1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
|
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package runtime_test
import (
"fmt"
"math"
"math/rand"
"reflect"
. "runtime"
"strings"
"testing"
"unsafe"
)
func TestMemHash32Equality(t *testing.T) {
if *UseAeshash {
t.Skip("skipping since AES hash implementation is used")
}
var b [4]byte
r := rand.New(rand.NewSource(1234))
seed := uintptr(r.Uint64())
for i := 0; i < 100; i++ {
randBytes(r, b[:])
got := MemHash32(unsafe.Pointer(&b), seed)
want := MemHash(unsafe.Pointer(&b), seed, 4)
if got != want {
t.Errorf("MemHash32(%x, %v) = %v; want %v", b, seed, got, want)
}
}
}
func TestMemHash64Equality(t *testing.T) {
if *UseAeshash {
t.Skip("skipping since AES hash implementation is used")
}
var b [8]byte
r := rand.New(rand.NewSource(1234))
seed := uintptr(r.Uint64())
for i := 0; i < 100; i++ {
randBytes(r, b[:])
got := MemHash64(unsafe.Pointer(&b), seed)
want := MemHash(unsafe.Pointer(&b), seed, 8)
if got != want {
t.Errorf("MemHash64(%x, %v) = %v; want %v", b, seed, got, want)
}
}
}
func TestCompilerVsRuntimeHash(t *testing.T) {
// Test to make sure the compiler's hash function and the runtime's hash function agree.
// See issue 37716.
for _, m := range []interface{}{
map[bool]int{},
map[int8]int{},
map[uint8]int{},
map[int16]int{},
map[uint16]int{},
map[int32]int{},
map[uint32]int{},
map[int64]int{},
map[uint64]int{},
map[int]int{},
map[uint]int{},
map[uintptr]int{},
map[*byte]int{},
map[chan int]int{},
map[unsafe.Pointer]int{},
map[float32]int{},
map[float64]int{},
map[complex64]int{},
map[complex128]int{},
map[string]int{},
//map[interface{}]int{},
//map[interface{F()}]int{},
map[[8]uint64]int{},
map[[8]string]int{},
map[struct{ a, b, c, d int32 }]int{}, // Note: tests AMEM128
map[struct{ a, b, _, d int32 }]int{},
map[struct {
a, b int32
c float32
d, e [8]byte
}]int{},
map[struct {
a int16
b int64
}]int{},
} {
k := reflect.New(reflect.TypeOf(m).Key()).Elem().Interface() // the zero key
x, y := MapHashCheck(m, k)
if x != y {
t.Errorf("hashes did not match (%x vs %x) for map %T", x, y, m)
}
}
}
// Smhasher is a torture test for hash functions.
// https://code.google.com/p/smhasher/
// This code is a port of some of the Smhasher tests to Go.
//
// The current AES hash function passes Smhasher. Our fallback
// hash functions don't, so we only enable the difficult tests when
// we know the AES implementation is available.
// Sanity checks.
// hash should not depend on values outside key.
// hash should not depend on alignment.
func TestSmhasherSanity(t *testing.T) {
r := rand.New(rand.NewSource(1234))
const REP = 10
const KEYMAX = 128
const PAD = 16
const OFFMAX = 16
for k := 0; k < REP; k++ {
for n := 0; n < KEYMAX; n++ {
for i := 0; i < OFFMAX; i++ {
var b [KEYMAX + OFFMAX + 2*PAD]byte
var c [KEYMAX + OFFMAX + 2*PAD]byte
randBytes(r, b[:])
randBytes(r, c[:])
copy(c[PAD+i:PAD+i+n], b[PAD:PAD+n])
if BytesHash(b[PAD:PAD+n], 0) != BytesHash(c[PAD+i:PAD+i+n], 0) {
t.Errorf("hash depends on bytes outside key")
}
}
}
}
}
type HashSet struct {
m map[uintptr]struct{} // set of hashes added
n int // number of hashes added
}
func newHashSet() *HashSet {
return &HashSet{make(map[uintptr]struct{}), 0}
}
func (s *HashSet) add(h uintptr) {
s.m[h] = struct{}{}
s.n++
}
func (s *HashSet) addS(x string) {
s.add(StringHash(x, 0))
}
func (s *HashSet) addB(x []byte) {
s.add(BytesHash(x, 0))
}
func (s *HashSet) addS_seed(x string, seed uintptr) {
s.add(StringHash(x, seed))
}
func (s *HashSet) check(t *testing.T) {
const SLOP = 50.0
collisions := s.n - len(s.m)
pairs := int64(s.n) * int64(s.n-1) / 2
expected := float64(pairs) / math.Pow(2.0, float64(hashSize))
stddev := math.Sqrt(expected)
if float64(collisions) > expected+SLOP*(3*stddev+1) {
t.Errorf("unexpected number of collisions: got=%d mean=%f stddev=%f threshold=%f", collisions, expected, stddev, expected+SLOP*(3*stddev+1))
}
}
// a string plus adding zeros must make distinct hashes
func TestSmhasherAppendedZeros(t *testing.T) {
s := "hello" + strings.Repeat("\x00", 256)
h := newHashSet()
for i := 0; i <= len(s); i++ {
h.addS(s[:i])
}
h.check(t)
}
// All 0-3 byte strings have distinct hashes.
