summaryrefslogtreecommitdiffstats
path: root/src/runtime/mgcsweep.go
blob: 76bc4246e59891985e999ebf2b9d9b5eae82e5b5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Garbage collector: sweeping

// The sweeper consists of two different algorithms:
//
// * The object reclaimer finds and frees unmarked slots in spans. It
//   can free a whole span if none of the objects are marked, but that
//   isn't its goal. This can be driven either synchronously by
//   mcentral.cacheSpan for mcentral spans, or asynchronously by
//   sweepone, which looks at all the mcentral lists.
//
// * The span reclaimer looks for spans that contain no marked objects
//   and frees whole spans. This is a separate algorithm because
//   freeing whole spans is the hardest task for the object reclaimer,
//   but is critical when allocating new spans. The entry point for
//   this is mheap_.reclaim and it's driven by a sequential scan of
//   the page marks bitmap in the heap arenas.
//
// Both algorithms ultimately call mspan.sweep, which sweeps a single
// heap span.

package runtime

import (
	"runtime/internal/atomic"
	"unsafe"
)

var sweep sweepdata

// State of background sweep.
type sweepdata struct {
	lock    mutex
	g       *g
	parked  bool
	started bool

	nbgsweep    uint32
	npausesweep uint32

	// centralIndex is the current unswept span class.
	// It represents an index into the mcentral span
	// sets. Accessed and updated via its load and
	// update methods. Not protected by a lock.
	//
	// Reset at mark termination.
	// Used by mheap.nextSpanForSweep.
	centralIndex sweepClass
}

// sweepClass is a spanClass and one bit to represent whether we're currently
// sweeping partial or full spans.
type sweepClass uint32

const (
	numSweepClasses            = numSpanClasses * 2
	sweepClassDone  sweepClass = sweepClass(^uint32(0))
)

func (s *sweepClass) load() sweepClass {
	return sweepClass(atomic.Load((*uint32)(s)))
}

func (s *sweepClass) update(sNew sweepClass) {
	// Only update *s if its current value is less than sNew,
	// since *s increases monotonically.
	sOld := s.load()
	for sOld < sNew && !atomic.Cas((*uint32)(s), uint32(sOld), uint32(sNew)) {
		sOld = s.load()
	}
	// TODO(mknyszek): This isn't the only place we have
	// an atomic monotonically increasing counter. It would
	// be nice to have an "atomic max" which is just implemented
	// as the above on most architectures. Some architectures
	// like RISC-V however have native support for an atomic max.
}

func (s *sweepClass) clear() {
	atomic.Store((*uint32)(s), 0)
}

// split returns the underlying span class as well as
// whether we're interested in the full or partial
// unswept lists for that class, indicated as a boolean
// (true means "full").
func (s sweepClass) split() (spc spanClass, full bool) {
	return spanClass(s >> 1), s&1 == 0
}

// nextSpanForSweep finds and pops the next span for sweeping from the
// central sweep buffers. It returns ownership of the span to the caller.
// Returns nil if no such span exists.
func (h *mheap) nextSpanForSweep() *mspan {
	sg := h.sweepgen
	for sc := sweep.centralIndex.load(); sc < numSweepClasses; sc++ {
		spc, full := sc.split()
		c := &h.central[spc].mcentral
		var s *mspan
		if full {
			s = c.fullUnswept(sg).pop()
		} else {
			s = c.partialUnswept(sg).pop()
		}
		if s != nil {
			// Write down that we found something so future sweepers
			// can start from here.
			sweep.centralIndex.update(sc)
			return s
		}
	}
	// Write down that we found nothing.
	sweep.centralIndex.update(sweepClassDone)
	return nil
}

// finishsweep_m ensures that all spans are swept.
//
// The world must be stopped. This ensures there are no sweeps in
// progress.
//
//go:nowritebarrier
func finishsweep_m() {
	assertWorldStopped()

