1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
|
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package big
import "math/rand"
// ProbablyPrime reports whether x is probably prime,
// applying the Miller-Rabin test with n pseudorandomly chosen bases
// as well as a Baillie-PSW test.
//
// If x is prime, ProbablyPrime returns true.
// If x is chosen randomly and not prime, ProbablyPrime probably returns false.
// The probability of returning true for a randomly chosen non-prime is at most ¼ⁿ.
//
// ProbablyPrime is 100% accurate for inputs less than 2⁶⁴.
// See Menezes et al., Handbook of Applied Cryptography, 1997, pp. 145-149,
// and FIPS 186-4 Appendix F for further discussion of the error probabilities.
//
// ProbablyPrime is not suitable for judging primes that an adversary may
// have crafted to fool the test.
//
// As of Go 1.8, ProbablyPrime(0) is allowed and applies only a Baillie-PSW test.
// Before Go 1.8, ProbablyPrime applied only the Miller-Rabin tests, and ProbablyPrime(0) panicked.
func (x *Int) ProbablyPrime(n int) bool {
// Note regarding the doc comment above:
// It would be more precise to say that the Baillie-PSW test uses the
// extra strong Lucas test as its Lucas test, but since no one knows
// how to tell any of the Lucas tests apart inside a Baillie-PSW test
// (they all work equally well empirically), that detail need not be
// documented or implicitly guaranteed.
// The comment does avoid saying "the" Baillie-PSW test
// because of this general ambiguity.
if n < 0 {
panic("negative n for ProbablyPrime")
}
if x.neg || len(x.abs) == 0 {
return false
}
// primeBitMask records the primes < 64.
const primeBitMask uint64 = 1<<2 | 1<<3 | 1<<5 | 1<<7 |
1<<11 | 1<<13 | 1<<17 | 1<<19 | 1<<23 | 1<<29 | 1<<31 |
1<<37 | 1<<41 | 1<<43 | 1<<47 | 1<<53 | 1<<59 | 1<<61
w := x.abs[0]
if len(x.abs) == 1 && w < 64 {
return primeBitMask&(1<<w) != 0
}
if w&1 == 0 {
return false // x is even
}
const primesA = 3 * 5 * 7 * 11 * 13 * 17 * 19 * 23 * 37
const primesB = 29 * 31 * 41 * 43 * 47 * 53
var rA, rB uint32
switch _W {
case 32:
rA = uint32(x.abs.modW(primesA))
rB = uint32(x.abs.modW(primesB))
case 64:
r := x.abs.modW((primesA * primesB) & _M)
rA = uint32(r % primesA)
rB = uint32(r % primesB)
default:
panic("math/big: invalid word size")
}
if rA%3 == 0 || rA%5 == 0 || rA%7 == 0 || rA%11 == 0 || rA%13 == 0 || rA%17 == 0 || rA%19 == 0 || rA%23 == 0 || rA%37 == 0 ||
rB%29 == 0 || rB%31 == 0 || rB%41 == 0 || rB%43 == 0 || rB%47 == 0 || rB%53 == 0 {
return false
}
return x.abs.probablyPrimeMillerRabin(n+1, true) && x.abs.probablyPrimeLucas()
}
// probablyPrimeMillerRabin reports whether n passes reps rounds of the
// Miller-Rabin primality test, using pseudo-randomly chosen bases.
// If force2 is true, one of the rounds is forced to use base 2.
// See Handbook of Applied Cryptography, p. 139, Algorithm 4.24.
// The number n is known to be non-zero.
func (n nat) probablyPrimeMillerRabin(reps int, force2 bool) bool {
nm1 := nat(nil).sub(n, natOne)
// determine q, k such that nm1 = q << k
k := nm1.trailingZeroBits()
q := nat(nil).shr(nm1, k)
nm3 := nat(nil).sub(nm1, natTwo)
rand := rand.New(rand.NewSource(int64(n[0])))
var x, y, quotient nat
nm3Len := nm3.bitLen()
NextRandom:
for i := 0; i < reps; i++ {
if i == reps-1 && force2 {
x = x.set(natTwo)
} else {
x = x.random(rand, nm3, nm3Len)
x = x.add(x, natTwo)
}
y = y.expNN(x, q, n)
if y.cmp(natOne) == 0 || y.cmp(nm1) == 0 {
continue
}
for j := uint(1); j < k; j++ {
y = y.sqr(y)
quotient, y = quotient.div(y, y, n)
if y.cmp(nm1) == 0 {
continue NextRandom
}
if y.cmp(natOne) == 0 {
return false
}
}
return false
}
return true
}
// probablyPrimeLucas reports whether n passes the "almost extra strong" Lucas probable prime test,
// using Baillie-OEIS parameter selection. This corresponds to "AESLPSP" on Jacobsen's tables (link below).