func TestSmhasherSmallKeys(t *testing.T) {
h := newHashSet()
var b [3]byte
for i := 0; i < 256; i++ {
b[0] = byte(i)
h.addB(b[:1])
for j := 0; j < 256; j++ {
b[1] = byte(j)
h.addB(b[:2])
if !testing.Short() {
for k := 0; k < 256; k++ {
b[2] = byte(k)
h.addB(b[:3])
}
}
}
}
h.check(t)
}
// Different length strings of all zeros have distinct hashes.
func TestSmhasherZeros(t *testing.T) {
N := 256 * 1024
if testing.Short() {
N = 1024
}
h := newHashSet()
b := make([]byte, N)
for i := 0; i <= N; i++ {
h.addB(b[:i])
}
h.check(t)
}
// Strings with up to two nonzero bytes all have distinct hashes.
func TestSmhasherTwoNonzero(t *testing.T) {
if GOARCH == "wasm" {
t.Skip("Too slow on wasm")
}
if testing.Short() {
t.Skip("Skipping in short mode")
}
h := newHashSet()
for n := 2; n <= 16; n++ {
twoNonZero(h, n)
}
h.check(t)
}
func twoNonZero(h *HashSet, n int) {
b := make([]byte, n)
// all zero
h.addB(b)
// one non-zero byte
for i := 0; i < n; i++ {
for x := 1; x < 256; x++ {
b[i] = byte(x)
h.addB(b)
b[i] = 0
}
}
// two non-zero bytes
for i := 0; i < n; i++ {
for x := 1; x < 256; x++ {
b[i] = byte(x)
for j := i + 1; j < n; j++ {
for y := 1; y < 256; y++ {
b[j] = byte(y)
h.addB(b)
b[j] = 0
}
}
b[i] = 0
}
}
}
// Test strings with repeats, like "abcdabcdabcdabcd..."
func TestSmhasherCyclic(t *testing.T) {
if testing.Short() {
t.Skip("Skipping in short mode")
}
r := rand.New(rand.NewSource(1234))
const REPEAT = 8
const N = 1000000
for n := 4; n <= 12; n++ {
h := newHashSet()
b := make([]byte, REPEAT*n)
for i := 0; i < N; i++ {
b[0] = byte(i * 79 % 97)
b[1] = byte(i * 43 % 137)
b[2] = byte(i * 151 % 197)
b[3] = byte(i * 199 % 251)
randBytes(r, b[4:n])
for j := n; j < n*REPEAT; j++ {
b[j] = b[j-n]
}
h.addB(b)
}
h.check(t)
}
}
// Test strings with only a few bits set
func TestSmhasherSparse(t *testing.T) {
if GOARCH == "wasm" {
t.Skip("Too slow on wasm")
}
if testing.Short() {
t.Skip("Skipping in short mode")
}
sparse(t, 32, 6)
sparse(t, 40, 6)
sparse(t, 48, 5)
sparse(t, 56, 5)
sparse(t, 64, 5)
sparse(t, 96, 4)
sparse(t, 256, 3)
sparse(t, 2048, 2)
}
func sparse(t *testing.T, n int, k int) {
b := make([]byte, n/8)
h := newHashSet()
setbits(h, b, 0, k)
h.check(t)
}
// set up to k bits at index i and greater
func setbits(h *HashSet, b []byte, i int, k int) {
h.addB(b)
if k == 0 {
return
}
for j := i; j < len(b)*8; j++ {
b[j/8] |= byte(1 << uint(j&7))
setbits(h, b, j+1, k-1)
b[j/8] &= byte(^(1 << uint(j&7)))
}
}
// Test all possible combinations of n blocks from the set s.
