtil{{ev.Ts, 1}})
				}
				ps = append(ps, perP{series: series})
			}
		case EvGCSTWStart:
			if flags&UtilSTW != 0 {
				stw++
			}
		case EvGCSTWDone:
			if flags&UtilSTW != 0 {
				stw--
			}
		case EvGCMarkAssistStart:
			if flags&UtilAssist != 0 {
				ps[ev.P].gc++
				assists[ev.G] = true
			}
		case EvGCMarkAssistDone:
			if flags&UtilAssist != 0 {
				ps[ev.P].gc--
				delete(assists, ev.G)
			}
		case EvGCSweepStart:
			if flags&UtilSweep != 0 {
				ps[ev.P].gc++
			}
		case EvGCSweepDone:
			if flags&UtilSweep != 0 {
				ps[ev.P].gc--
			}
		case EvGoStartLabel:
			if flags&UtilBackground != 0 && strings.HasPrefix(ev.SArgs[0], "GC ") && ev.SArgs[0] != "GC (idle)" {
				// Background mark worker.
				//
				// If we're in per-proc mode, we don't
				// count dedicated workers because
				// they kick all of the goroutines off
				// that P, so don't directly
				// contribute to goroutine latency.
				if !(flags&UtilPerProc != 0 && ev.SArgs[0] == "GC (dedicated)") {
					bgMark[ev.G] = true
					ps[ev.P].gc++
				}
			}
			fallthrough
		case EvGoStart:
			if assists[ev.G] {
				// Unblocked during assist.
				ps[ev.P].gc++
			}
			block[ev.G] = ev.Link
		default:
			if ev != block[ev.G] {
				continue
			}

			if assists[ev.G] {
				// Blocked during assist.
				ps[ev.P].gc--
			}
			if bgMark[ev.G] {
				// Background mark worker done.
				ps[ev.P].gc--
				delete(bgMark, ev.G)
			}
			delete(block, ev.G)
		}

		if flags&UtilPerProc == 0 {
			// Compute the current average utilization.
			if len(ps) == 0 {
				continue
			}
			gcPs := 0
			if stw > 0 {
				gcPs = len(ps)
			} else {
				for i := range ps {
					if ps[i].gc > 0 {
						gcPs++
					}
				}
			}
			mu := MutatorUtil{ev.Ts, 1 - float64(gcPs)/float64(len(ps))}

			// Record the utilization change. (Since
			// len(ps) == len(out), we know len(out) > 0.)
			out[0] = addUtil(out[0], mu)
		} else {
			// Check for per-P utilization changes.
			for i := range ps {
				p := &ps[i]
				util := 1.0
				if stw > 0 || p.gc > 0 {
					util = 0.0
				}
				out[p.series] = addUtil(out[p.series], MutatorUtil{ev.Ts, util})
			}
		}
	}

	// Add final 0 utilization event to any remaining series. This
	// is important to mark the end of the trace. The exact value
	// shouldn't matter since no window should extend beyond this,
	// but using 0 is symmetric with the start of the trace.
	mu := MutatorUtil{events[len(events)-1].Ts, 0}
	for i := range ps {
		out[ps[i].series] = addUtil(out[ps[i].series], mu)
	}
	return out
}

func addUtil(util []MutatorUtil, mu MutatorUtil) []MutatorUtil {
	if len(util) > 0 {
		if mu.Util == util[len(util)-1].Util {
			// No change.
			return util
		}
		if mu.Time == util[len(util)-1].Time {
			// Take the lowest utilization at a time stamp.
			if mu.Util < util[len(util)-1].Util {
				util[len(util)-1] = mu
			}
			return util
		}
	}
	return append(util, mu)
}

// totalUtil is total utilization, measured in nanoseconds. This is a
// separate type primarily to distinguish it from mean utilization,
// which is also a float64.
type totalUtil float64

func totalUtilOf(meanUtil float64, dur int64) totalUtil {
	return totalUtil(meanUtil * float64(dur))
}

// mean returns the mean utilization over dur.
func (u totalUtil) mean(dur time.Duration) float64 {
	return float64(u) / float64(dur)
}

// An MMUCurve is the minimum mutator utilization curve across
// multiple window sizes.
type MMUCurve struct {
	series []mmuSeries
}

type mmuSeries struct {
	util []MutatorUtil
	// sums[j] is the cumulative sum of util[:j].
	sums []totalUtil
	// bands summarizes util in non-overlapping bands of duration
	// bandDur.
	bands []mmuBand
	// bandDur is the duration of each band.
	bandDur int64
}

type mmuBand struct {
	// minUtil is the minimum instantaneous mutator utilization in
	// this band.
	minUtil float64
	// cumUtil is the cumulative total mutator utilization between
	// time 0 and the left edge of this band.
	cumUtil totalUtil