	// Sweeping must be complete before marking commences, so
	// sweep any unswept spans. If this is a concurrent GC, there
	// shouldn't be any spans left to sweep, so this should finish
	// instantly. If GC was forced before the concurrent sweep
	// finished, there may be spans to sweep.
	for sweepone() != ^uintptr(0) {
		sweep.npausesweep++
	}

	// Reset all the unswept buffers, which should be empty.
	// Do this in sweep termination as opposed to mark termination
	// so that we can catch unswept spans and reclaim blocks as
	// soon as possible.
	sg := mheap_.sweepgen
	for i := range mheap_.central {
		c := &mheap_.central[i].mcentral
		c.partialUnswept(sg).reset()
		c.fullUnswept(sg).reset()
	}

	// Sweeping is done, so if the scavenger isn't already awake,
	// wake it up. There's definitely work for it to do at this
	// point.
	wakeScavenger()

	nextMarkBitArenaEpoch()
}

func bgsweep(c chan int) {
	sweep.g = getg()

	lockInit(&sweep.lock, lockRankSweep)
	lock(&sweep.lock)
	sweep.parked = true
	c <- 1
	goparkunlock(&sweep.lock, waitReasonGCSweepWait, traceEvGoBlock, 1)

	for {
		for sweepone() != ^uintptr(0) {
			sweep.nbgsweep++
			Gosched()
		}
		for freeSomeWbufs(true) {
			Gosched()
		}
		lock(&sweep.lock)
		if !isSweepDone() {
			// This can happen if a GC runs between
			// gosweepone returning ^0 above
			// and the lock being acquired.
			unlock(&sweep.lock)
			continue
		}
		sweep.parked = true
		goparkunlock(&sweep.lock, waitReasonGCSweepWait, traceEvGoBlock, 1)
	}
}

// sweepone sweeps some unswept heap span and returns the number of pages returned
// to the heap, or ^uintptr(0) if there was nothing to sweep.
func sweepone() uintptr {
	_g_ := getg()
	sweepRatio := mheap_.sweepPagesPerByte // For debugging

	// increment locks to ensure that the goroutine is not preempted
	// in the middle of sweep thus leaving the span in an inconsistent state for next GC
	_g_.m.locks++
	if atomic.Load(&mheap_.sweepdone) != 0 {
		_g_.m.locks--
		return ^uintptr(0)
	}
	atomic.Xadd(&mheap_.sweepers, +1)

	// Find a span to sweep.
	var s *mspan
	sg := mheap_.sweepgen
	for {
		s = mheap_.nextSpanForSweep()
		if s == nil {
			atomic.Store(&mheap_.sweepdone, 1)
			break
		}
		if state := s.state.get(); state != mSpanInUse {
			// This can happen if direct sweeping already
			// swept this span, but in that case the sweep
			// generation should always be up-to-date.
			if !(s.sweepgen == sg || s.sweepgen == sg+3) {
				print("runtime: bad span s.state=", state, " s.sweepgen=", s.sweepgen, " sweepgen=", sg, "\n")
				throw("non in-use span in unswept list")
			}
			continue
		}
		if s.sweepgen == sg-2 && atomic.Cas(&s.sweepgen, sg-2, sg-1) {
			break
		}
	}

	// Sweep the span we found.
	npages := ^uintptr(0)
	if s != nil {
		npages = s.npages
		if s.sweep(false) {
			// Whole span was freed. Count it toward the
			// page reclaimer credit since these pages can
			// now be used for span allocation.
			atomic.Xadduintptr(&mheap_.reclaimCredit, npages)
		} else {
			// Span is still in-use, so this returned no
			// pages to the heap and the span needs to
			// move to the swept in-use list.
			npages = 0
		}
	}