// "permutation" is a bad name here, but it is what Smhasher uses.
func TestSmhasherPermutation(t *testing.T) {
if GOARCH == "wasm" {
t.Skip("Too slow on wasm")
}
if testing.Short() {
t.Skip("Skipping in short mode")
}
permutation(t, []uint32{0, 1, 2, 3, 4, 5, 6, 7}, 8)
permutation(t, []uint32{0, 1 << 29, 2 << 29, 3 << 29, 4 << 29, 5 << 29, 6 << 29, 7 << 29}, 8)
permutation(t, []uint32{0, 1}, 20)
permutation(t, []uint32{0, 1 << 31}, 20)
permutation(t, []uint32{0, 1, 2, 3, 4, 5, 6, 7, 1 << 29, 2 << 29, 3 << 29, 4 << 29, 5 << 29, 6 << 29, 7 << 29}, 6)
}
func permutation(t *testing.T, s []uint32, n int) {
b := make([]byte, n*4)
h := newHashSet()
genPerm(h, b, s, 0)
h.check(t)
}
func genPerm(h *HashSet, b []byte, s []uint32, n int) {
h.addB(b[:n])
if n == len(b) {
return
}
for _, v := range s {
b[n] = byte(v)
b[n+1] = byte(v >> 8)
b[n+2] = byte(v >> 16)
b[n+3] = byte(v >> 24)
genPerm(h, b, s, n+4)
}
}
type Key interface {
clear() // set bits all to 0
random(r *rand.Rand) // set key to something random
bits() int // how many bits key has
flipBit(i int) // flip bit i of the key
hash() uintptr // hash the key
name() string // for error reporting
}
type BytesKey struct {
b []byte
}
func (k *BytesKey) clear() {
for i := range k.b {
k.b[i] = 0
}
}
func (k *BytesKey) random(r *rand.Rand) {
randBytes(r, k.b)
}
func (k *BytesKey) bits() int {
return len(k.b) * 8
}
func (k *BytesKey) flipBit(i int) {
k.b[i>>3] ^= byte(1 << uint(i&7))
}
func (k *BytesKey) hash() uintptr {
return BytesHash(k.b, 0)
}
func (k *BytesKey) name() string {
return fmt.Sprintf("bytes%d", len(k.b))
}
type Int32Key struct {
i uint32
}
func (k *Int32Key) clear() {
k.i = 0
}
func (k *Int32Key) random(r *rand.Rand) {
k.i = r.Uint32()
}
func (k *Int32Key) bits() int {
return 32
}
func (k *Int32Key) flipBit(i int) {
k.i ^= 1 << uint(i)
}
func (k *Int32Key) hash() uintptr {
return Int32Hash(k.i, 0)
}
func (k *Int32Key) name() string {
return "int32"
}
type Int64Key struct {
i uint64
}
func (k *Int64Key) clear() {
k.i = 0
}
func (k *Int64Key) random(r *rand.Rand) {
k.i = uint64(r.Uint32()) + uint64(r.Uint32())<<32
}
func (k *Int64Key) bits() int {
return 64
}
func (k *Int64Key) flipBit(i int) {
k.i ^= 1 << uint(i)
}
func (k *Int64Key) hash() uintptr {
return Int64Hash(k.i, 0)
}
func (k *Int64Key) name() string {
return "int64"
}
type EfaceKey struct {
i interface{}
}
func (k *EfaceKey) clear() {
k.i = nil
}
func (k *EfaceKey) random(r *rand.Rand) {
k.i = uint64(r.Int63())
}
func (k *EfaceKey) bits() int {
// use 64 bits. This tests inlined interfaces
// on 64-bit targets and indirect interfaces on
// 32-bit targets.
return 64
}
func (k *EfaceKey) flipBit(i int) {
k.i = k.i.(uint64) ^ uint64(1)<<uint(i)
}
func (k *EfaceKey) hash() uintptr {
return EfaceHash(k.i, 0)
}
func (k *EfaceKey) name() string {
return "Eface"
}
type IfaceKey struct {
i interface {
F()
}
}
type fInter uint64
func (x fInter) F() {
}
func (k *IfaceKey) clear() {
k.i = nil
}
func (k *IfaceKey) random(r *rand.Rand) {
k.i = fInter(r.Int63())
}
func (k *IfaceKey) bits() int {
// use 64 bits. This tests inlined interfaces
// on 64-bit targets and indirect interfaces on
// 32-bit targets.
return 64
}
func (k *IfaceKey) flipBit(i int) {
k.i = k.i.(fInter) ^ fInter(1)<<uint(i)
}
func (k *IfaceKey) hash() uintptr {
return IfaceHash(k.i, 0)
}
func (k *IfaceKey) name() string {
return "Iface"
}
// Flipping a single bit of a key should flip each output bit with 50% probability.