// The combination of this test and a Miller-Rabin/Fermat test with base 2 gives a Baillie-PSW test.
//
// References:
//
// Baillie and Wagstaff, "Lucas Pseudoprimes", Mathematics of Computation 35(152),
// October 1980, pp. 1391-1417, especially page 1401.
// https://www.ams.org/journals/mcom/1980-35-152/S0025-5718-1980-0583518-6/S0025-5718-1980-0583518-6.pdf
//
// Grantham, "Frobenius Pseudoprimes", Mathematics of Computation 70(234),
// March 2000, pp. 873-891.
// https://www.ams.org/journals/mcom/2001-70-234/S0025-5718-00-01197-2/S0025-5718-00-01197-2.pdf
//
// Baillie, "Extra strong Lucas pseudoprimes", OEIS A217719, https://oeis.org/A217719.
//
// Jacobsen, "Pseudoprime Statistics, Tables, and Data", http://ntheory.org/pseudoprimes.html.
//
// Nicely, "The Baillie-PSW Primality Test", http://www.trnicely.net/misc/bpsw.html.
// (Note that Nicely's definition of the "extra strong" test gives the wrong Jacobi condition,
// as pointed out by Jacobsen.)
//
// Crandall and Pomerance, Prime Numbers: A Computational Perspective, 2nd ed.
// Springer, 2005.
func (n nat) probablyPrimeLucas() bool {
// Discard 0, 1.
if len(n) == 0 || n.cmp(natOne) == 0 {
return false
}
// Two is the only even prime.
// Already checked by caller, but here to allow testing in isolation.
if n[0]&1 == 0 {
return n.cmp(natTwo) == 0
}
// Baillie-OEIS "method C" for choosing D, P, Q,
// as in https://oeis.org/A217719/a217719.txt:
// try increasing P ≥ 3 such that D = P² - 4 (so Q = 1)
// until Jacobi(D, n) = -1.
// The search is expected to succeed for non-square n after just a few trials.
// After more than expected failures, check whether n is square
// (which would cause Jacobi(D, n) = 1 for all D not dividing n).
p := Word(3)
d := nat{1}
t1 := nat(nil) // temp
intD := &Int{abs: d}
intN := &Int{abs: n}
for ; ; p++ {
if p > 10000 {
// This is widely believed to be impossible.
// If we get a report, we'll want the exact number n.
panic("math/big: internal error: cannot find (D/n) = -1 for " + intN.String())
}
d[0] = p*p - 4
j := Jacobi(intD, intN)
if j == -1 {
break
}
if j == 0 {
// d = p²-4 = (p-2)(p+2).
// If (d/n) == 0 then d shares a prime factor with n.
// Since the loop proceeds in increasing p and starts with p-2==1,
// the shared prime factor must be p+2.
// If p+2 == n, then n is prime; otherwise p+2 is a proper factor of n.
return len(n) == 1 && n[0] == p+2
}
if p == 40 {
// We'll never find (d/n) = -1 if n is a square.
// If n is a non-square we expect to find a d in just a few attempts on average.
// After 40 attempts, take a moment to check if n is indeed a square.
t1 = t1.sqrt(n)
t1 = t1.sqr(t1)
if t1.cmp(n) == 0 {
return false
}
}
}
// Grantham definition of "extra strong Lucas pseudoprime", after Thm 2.3 on p. 876
// (D, P, Q above have become Δ, b, 1):
//
// Let U_n = U_n(b, 1), V_n = V_n(b, 1), and Δ = b²-4.
// An extra strong Lucas pseudoprime to base b is a composite n = 2^r s + Jacobi(Δ, n),
// where s is odd and gcd(n, 2*Δ) = 1, such that either (i) U_s ≡ 0 mod n and V_s ≡ ±2 mod n,
// or (ii) V_{2^t s} ≡ 0 mod n for some 0 ≤ t < r-1.
//
// We know gcd(n, Δ) = 1 or else we'd have found Jacobi(d, n) == 0 above.
// We know gcd(n, 2) = 1 because n is odd.