	// Decrement the number of active sweepers and if this is the
	// last one print trace information.
	if atomic.Xadd(&mheap_.sweepers, -1) == 0 && atomic.Load(&mheap_.sweepdone) != 0 {
		// Since the sweeper is done, move the scavenge gen forward (signalling
		// that there's new work to do) and wake the scavenger.
		//
		// The scavenger is signaled by the last sweeper because once
		// sweeping is done, we will definitely have useful work for
		// the scavenger to do, since the scavenger only runs over the
		// heap once per GC cyle. This update is not done during sweep
		// termination because in some cases there may be a long delay
		// between sweep done and sweep termination (e.g. not enough
		// allocations to trigger a GC) which would be nice to fill in
		// with scavenging work.
		systemstack(func() {
			lock(&mheap_.lock)
			mheap_.pages.scavengeStartGen()
			unlock(&mheap_.lock)
		})
		// Since we might sweep in an allocation path, it's not possible
		// for us to wake the scavenger directly via wakeScavenger, since
		// it could allocate. Ask sysmon to do it for us instead.
		readyForScavenger()

		if debug.gcpacertrace > 0 {
			print("pacer: sweep done at heap size ", memstats.heap_live>>20, "MB; allocated ", (memstats.heap_live-mheap_.sweepHeapLiveBasis)>>20, "MB during sweep; swept ", mheap_.pagesSwept, " pages at ", sweepRatio, " pages/byte\n")
		}
	}
	_g_.m.locks--
	return npages
}

// isSweepDone reports whether all spans are swept or currently being swept.
//
// Note that this condition may transition from false to true at any
// time as the sweeper runs. It may transition from true to false if a
// GC runs; to prevent that the caller must be non-preemptible or must
// somehow block GC progress.
func isSweepDone() bool {
	return mheap_.sweepdone != 0
}

// Returns only when span s has been swept.
//go:nowritebarrier
func (s *mspan) ensureSwept() {
	// Caller must disable preemption.
	// Otherwise when this function returns the span can become unswept again
	// (if GC is triggered on another goroutine).
	_g_ := getg()
	if _g_.m.locks == 0 && _g_.m.mallocing == 0 && _g_ != _g_.m.g0 {
		throw("mspan.ensureSwept: m is not locked")
	}

	sg := mheap_.sweepgen
	spangen := atomic.Load(&s.sweepgen)
	if spangen == sg || spangen == sg+3 {
		return
	}
	// The caller must be sure that the span is a mSpanInUse span.
	if atomic.Cas(&s.sweepgen, sg-2, sg-1) {
		s.sweep(false)
		return
	}
	// unfortunate condition, and we don't have efficient means to wait
	for {
		spangen := atomic.Load(&s.sweepgen)
		if spangen == sg || spangen == sg+3 {
			break
		}
		osyield()
	}
}

// Sweep frees or collects finalizers for blocks not marked in the mark phase.
// It clears the mark bits in preparation for the next GC round.
// Returns true if the span was returned to heap.
// If preserve=true, don't return it to heap nor relink in mcentral lists;
// caller takes care of it.
func (s *mspan) sweep(preserve bool) bool {
	// It's critical that we enter this function with preemption disabled,
	// GC must not start while we are in the middle of this function.
	_g_ := getg()
	if _g_.m.locks == 0 && _g_.m.mallocing == 0 && _g_ != _g_.m.g0 {
		throw("mspan.sweep: m is not locked")
	}
	sweepgen := mheap_.sweepgen
	if state := s.state.get(); state != mSpanInUse || s.sweepgen != sweepgen-1 {
		print("mspan.sweep: state=", state, " sweepgen=", s.sweepgen, " mheap.sweepgen=", sweepgen, "\n")
		throw("mspan.sweep: bad span state")
	}

	if trace.enabled {
		traceGCSweepSpan(s.npages * _PageSize)
	}

	atomic.Xadd64(&mheap_.pagesSwept, int64(s.npages))

	spc := s.spanclass
	size := s.elemsize

	// The allocBits indicate which unmarked objects don't need to be
	// processed since they were free at the end of the last GC cycle
	// and were not allocated since then.
	// If the allocBits index is >= s.freeindex and the bit
	// is not marked then the object remains unallocated
	// since the last GC.
	// This situation is analogous to being on a freelist.