func TestSmhasherAvalanche(t *testing.T) {
if GOARCH == "wasm" {
t.Skip("Too slow on wasm")
}
if testing.Short() {
t.Skip("Skipping in short mode")
}
avalancheTest1(t, &BytesKey{make([]byte, 2)})
avalancheTest1(t, &BytesKey{make([]byte, 4)})
avalancheTest1(t, &BytesKey{make([]byte, 8)})
avalancheTest1(t, &BytesKey{make([]byte, 16)})
avalancheTest1(t, &BytesKey{make([]byte, 32)})
avalancheTest1(t, &BytesKey{make([]byte, 200)})
avalancheTest1(t, &Int32Key{})
avalancheTest1(t, &Int64Key{})
avalancheTest1(t, &EfaceKey{})
avalancheTest1(t, &IfaceKey{})
}
func avalancheTest1(t *testing.T, k Key) {
const REP = 100000
r := rand.New(rand.NewSource(1234))
n := k.bits()
// grid[i][j] is a count of whether flipping
// input bit i affects output bit j.
grid := make([][hashSize]int, n)
for z := 0; z < REP; z++ {
// pick a random key, hash it
k.random(r)
h := k.hash()
// flip each bit, hash & compare the results
for i := 0; i < n; i++ {
k.flipBit(i)
d := h ^ k.hash()
k.flipBit(i)
// record the effects of that bit flip
g := &grid[i]
for j := 0; j < hashSize; j++ {
g[j] += int(d & 1)
d >>= 1
}
}
}
// Each entry in the grid should be about REP/2.
// More precisely, we did N = k.bits() * hashSize experiments where
// each is the sum of REP coin flips. We want to find bounds on the
// sum of coin flips such that a truly random experiment would have
// all sums inside those bounds with 99% probability.
N := n * hashSize
var c float64
// find c such that Prob(mean-c*stddev < x < mean+c*stddev)^N > .9999
for c = 0.0; math.Pow(math.Erf(c/math.Sqrt(2)), float64(N)) < .9999; c += .1 {
}
c *= 4.0 // allowed slack - we don't need to be perfectly random
mean := .5 * REP
stddev := .5 * math.Sqrt(REP)
low := int(mean - c*stddev)
high := int(mean + c*stddev)
for i := 0; i < n; i++ {
for j := 0; j < hashSize; j++ {
x := grid[i][j]
if x < low || x > high {
t.Errorf("bad bias for %s bit %d -> bit %d: %d/%d\n", k.name(), i, j, x, REP)
}
}
}
}
// All bit rotations of a set of distinct keys
func TestSmhasherWindowed(t *testing.T) {
t.Logf("32 bit keys")
windowed(t, &Int32Key{})
t.Logf("64 bit keys")
windowed(t, &Int64Key{})
t.Logf("string keys")
windowed(t, &BytesKey{make([]byte, 128)})
}
func windowed(t *testing.T, k Key) {
if GOARCH == "wasm" {
t.Skip("Too slow on wasm")
}
if testing.Short() {
t.Skip("Skipping in short mode")
}
const BITS = 16
for r := 0; r < k.bits(); r++ {
h := newHashSet()
for i := 0; i < 1<<BITS; i++ {
k.clear()
for j := 0; j < BITS; j++ {
if i>>uint(j)&1 != 0 {
k.flipBit((j + r) % k.bits())
}
}
h.add(k.hash())
}
h.check(t)
}
}
// All keys of the form prefix + [A-Za-z0-9]*N + suffix.
func TestSmhasherText(t *testing.T) {
if testing.Short() {
t.Skip("Skipping in short mode")
}
text(t, "Foo", "Bar")
text(t, "FooBar", "")
text(t, "", "FooBar")
}
func text(t *testing.T, prefix, suffix string) {
const N = 4
const S = "ABCDEFGHIJKLMNOPQRSTabcdefghijklmnopqrst0123456789"
const L = len(S)
b := make([]byte, len(prefix)+N+len(suffix))
copy(b, prefix)
copy(b[len(prefix)+N:], suffix)
h := newHashSet()
c := b[len(prefix):]
for i := 0; i < L; i++ {
c[0] = S[i]
for j := 0; j < L; j++ {
c[1] = S[j]
for k := 0; k < L; k++ {
c[2] = S[k]
for x := 0; x < L; x++ {
c[3] = S[x]
h.addB(b)
}
}
}
}
h.check(t)
}
// Make sure different seed values generate different hashes.