	// integrator is the integrator for the left edge of this
	// band.
	integrator integrator
}

// NewMMUCurve returns an MMU curve for the given mutator utilization
// function.
func NewMMUCurve(utils [][]MutatorUtil) *MMUCurve {
	series := make([]mmuSeries, len(utils))
	for i, util := range utils {
		series[i] = newMMUSeries(util)
	}
	return &MMUCurve{series}
}

// bandsPerSeries is the number of bands to divide each series into.
// This is only changed by tests.
var bandsPerSeries = 1000

func newMMUSeries(util []MutatorUtil) mmuSeries {
	// Compute cumulative sum.
	sums := make([]totalUtil, len(util))
	var prev MutatorUtil
	var sum totalUtil
	for j, u := range util {
		sum += totalUtilOf(prev.Util, u.Time-prev.Time)
		sums[j] = sum
		prev = u
	}

	// Divide the utilization curve up into equal size
	// non-overlapping "bands" and compute a summary for each of
	// these bands.
	//
	// Compute the duration of each band.
	numBands := bandsPerSeries
	if numBands > len(util) {
		// There's no point in having lots of bands if there
		// aren't many events.
		numBands = len(util)
	}
	dur := util[len(util)-1].Time - util[0].Time
	bandDur := (dur + int64(numBands) - 1) / int64(numBands)
	if bandDur < 1 {
		bandDur = 1
	}
	// Compute the bands. There are numBands+1 bands in order to
	// record the final cumulative sum.
	bands := make([]mmuBand, numBands+1)
	s := mmuSeries{util, sums, bands, bandDur}
	leftSum := integrator{&s, 0}
	for i := range bands {
		startTime, endTime := s.bandTime(i)
		cumUtil := leftSum.advance(startTime)
		predIdx := leftSum.pos
		minUtil := 1.0
		for i := predIdx; i < len(util) && util[i].Time < endTime; i++ {
			minUtil = math.Min(minUtil, util[i].Util)
		}
		bands[i] = mmuBand{minUtil, cumUtil, leftSum}
	}

	return s
}

func (s *mmuSeries) bandTime(i int) (start, end int64) {
	start = int64(i)*s.bandDur + s.util[0].Time
	end = start + s.bandDur
	return
}

type bandUtil struct {
	// Utilization series index
	series int
	// Band index
	i int
	// Lower bound of mutator utilization for all windows
	// with a left edge in this band.
	utilBound float64
}

type bandUtilHeap []bandUtil

func (h bandUtilHeap) Len() int {
	return len(h)
}

func (h bandUtilHeap) Less(i, j int) bool {
	return h[i].utilBound < h[j].utilBound
}

func (h bandUtilHeap) Swap(i, j int) {
	h[i], h[j] = h[j], h[i]
}

func (h *bandUtilHeap) Push(x interface{}) {
	*h = append(*h, x.(bandUtil))
}

func (h *bandUtilHeap) Pop() interface{} {
	x := (*h)[len(*h)-1]
	*h = (*h)[:len(*h)-1]
	return x
}

// UtilWindow is a specific window at Time.
type UtilWindow struct {
	Time int64
	// MutatorUtil is the mean mutator utilization in this window.
	MutatorUtil float64
}

type utilHeap []UtilWindow

func (h utilHeap) Len() int {
	return len(h)
}

func (h utilHeap) Less(i, j int) bool {
	if h[i].MutatorUtil != h[j].MutatorUtil {
		return h[i].MutatorUtil > h[j].MutatorUtil
	}
	return h[i].Time > h[j].Time
}

func (h utilHeap) Swap(i, j int) {
	h[i], h[j] = h[j], h[i]
}

func (h *utilHeap) Push(x interface{}) {
	*h = append(*h, x.(UtilWindow))
}

func (h *utilHeap) Pop() interface{} {
	x := (*h)[len(*h)-1]
	*h = (*h)[:len(*h)-1]
	return x
}

// An accumulator takes a windowed mutator utilization function and
// tracks various statistics for that function.
type accumulator struct {
	mmu float64

	// bound is the mutator utilization bound where adding any
	// mutator utilization above this bound cannot affect the
	// accumulated statistics.
	bound float64