	// Unlink & free special records for any objects we're about to free.
	// Two complications here:
	// 1. An object can have both finalizer and profile special records.
	//    In such case we need to queue finalizer for execution,
	//    mark the object as live and preserve the profile special.
	// 2. A tiny object can have several finalizers setup for different offsets.
	//    If such object is not marked, we need to queue all finalizers at once.
	// Both 1 and 2 are possible at the same time.
	hadSpecials := s.specials != nil
	specialp := &s.specials
	special := *specialp
	for special != nil {
		// A finalizer can be set for an inner byte of an object, find object beginning.
		objIndex := uintptr(special.offset) / size
		p := s.base() + objIndex*size
		mbits := s.markBitsForIndex(objIndex)
		if !mbits.isMarked() {
			// This object is not marked and has at least one special record.
			// Pass 1: see if it has at least one finalizer.
			hasFin := false
			endOffset := p - s.base() + size
			for tmp := special; tmp != nil && uintptr(tmp.offset) < endOffset; tmp = tmp.next {
				if tmp.kind == _KindSpecialFinalizer {
					// Stop freeing of object if it has a finalizer.
					mbits.setMarkedNonAtomic()
					hasFin = true
					break
				}
			}
			// Pass 2: queue all finalizers _or_ handle profile record.
			for special != nil && uintptr(special.offset) < endOffset {
				// Find the exact byte for which the special was setup
				// (as opposed to object beginning).
				p := s.base() + uintptr(special.offset)
				if special.kind == _KindSpecialFinalizer || !hasFin {
					// Splice out special record.
					y := special
					special = special.next
					*specialp = special
					freespecial(y, unsafe.Pointer(p), size)
				} else {
					// This is profile record, but the object has finalizers (so kept alive).
					// Keep special record.
					specialp = &special.next
					special = *specialp
				}
			}
		} else {
			// object is still live: keep special record
			specialp = &special.next
			special = *specialp
		}
	}
	if hadSpecials && s.specials == nil {
		spanHasNoSpecials(s)
	}

	if debug.allocfreetrace != 0 || debug.clobberfree != 0 || raceenabled || msanenabled {
		// Find all newly freed objects. This doesn't have to
		// efficient; allocfreetrace has massive overhead.
		mbits := s.markBitsForBase()
		abits := s.allocBitsForIndex(0)
		for i := uintptr(0); i < s.nelems; i++ {
			if !mbits.isMarked() && (abits.index < s.freeindex || abits.isMarked()) {
				x := s.base() + i*s.elemsize
				if debug.allocfreetrace != 0 {
					tracefree(unsafe.Pointer(x), size)
				}
				if debug.clobberfree != 0 {
					clobberfree(unsafe.Pointer(x), size)
				}
				if raceenabled {
					racefree(unsafe.Pointer(x), size)
				}
				if msanenabled {
					msanfree(unsafe.Pointer(x), size)
				}
			}
			mbits.advance()
			abits.advance()
		}
	}

	// Check for zombie objects.
	if s.freeindex < s.nelems {
		// Everything < freeindex is allocated and hence
		// cannot be zombies.
		//
		// Check the first bitmap byte, where we have to be
		// careful with freeindex.
		obj := s.freeindex
		if (*s.gcmarkBits.bytep(obj / 8)&^*s.allocBits.bytep(obj / 8))>>(obj%8) != 0 {
			s.reportZombies()
		}
		// Check remaining bytes.
		for i := obj/8 + 1; i < divRoundUp(s.nelems, 8); i++ {
			if *s.gcmarkBits.bytep(i)&^*s.allocBits.bytep(i) != 0 {
				s.reportZombies()
			}
		}
	}

	// Count the number of free objects in this span.
	nalloc := uint16(s.countAlloc())
	nfreed := s.allocCount - nalloc
	if nalloc > s.allocCount {
		// The zombie check above should have caught this in
		// more detail.
		print("runtime: nelems=", s.nelems, " nalloc=", nalloc, " previous allocCount=", s.allocCount, " nfreed=", nfreed, "\n")
		throw("sweep increased allocation count")
	}

	s.allocCount = nalloc
	s.freeindex = 0 // reset allocation index to start of span.
	if trace.enabled {
		getg().m.p.ptr().traceReclaimed += uintptr(nfreed) * s.elemsize
	}