func TestSmhasherSeed(t *testing.T) {
h := newHashSet()
const N = 100000
s := "hello"
for i := 0; i < N; i++ {
h.addS_seed(s, uintptr(i))
}
h.check(t)
}
// size of the hash output (32 or 64 bits)
const hashSize = 32 + int(^uintptr(0)>>63<<5)
func randBytes(r *rand.Rand, b []byte) {
for i := range b {
b[i] = byte(r.Uint32())
}
}
func benchmarkHash(b *testing.B, n int) {
s := strings.Repeat("A", n)
for i := 0; i < b.N; i++ {
StringHash(s, 0)
}
b.SetBytes(int64(n))
}
func BenchmarkHash5(b *testing.B) { benchmarkHash(b, 5) }
func BenchmarkHash16(b *testing.B) { benchmarkHash(b, 16) }
func BenchmarkHash64(b *testing.B) { benchmarkHash(b, 64) }
func BenchmarkHash1024(b *testing.B) { benchmarkHash(b, 1024) }
func BenchmarkHash65536(b *testing.B) { benchmarkHash(b, 65536) }
func TestArrayHash(t *testing.T) {
// Make sure that "" in arrays hash correctly. The hash
// should at least scramble the input seed so that, e.g.,
// {"","foo"} and {"foo",""} have different hashes.
// If the hash is bad, then all (8 choose 4) = 70 keys
// have the same hash. If so, we allocate 70/8 = 8
// overflow buckets. If the hash is good we don't
// normally allocate any overflow buckets, and the
// probability of even one or two overflows goes down rapidly.
// (There is always 1 allocation of the bucket array. The map
// header is allocated on the stack.)
f := func() {
// Make the key type at most 128 bytes. Otherwise,
// we get an allocation per key.
type key [8]string
m := make(map[key]bool, 70)
// fill m with keys that have 4 "foo"s and 4 ""s.
for i := 0; i < 256; i++ {
var k key
cnt := 0
for j := uint(0); j < 8; j++ {
if i>>j&1 != 0 {
k[j] = "foo"
cnt++
}
}
if cnt == 4 {
m[k] = true
}
}
if len(m) != 70 {
t.Errorf("bad test: (8 choose 4) should be 70, not %d", len(m))
}
}
if n := testing.AllocsPerRun(10, f); n > 6 {
t.Errorf("too many allocs %f - hash not balanced", n)
}
}
func TestStructHash(t *testing.T) {
// See the comment in TestArrayHash.
f := func() {
type key struct {
a, b, c, d, e, f, g, h string
}
m := make(map[key]bool, 70)
// fill m with keys that have 4 "foo"s and 4 ""s.
for i := 0; i < 256; i++ {
var k key
cnt := 0
if i&1 != 0 {
k.a = "foo"
cnt++
}
if i&2 != 0 {
k.b = "foo"
cnt++
}
if i&4 != 0 {
k.c = "foo"
cnt++
}
if i&8 != 0 {
k.d = "foo"
cnt++
}
if i&16 != 0 {
k.e = "foo"
cnt++
}
if i&32 != 0 {
k.f = "foo"
cnt++
}
if i&64 != 0 {
k.g = "foo"
cnt++
}
if i&128 != 0 {
k.h = "foo"
cnt++
}
if cnt == 4 {
m[k] = true
}
}
if len(m) != 70 {
t.Errorf("bad test: (8 choose 4) should be 70, not %d", len(m))
}
}
if n := testing.AllocsPerRun(10, f); n > 6 {
t.Errorf("too many allocs %f - hash not balanced", n)
}
}
var sink uint64
func BenchmarkAlignedLoad(b *testing.B) {
var buf [16]byte
p := unsafe.Pointer(&buf[0])
var s uint64
for i := 0; i < b.N; i++ {
s += ReadUnaligned64(p)
}
sink = s
}
func BenchmarkUnalignedLoad(b *testing.B) {
var buf [16]byte
p := unsafe.Pointer(&buf[1])
var s uint64
for i := 0; i < b.N; i++ {
s += ReadUnaligned64(p)
}
sink = s
}
func TestCollisions(t *testing.T) {
if testing.Short() {
t.Skip("Skipping in short mode")
}
for i := 0; i < 16; i++ {
for j := 0; j < 16; j++ {
if j == i {
continue
}
var a [16]byte
m := make(map[uint16]struct{}, 1<<16)
for n := 0; n < 1<<16; n++ {
a[i] = byte(n)
a[j] = byte(n >> 8)
m[uint16(BytesHash(a[:], 0))] = struct{}{}
}
if len(m) <= 1<<15 {
t.Errorf("too many collisions i=%d j=%d outputs=%d out of 65536\n", i, j, len(m))
}
}
}
}
|