	// Worst N window tracking
	nWorst int
	wHeap  utilHeap

	// Mutator utilization distribution tracking
	mud *mud
	// preciseMass is the distribution mass that must be precise
	// before accumulation is stopped.
	preciseMass float64
	// lastTime and lastMU are the previous point added to the
	// windowed mutator utilization function.
	lastTime int64
	lastMU   float64
}

// resetTime declares a discontinuity in the windowed mutator
// utilization function by resetting the current time.
func (acc *accumulator) resetTime() {
	// This only matters for distribution collection, since that's
	// the only thing that depends on the progression of the
	// windowed mutator utilization function.
	acc.lastTime = math.MaxInt64
}

// addMU adds a point to the windowed mutator utilization function at
// (time, mu). This must be called for monotonically increasing values
// of time.
//
// It returns true if further calls to addMU would be pointless.
func (acc *accumulator) addMU(time int64, mu float64, window time.Duration) bool {
	if mu < acc.mmu {
		acc.mmu = mu
	}
	acc.bound = acc.mmu

	if acc.nWorst == 0 {
		// If the minimum has reached zero, it can't go any
		// lower, so we can stop early.
		return mu == 0
	}

	// Consider adding this window to the n worst.
	if len(acc.wHeap) < acc.nWorst || mu < acc.wHeap[0].MutatorUtil {
		// This window is lower than the K'th worst window.
		//
		// Check if there's any overlapping window
		// already in the heap and keep whichever is
		// worse.
		for i, ui := range acc.wHeap {
			if time+int64(window) > ui.Time && ui.Time+int64(window) > time {
				if ui.MutatorUtil <= mu {
					// Keep the first window.
					goto keep
				} else {
					// Replace it with this window.
					heap.Remove(&acc.wHeap, i)
					break
				}
			}
		}

		heap.Push(&acc.wHeap, UtilWindow{time, mu})
		if len(acc.wHeap) > acc.nWorst {
			heap.Pop(&acc.wHeap)
		}
	keep:
	}

	if len(acc.wHeap) < acc.nWorst {
		// We don't have N windows yet, so keep accumulating.
		acc.bound = 1.0
	} else {
		// Anything above the least worst window has no effect.
		acc.bound = math.Max(acc.bound, acc.wHeap[0].MutatorUtil)
	}

	if acc.mud != nil {
		if acc.lastTime != math.MaxInt64 {
			// Update distribution.
			acc.mud.add(acc.lastMU, mu, float64(time-acc.lastTime))
		}
		acc.lastTime, acc.lastMU = time, mu
		if _, mudBound, ok := acc.mud.approxInvCumulativeSum(); ok {
			acc.bound = math.Max(acc.bound, mudBound)
		} else {
			// We haven't accumulated enough total precise
			// mass yet to even reach our goal, so keep
			// accumulating.
			acc.bound = 1
		}
		// It's not worth checking percentiles every time, so
		// just keep accumulating this band.
		return false
	}

	// If we've found enough 0 utilizations, we can stop immediately.
	return len(acc.wHeap) == acc.nWorst && acc.wHeap[0].MutatorUtil == 0
}

// MMU returns the minimum mutator utilization for the given time
// window. This is the minimum utilization for all windows of this
// duration across the execution. The returned value is in the range
// [0, 1].
func (c *MMUCurve) MMU(window time.Duration) (mmu float64) {
	acc := accumulator{mmu: 1.0, bound: 1.0}
	c.mmu(window, &acc)
	return acc.mmu
}

// Examples returns n specific examples of the lowest mutator
// utilization for the given window size. The returned windows will be
// disjoint (otherwise there would be a huge number of
// mostly-overlapping windows at the single lowest point). There are
// no guarantees on which set of disjoint windows this returns.
func (c *MMUCurve) Examples(window time.Duration, n int) (worst []UtilWindow) {
	acc := accumulator{mmu: 1.0, bound: 1.0, nWorst: n}
	c.mmu(window, &acc)
	sort.Sort(sort.Reverse(acc.wHeap))
	return ([]UtilWindow)(acc.wHeap)
}

// MUD returns mutator utilization distribution quantiles for the
// given window size.
//
// The mutator utilization distribution is the distribution of mean
// mutator utilization across all windows of the given window size in
// the trace.
//
// The minimum mutator utilization is the minimum (0th percentile) of
// this distribution. (However, if only the minimum is desired, it's
// more efficient to use the MMU method.)
func (c *MMUCurve) MUD(window time.Duration, quantiles []float64) []float64 {
	if len(quantiles) == 0 {
		return []float64{}
	}

