1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
|
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package trace
import (
"fmt"
"sort"
)
type eventBatch struct {
events []*Event
selected bool
}
type orderEvent struct {
ev *Event
batch int
g uint64
init gState
next gState
}
type gStatus int
type gState struct {
seq uint64
status gStatus
}
const (
gDead gStatus = iota
gRunnable
gRunning
gWaiting
unordered = ^uint64(0)
garbage = ^uint64(0) - 1
noseq = ^uint64(0)
seqinc = ^uint64(0) - 1
)
// order1007 merges a set of per-P event batches into a single, consistent stream.
// The high level idea is as follows. Events within an individual batch are in
// correct order, because they are emitted by a single P. So we need to produce
// a correct interleaving of the batches. To do this we take first unmerged event
// from each batch (frontier). Then choose subset that is "ready" to be merged,
// that is, events for which all dependencies are already merged. Then we choose
// event with the lowest timestamp from the subset, merge it and repeat.
// This approach ensures that we form a consistent stream even if timestamps are
// incorrect (condition observed on some machines).
func order1007(m map[int][]*Event) (events []*Event, err error) {
pending := 0
var batches []*eventBatch
for _, v := range m {
pending += len(v)
batches = append(batches, &eventBatch{v, false})
}
gs := make(map[uint64]gState)
var frontier []orderEvent
for ; pending != 0; pending-- {
for i, b := range batches {
if b.selected || len(b.events) == 0 {
continue
}
ev := b.events[0]
g, init, next := stateTransition(ev)
if !transitionReady(g, gs[g], init) {
continue
}
frontier = append(frontier, orderEvent{ev, i, g, init, next})
b.events = b.events[1:]
b.selected = true
// Get rid of "Local" events, they are intended merely for ordering.
switch ev.Type {
case EvGoStartLocal:
ev.Type = EvGoStart
case EvGoUnblockLocal:
ev.Type = EvGoUnblock
case EvGoSysExitLocal:
ev.Type = EvGoSysExit
}
}
if len(frontier) == 0 {
return nil, fmt.Errorf("no consistent ordering of events possible")
}
sort.Sort(orderEventList(frontier))
f := frontier[0]
frontier[0] = frontier[len(frontier)-1]
frontier = frontier[:len(frontier)-1]
events = append(events, f.ev)
transition(gs, f.g, f.init, f.next)
if !batches[f.batch].selected {
panic("frontier batch is not selected")
}
batches[f.batch].selected = false
}
// At this point we have a consistent stream of events.
// Make sure time stamps respect the ordering.
// The tests will skip (not fail) the test case if they see this error.
if !sort.IsSorted(eventList(events)) {
return nil, ErrTimeOrder
}
// The last part is giving correct timestamps to EvGoSysExit events.
// The problem with EvGoSysExit is that actual syscall exit timestamp (ev.Args[2])
// is potentially acquired long before event emission. So far we've used
// timestamp of event emission (ev.Ts).
// We could not set ev.Ts = ev.Args[2] earlier, because it would produce
// seemingly broken timestamps (misplaced event).
// We also can't simply update the timestamp and resort events, because
// if timestamps are broken we will misplace the event and later report
// logically broken trace (instead of reporting broken timestamps).
lastSysBlock := make(map[uint64]int64)
for _, ev := range events {
switch ev.Type {
case EvGoSysBlock, EvGoInSyscall:
lastSysBlock[ev.G] = ev.Ts
case EvGoSysExit:
ts := int64(ev.Args[2])
if ts == 0 {
continue
}
block := lastSysBlock[ev.G]
if block == 0 {
return nil, fmt.Errorf("stray syscall exit")
}
if ts < block {
return nil, ErrTimeOrder
}
ev.Ts = ts
}
}
sort.Stable(eventList(events))
return
}
// stateTransition returns goroutine state (sequence and status) when the event
// becomes ready for merging (init) and the goroutine state after the event (next).