	// gcmarkBits becomes the allocBits.
	// get a fresh cleared gcmarkBits in preparation for next GC
	s.allocBits = s.gcmarkBits
	s.gcmarkBits = newMarkBits(s.nelems)

	// Initialize alloc bits cache.
	s.refillAllocCache(0)

	// The span must be in our exclusive ownership until we update sweepgen,
	// check for potential races.
	if state := s.state.get(); state != mSpanInUse || s.sweepgen != sweepgen-1 {
		print("mspan.sweep: state=", state, " sweepgen=", s.sweepgen, " mheap.sweepgen=", sweepgen, "\n")
		throw("mspan.sweep: bad span state after sweep")
	}
	if s.sweepgen == sweepgen+1 || s.sweepgen == sweepgen+3 {
		throw("swept cached span")
	}

	// We need to set s.sweepgen = h.sweepgen only when all blocks are swept,
	// because of the potential for a concurrent free/SetFinalizer.
	//
	// But we need to set it before we make the span available for allocation
	// (return it to heap or mcentral), because allocation code assumes that a
	// span is already swept if available for allocation.
	//
	// Serialization point.
	// At this point the mark bits are cleared and allocation ready
	// to go so release the span.
	atomic.Store(&s.sweepgen, sweepgen)

	if spc.sizeclass() != 0 {
		// Handle spans for small objects.
		if nfreed > 0 {
			// Only mark the span as needing zeroing if we've freed any
			// objects, because a fresh span that had been allocated into,
			// wasn't totally filled, but then swept, still has all of its
			// free slots zeroed.
			s.needzero = 1
			stats := memstats.heapStats.acquire()
			atomic.Xadduintptr(&stats.smallFreeCount[spc.sizeclass()], uintptr(nfreed))
			memstats.heapStats.release()
		}
		if !preserve {
			// The caller may not have removed this span from whatever
			// unswept set its on but taken ownership of the span for
			// sweeping by updating sweepgen. If this span still is in
			// an unswept set, then the mcentral will pop it off the
			// set, check its sweepgen, and ignore it.
			if nalloc == 0 {
				// Free totally free span directly back to the heap.
				mheap_.freeSpan(s)
				return true
			}
			// Return span back to the right mcentral list.
			if uintptr(nalloc) == s.nelems {
				mheap_.central[spc].mcentral.fullSwept(sweepgen).push(s)
			} else {
				mheap_.central[spc].mcentral.partialSwept(sweepgen).push(s)
			}
		}
	} else if !preserve {
		// Handle spans for large objects.
		if nfreed != 0 {
			// Free large object span to heap.

			// NOTE(rsc,dvyukov): The original implementation of efence
			// in CL 22060046 used sysFree instead of sysFault, so that
			// the operating system would eventually give the memory
			// back to us again, so that an efence program could run
			// longer without running out of memory. Unfortunately,
			// calling sysFree here without any kind of adjustment of the
			// heap data structures means that when the memory does
			// come back to us, we have the wrong metadata for it, either in
			// the mspan structures or in the garbage collection bitmap.
			// Using sysFault here means that the program will run out of
			// memory fairly quickly in efence mode, but at least it won't
			// have mysterious crashes due to confused memory reuse.
			// It should be possible to switch back to sysFree if we also
			// implement and then call some kind of mheap.deleteSpan.
			if debug.efence > 0 {
				s.limit = 0 // prevent mlookup from finding this span
				sysFault(unsafe.Pointer(s.base()), size)
			} else {
				mheap_.freeSpan(s)
			}
			stats := memstats.heapStats.acquire()
			atomic.Xadduintptr(&stats.largeFreeCount, 1)
			atomic.Xadduintptr(&stats.largeFree, size)
			memstats.heapStats.release()
			return true
		}