	// Each unrefined band contributes a known total mass to the
	// distribution (bandDur except at the end), but in an unknown
	// way. However, we know that all the mass it contributes must
	// be at or above its worst-case mean mutator utilization.
	//
	// Hence, we refine bands until the highest desired
	// distribution quantile is less than the next worst-case mean
	// mutator utilization. At this point, all further
	// contributions to the distribution must be beyond the
	// desired quantile and hence cannot affect it.
	//
	// First, find the highest desired distribution quantile.
	maxQ := quantiles[0]
	for _, q := range quantiles {
		if q > maxQ {
			maxQ = q
		}
	}
	// The distribution's mass is in units of time (it's not
	// normalized because this would make it more annoying to
	// account for future contributions of unrefined bands). The
	// total final mass will be the duration of the trace itself
	// minus the window size. Using this, we can compute the mass
	// corresponding to quantile maxQ.
	var duration int64
	for _, s := range c.series {
		duration1 := s.util[len(s.util)-1].Time - s.util[0].Time
		if duration1 >= int64(window) {
			duration += duration1 - int64(window)
		}
	}
	qMass := float64(duration) * maxQ

	// Accumulate the MUD until we have precise information for
	// everything to the left of qMass.
	acc := accumulator{mmu: 1.0, bound: 1.0, preciseMass: qMass, mud: new(mud)}
	acc.mud.setTrackMass(qMass)
	c.mmu(window, &acc)

	// Evaluate the quantiles on the accumulated MUD.
	out := make([]float64, len(quantiles))
	for i := range out {
		mu, _ := acc.mud.invCumulativeSum(float64(duration) * quantiles[i])
		if math.IsNaN(mu) {
			// There are a few legitimate ways this can
			// happen:
			//
			// 1. If the window is the full trace
			// duration, then the windowed MU function is
			// only defined at a single point, so the MU
			// distribution is not well-defined.
			//
			// 2. If there are no events, then the MU
			// distribution has no mass.
			//
			// Either way, all of the quantiles will have
			// converged toward the MMU at this point.
			mu = acc.mmu
		}
		out[i] = mu
	}
	return out
}

func (c *MMUCurve) mmu(window time.Duration, acc *accumulator) {
	if window <= 0 {
		acc.mmu = 0
		return
	}

	var bandU bandUtilHeap
	windows := make([]time.Duration, len(c.series))
	for i, s := range c.series {
		windows[i] = window
		if max := time.Duration(s.util[len(s.util)-1].Time - s.util[0].Time); window > max {
			windows[i] = max
		}

		bandU1 := bandUtilHeap(s.mkBandUtil(i, windows[i]))
		if bandU == nil {
			bandU = bandU1
		} else {
			bandU = append(bandU, bandU1...)
		}
	}

	// Process bands from lowest utilization bound to highest.
	heap.Init(&bandU)

	// Refine each band into a precise window and MMU until
	// refining the next lowest band can no longer affect the MMU
	// or windows.
	for len(bandU) > 0 && bandU[0].utilBound < acc.bound {
		i := bandU[0].series
		c.series[i].bandMMU(bandU[0].i, windows[i], acc)
		heap.Pop(&bandU)
	}
}

func (c *mmuSeries) mkBandUtil(series int, window time.Duration) []bandUtil {
	// For each band, compute the worst-possible total mutator
	// utilization for all windows that start in that band.

	// minBands is the minimum number of bands a window can span
	// and maxBands is the maximum number of bands a window can
	// span in any alignment.
	minBands := int((int64(window) + c.bandDur - 1) / c.bandDur)
	maxBands := int((int64(window) + 2*(c.bandDur-1)) / c.bandDur)
	if window > 1 && maxBands < 2 {
		panic("maxBands < 2")
	}
	tailDur := int64(window) % c.bandDur
	nUtil := len(c.bands) - maxBands + 1
	if nUtil < 0 {
		nUtil = 0
	}
	bandU := make([]bandUtil, nUtil)
	for i := range bandU {
		// To compute the worst-case MU, we assume the minimum
		// for any bands that are only partially overlapped by
		// some window and the mean for any bands that are
		// completely covered by all windows.
		var util totalUtil