func stateTransition(ev *Event) (g uint64, init, next gState) {
switch ev.Type {
case EvGoCreate:
g = ev.Args[0]
init = gState{0, gDead}
next = gState{1, gRunnable}
case EvGoWaiting, EvGoInSyscall:
g = ev.G
init = gState{1, gRunnable}
next = gState{2, gWaiting}
case EvGoStart, EvGoStartLabel:
g = ev.G
init = gState{ev.Args[1], gRunnable}
next = gState{ev.Args[1] + 1, gRunning}
case EvGoStartLocal:
// noseq means that this event is ready for merging as soon as
// frontier reaches it (EvGoStartLocal is emitted on the same P
// as the corresponding EvGoCreate/EvGoUnblock, and thus the latter
// is already merged).
// seqinc is a stub for cases when event increments g sequence,
// but since we don't know current seq we also don't know next seq.
g = ev.G
init = gState{noseq, gRunnable}
next = gState{seqinc, gRunning}
case EvGoBlock, EvGoBlockSend, EvGoBlockRecv, EvGoBlockSelect,
EvGoBlockSync, EvGoBlockCond, EvGoBlockNet, EvGoSleep,
EvGoSysBlock, EvGoBlockGC:
g = ev.G
init = gState{noseq, gRunning}
next = gState{noseq, gWaiting}
case EvGoSched, EvGoPreempt:
g = ev.G
init = gState{noseq, gRunning}
next = gState{noseq, gRunnable}
case EvGoUnblock, EvGoSysExit:
g = ev.Args[0]
init = gState{ev.Args[1], gWaiting}
next = gState{ev.Args[1] + 1, gRunnable}
case EvGoUnblockLocal, EvGoSysExitLocal:
g = ev.Args[0]
init = gState{noseq, gWaiting}
next = gState{seqinc, gRunnable}
case EvGCStart:
g = garbage
init = gState{ev.Args[0], gDead}
next = gState{ev.Args[0] + 1, gDead}
default:
// no ordering requirements
g = unordered
}
return
}
func transitionReady(g uint64, curr, init gState) bool {
return g == unordered || (init.seq == noseq || init.seq == curr.seq) && init.status == curr.status
}
func transition(gs map[uint64]gState, g uint64, init, next gState) {
if g == unordered {
return
}
curr := gs[g]
if !transitionReady(g, curr, init) {
panic("event sequences are broken")
}
switch next.seq {
case noseq:
next.seq = curr.seq
case seqinc:
next.seq = curr.seq + 1
}
gs[g] = next
}
// order1005 merges a set of per-P event batches into a single, consistent stream.
func order1005(m map[int][]*Event) (events []*Event, err error) {
for _, batch := range m {
events = append(events, batch...)
}
for _, ev := range events {
if ev.Type == EvGoSysExit {
// EvGoSysExit emission is delayed until the thread has a P.
// Give it the real sequence number and time stamp.
ev.seq = int64(ev.Args[1])
if ev.Args[2] != 0 {
ev.Ts = int64(ev.Args[2])
}
}
}
sort.Sort(eventSeqList(events))
if !sort.IsSorted(eventList(events)) {
return nil, ErrTimeOrder
}
return
}
type orderEventList []orderEvent
func (l orderEventList) Len() int {
return len(l)
}
func (l orderEventList) Less(i, j int) bool {
return l[i].ev.Ts < l[j].ev.Ts
}
func (l orderEventList) Swap(i, j int) {
l[i], l[j] = l[j], l[i]
}
type eventList []*Event
func (l eventList) Len() int {
return len(l)
}
func (l eventList) Less(i, j int) bool {
return l[i].Ts < l[j].Ts
}
func (l eventList) Swap(i, j int) {
l[i], l[j] = l[j], l[i]
}
type eventSeqList []*Event
func (l eventSeqList) Len() int {
return len(l)
}
func (l eventSeqList) Less(i, j int) bool {
return l[i].seq < l[j].seq
}
func (l eventSeqList) Swap(i, j int) {
l[i], l[j] = l[j], l[i]
}
|