		// Add a large span directly onto the full+swept list.
		mheap_.central[spc].mcentral.fullSwept(sweepgen).push(s)
	}
	return false
}

// reportZombies reports any marked but free objects in s and throws.
//
// This generally means one of the following:
//
// 1. User code converted a pointer to a uintptr and then back
// unsafely, and a GC ran while the uintptr was the only reference to
// an object.
//
// 2. User code (or a compiler bug) constructed a bad pointer that
// points to a free slot, often a past-the-end pointer.
//
// 3. The GC two cycles ago missed a pointer and freed a live object,
// but it was still live in the last cycle, so this GC cycle found a
// pointer to that object and marked it.
func (s *mspan) reportZombies() {
	printlock()
	print("runtime: marked free object in span ", s, ", elemsize=", s.elemsize, " freeindex=", s.freeindex, " (bad use of unsafe.Pointer? try -d=checkptr)\n")
	mbits := s.markBitsForBase()
	abits := s.allocBitsForIndex(0)
	for i := uintptr(0); i < s.nelems; i++ {
		addr := s.base() + i*s.elemsize
		print(hex(addr))
		alloc := i < s.freeindex || abits.isMarked()
		if alloc {
			print(" alloc")
		} else {
			print(" free ")
		}
		if mbits.isMarked() {
			print(" marked  ")
		} else {
			print(" unmarked")
		}
		zombie := mbits.isMarked() && !alloc
		if zombie {
			print(" zombie")
		}
		print("\n")
		if zombie {
			length := s.elemsize
			if length > 1024 {
				length = 1024
			}
			hexdumpWords(addr, addr+length, nil)
		}
		mbits.advance()
		abits.advance()
	}
	throw("found pointer to free object")
}

// deductSweepCredit deducts sweep credit for allocating a span of
// size spanBytes. This must be performed *before* the span is
// allocated to ensure the system has enough credit. If necessary, it
// performs sweeping to prevent going in to debt. If the caller will
// also sweep pages (e.g., for a large allocation), it can pass a
// non-zero callerSweepPages to leave that many pages unswept.
//
// deductSweepCredit makes a worst-case assumption that all spanBytes
// bytes of the ultimately allocated span will be available for object
// allocation.
//
// deductSweepCredit is the core of the "proportional sweep" system.
// It uses statistics gathered by the garbage collector to perform
// enough sweeping so that all pages are swept during the concurrent
// sweep phase between GC cycles.
//
// mheap_ must NOT be locked.
func deductSweepCredit(spanBytes uintptr, callerSweepPages uintptr) {
	if mheap_.sweepPagesPerByte == 0 {
		// Proportional sweep is done or disabled.
		return
	}

	if trace.enabled {
		traceGCSweepStart()
	}

retry:
	sweptBasis := atomic.Load64(&mheap_.pagesSweptBasis)

	// Fix debt if necessary.
	newHeapLive := uintptr(atomic.Load64(&memstats.heap_live)-mheap_.sweepHeapLiveBasis) + spanBytes
	pagesTarget := int64(mheap_.sweepPagesPerByte*float64(newHeapLive)) - int64(callerSweepPages)
	for pagesTarget > int64(atomic.Load64(&mheap_.pagesSwept)-sweptBasis) {
		if sweepone() == ^uintptr(0) {
			mheap_.sweepPagesPerByte = 0
			break
		}
		if atomic.Load64(&mheap_.pagesSweptBasis) != sweptBasis {
			// Sweep pacing changed. Recompute debt.
			goto retry
		}
	}

	if trace.enabled {
		traceGCSweepDone()
	}
}

// clobberfree sets the memory content at x to bad content, for debugging
// purposes.
func clobberfree(x unsafe.Pointer, size uintptr) {
	// size (span.elemsize) is always a multiple of 4.
	for i := uintptr(0); i < size; i += 4 {
		*(*uint32)(add(x, i)) = 0xdeadbeef
	}
}