		// Find the lowest and second lowest of the partial
		// bands.
		l := c.bands[i].minUtil
		r1 := c.bands[i+minBands-1].minUtil
		r2 := c.bands[i+maxBands-1].minUtil
		minBand := math.Min(l, math.Min(r1, r2))
		// Assume the worst window maximally overlaps the
		// worst minimum and then the rest overlaps the second
		// worst minimum.
		if minBands == 1 {
			util += totalUtilOf(minBand, int64(window))
		} else {
			util += totalUtilOf(minBand, c.bandDur)
			midBand := 0.0
			switch {
			case minBand == l:
				midBand = math.Min(r1, r2)
			case minBand == r1:
				midBand = math.Min(l, r2)
			case minBand == r2:
				midBand = math.Min(l, r1)
			}
			util += totalUtilOf(midBand, tailDur)
		}

		// Add the total mean MU of bands that are completely
		// overlapped by all windows.
		if minBands > 2 {
			util += c.bands[i+minBands-1].cumUtil - c.bands[i+1].cumUtil
		}

		bandU[i] = bandUtil{series, i, util.mean(window)}
	}

	return bandU
}

// bandMMU computes the precise minimum mutator utilization for
// windows with a left edge in band bandIdx.
func (c *mmuSeries) bandMMU(bandIdx int, window time.Duration, acc *accumulator) {
	util := c.util

	// We think of the mutator utilization over time as the
	// box-filtered utilization function, which we call the
	// "windowed mutator utilization function". The resulting
	// function is continuous and piecewise linear (unless
	// window==0, which we handle elsewhere), where the boundaries
	// between segments occur when either edge of the window
	// encounters a change in the instantaneous mutator
	// utilization function. Hence, the minimum of this function
	// will always occur when one of the edges of the window
	// aligns with a utilization change, so these are the only
	// points we need to consider.
	//
	// We compute the mutator utilization function incrementally
	// by tracking the integral from t=0 to the left edge of the
	// window and to the right edge of the window.
	left := c.bands[bandIdx].integrator
	right := left
	time, endTime := c.bandTime(bandIdx)
	if utilEnd := util[len(util)-1].Time - int64(window); utilEnd < endTime {
		endTime = utilEnd
	}
	acc.resetTime()
	for {
		// Advance edges to time and time+window.
		mu := (right.advance(time+int64(window)) - left.advance(time)).mean(window)
		if acc.addMU(time, mu, window) {
			break
		}
		if time == endTime {
			break
		}

		// The maximum slope of the windowed mutator
		// utilization function is 1/window, so we can always
		// advance the time by at least (mu - mmu) * window
		// without dropping below mmu.
		minTime := time + int64((mu-acc.bound)*float64(window))

		// Advance the window to the next time where either
		// the left or right edge of the window encounters a
		// change in the utilization curve.
		if t1, t2 := left.next(time), right.next(time+int64(window))-int64(window); t1 < t2 {
			time = t1
		} else {
			time = t2
		}
		if time < minTime {
			time = minTime
		}
		if time >= endTime {
			// For MMUs we could stop here, but for MUDs
			// it's important that we span the entire
			// band.
			time = endTime
		}
	}
}

// An integrator tracks a position in a utilization function and
// integrates it.
type integrator struct {
	u *mmuSeries
	// pos is the index in u.util of the current time's non-strict
	// predecessor.
	pos int
}

// advance returns the integral of the utilization function from 0 to
// time. advance must be called on monotonically increasing values of
// times.
func (in *integrator) advance(time int64) totalUtil {
	util, pos := in.u.util, in.pos
	// Advance pos until pos+1 is time's strict successor (making
	// pos time's non-strict predecessor).
	//
	// Very often, this will be nearby, so we optimize that case,
	// but it may be arbitrarily far away, so we handled that
	// efficiently, too.
	const maxSeq = 8
	if pos+maxSeq < len(util) && util[pos+maxSeq].Time > time {
		// Nearby. Use a linear scan.
		for pos+1 < len(util) && util[pos+1].Time <= time {
			pos++
		}
	} else {
		// Far. Binary search for time's strict successor.
		l, r := pos, len(util)
		for l < r {
			h := int(uint(l+r) >> 1)
			if util[h].Time <= time {
				l = h + 1
			} else {
				r = h
			}
		}
		pos = l - 1 // Non-strict predecessor.
	}
	in.pos = pos
	var partial totalUtil
	if time != util[pos].Time {
		partial = totalUtilOf(util[pos].Util, time-util[pos].Time)
	}
	return in.u.sums[pos] + partial
}

// next returns the smallest time t' > time of a change in the
// utilization function.
func (in *integrator) next(time int64) int64 {
	for _, u := range in.u.util[in.pos:] {
		if u.Time > time {
			return u.Time
		}
	}
	return 1<<63 - 1
}