//
// Arrange s = (n - Jacobi(Δ, n)) / 2^r = (n+1) / 2^r.
s := nat(nil).add(n, natOne)
r := int(s.trailingZeroBits())
s = s.shr(s, uint(r))
nm2 := nat(nil).sub(n, natTwo) // n-2
// We apply the "almost extra strong" test, which checks the above conditions
// except for U_s ≡ 0 mod n, which allows us to avoid computing any U_k values.
// Jacobsen points out that maybe we should just do the full extra strong test:
// "It is also possible to recover U_n using Crandall and Pomerance equation 3.13:
// U_n = D^-1 (2V_{n+1} - PV_n) allowing us to run the full extra-strong test
// at the cost of a single modular inversion. This computation is easy and fast in GMP,
// so we can get the full extra-strong test at essentially the same performance as the
// almost extra strong test."
// Compute Lucas sequence V_s(b, 1), where:
//
// V(0) = 2
// V(1) = P
// V(k) = P V(k-1) - Q V(k-2).
//
// (Remember that due to method C above, P = b, Q = 1.)
//
// In general V(k) = α^k + β^k, where α and β are roots of x² - Px + Q.
// Crandall and Pomerance (p.147) observe that for 0 ≤ j ≤ k,
//
// V(j+k) = V(j)V(k) - V(k-j).
//
// So in particular, to quickly double the subscript:
//
// V(2k) = V(k)² - 2
// V(2k+1) = V(k) V(k+1) - P
//
// We can therefore start with k=0 and build up to k=s in log₂(s) steps.
natP := nat(nil).setWord(p)
vk := nat(nil).setWord(2)
vk1 := nat(nil).setWord(p)
t2 := nat(nil) // temp
for i := int(s.bitLen()); i >= 0; i-- {
if s.bit(uint(i)) != 0 {
// k' = 2k+1
// V(k') = V(2k+1) = V(k) V(k+1) - P.
t1 = t1.mul(vk, vk1)
t1 = t1.add(t1, n)
t1 = t1.sub(t1, natP)
t2, vk = t2.div(vk, t1, n)
// V(k'+1) = V(2k+2) = V(k+1)² - 2.
t1 = t1.sqr(vk1)
t1 = t1.add(t1, nm2)
t2, vk1 = t2.div(vk1, t1, n)
} else {
// k' = 2k
// V(k'+1) = V(2k+1) = V(k) V(k+1) - P.
t1 = t1.mul(vk, vk1)
t1 = t1.add(t1, n)
t1 = t1.sub(t1, natP)
t2, vk1 = t2.div(vk1, t1, n)
// V(k') = V(2k) = V(k)² - 2
t1 = t1.sqr(vk)
t1 = t1.add(t1, nm2)
t2, vk = t2.div(vk, t1, n)
}
}
// Now k=s, so vk = V(s). Check V(s) ≡ ±2 (mod n).
if vk.cmp(natTwo) == 0 || vk.cmp(nm2) == 0 {
// Check U(s) ≡ 0.
// As suggested by Jacobsen, apply Crandall and Pomerance equation 3.13:
//
// U(k) = D⁻¹ (2 V(k+1) - P V(k))
//
// Since we are checking for U(k) == 0 it suffices to check 2 V(k+1) == P V(k) mod n,
// or P V(k) - 2 V(k+1) == 0 mod n.
t1 := t1.mul(vk, natP)
t2 := t2.shl(vk1, 1)
if t1.cmp(t2) < 0 {
t1, t2 = t2, t1
}
t1 = t1.sub(t1, t2)
t3 := vk1 // steal vk1, no longer needed below
vk1 = nil
_ = vk1
t2, t3 = t2.div(t3, t1, n)
if len(t3) == 0 {
return true
}
}
// Check V(2^t s) ≡ 0 mod n for some 0 ≤ t < r-1.
for t := 0; t < r-1; t++ {
if len(vk) == 0 { // vk == 0
return true
}
// Optimization: V(k) = 2 is a fixed point for V(k') = V(k)² - 2,
// so if V(k) = 2, we can stop: we will never find a future V(k) == 0.
if len(vk) == 1 && vk[0] == 2 { // vk == 2
return false
}
// k' = 2k
// V(k') = V(2k) = V(k)² - 2
t1 = t1.sqr(vk)
t1 = t1.sub(t1, natTwo)
t2, vk = t2.div(vk, t1, n)
}
return false
}
|