1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
|
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#include "go_asm.h"
#include "go_tls.h"
#include "textflag.h"
// void runtime·asmstdcall(void *c);
TEXT runtime·asmstdcall(SB),NOSPLIT|NOFRAME,$0
MOVM.DB.W [R4, R5, R14], (R13) // push {r4, r5, lr}
MOVW R0, R4 // put libcall * in r4
MOVW R13, R5 // save stack pointer in r5
// SetLastError(0)
MOVW $0, R0
MRC 15, 0, R1, C13, C0, 2
MOVW R0, 0x34(R1)
MOVW 8(R4), R12 // libcall->args
// Do we have more than 4 arguments?
MOVW 4(R4), R0 // libcall->n
SUB.S $4, R0, R2
BLE loadregs
// Reserve stack space for remaining args
SUB R2<<2, R13
BIC $0x7, R13 // alignment for ABI
// R0: count of arguments
// R1:
// R2: loop counter, from 0 to (n-4)
// R3: scratch
// R4: pointer to libcall struct
// R12: libcall->args
MOVW $0, R2
stackargs:
ADD $4, R2, R3 // r3 = args[4 + i]
MOVW R3<<2(R12), R3
MOVW R3, R2<<2(R13) // stack[i] = r3
ADD $1, R2 // i++
SUB $4, R0, R3 // while (i < (n - 4))
CMP R3, R2
BLT stackargs
loadregs:
CMP $3, R0
MOVW.GT 12(R12), R3
CMP $2, R0
MOVW.GT 8(R12), R2
CMP $1, R0
MOVW.GT 4(R12), R1
CMP $0, R0
MOVW.GT 0(R12), R0
BIC $0x7, R13 // alignment for ABI
MOVW 0(R4), R12 // branch to libcall->fn
BL (R12)
MOVW R5, R13 // free stack space
MOVW R0, 12(R4) // save return value to libcall->r1
MOVW R1, 16(R4)
// GetLastError
MRC 15, 0, R1, C13, C0, 2
MOVW 0x34(R1), R0
MOVW R0, 20(R4) // store in libcall->err
MOVM.IA.W (R13), [R4, R5, R15]
TEXT runtime·badsignal2(SB),NOSPLIT|NOFRAME,$0
MOVM.DB.W [R4, R14], (R13) // push {r4, lr}
MOVW R13, R4 // save original stack pointer
SUB $8, R13 // space for 2 variables
BIC $0x7, R13 // alignment for ABI
// stderr
MOVW runtime·_GetStdHandle(SB), R1
MOVW $-12, R0
BL (R1)
MOVW $runtime·badsignalmsg(SB), R1 // lpBuffer
MOVW $runtime·badsignallen(SB), R2 // lpNumberOfBytesToWrite
MOVW (R2), R2
ADD $0x4, R13, R3 // lpNumberOfBytesWritten
MOVW $0, R12 // lpOverlapped
MOVW R12, (R13)
MOVW runtime·_WriteFile(SB), R12
BL (R12)
MOVW R4, R13 // restore SP
MOVM.IA.W (R13), [R4, R15] // pop {r4, pc}
TEXT runtime·getlasterror(SB),NOSPLIT,$0
MRC 15, 0, R0, C13, C0, 2
MOVW 0x34(R0), R0
MOVW R0, ret+0(FP)
RET
TEXT runtime·setlasterror(SB),NOSPLIT|NOFRAME,$0
MRC 15, 0, R1, C13, C0, 2
MOVW R0, 0x34(R1)
RET
// Called by Windows as a Vectored Exception Handler (VEH).
// First argument is pointer to struct containing
// exception record and context pointers.
// Handler function is stored in R1
// Return 0 for 'not handled', -1 for handled.
// int32_t sigtramp(
// PEXCEPTION_POINTERS ExceptionInfo,
// func *GoExceptionHandler);
TEXT sigtramp<>(SB),NOSPLIT|NOFRAME,$0
MOVM.DB.W [R0, R4-R11, R14], (R13) // push {r0, r4-r11, lr} (SP-=40)
SUB $(8+20), R13 // reserve space for g, sp, and
// parameters/retval to go call
MOVW R0, R6 // Save param0
MOVW R1, R7 // Save param1
BL runtime·load_g(SB)
CMP $0, g // is there a current g?
BL.EQ runtime·badsignal2(SB)
// save g and SP in case of stack switch
MOVW R13, 24(R13)
MOVW g, 20(R13)
// do we need to switch to the g0 stack?
MOVW g, R5 // R5 = g
MOVW g_m(R5), R2 // R2 = m
MOVW m_g0(R2), R4 // R4 = g0
CMP R5, R4 // if curg == g0
BEQ g0
// switch to g0 stack
MOVW R4, g // g = g0
MOVW (g_sched+gobuf_sp)(g), R3 // R3 = g->gobuf.sp
BL runtime·save_g(SB)
// traceback will think that we've done PUSH and SUB
// on this stack, so subtract them here to match.
// (we need room for sighandler arguments anyway).
// and re-save old SP for restoring later.
SUB $(40+8+20), R3
MOVW R13, 24(R3) // save old stack pointer
MOVW R3, R13 // switch stack
g0:
MOVW 0(R6), R2 // R2 = ExceptionPointers->ExceptionRecord
MOVW 4(R6), R3 // R3 = ExceptionPointers->ContextRecord
// make it look like mstart called us on g0, to stop traceback
MOVW $runtime·mstart(SB), R4
MOVW R4, 0(R13) // Save link register for traceback
MOVW R2, 4(R13) // Move arg0 (ExceptionRecord) into position
MOVW R3, 8(R13) // Move arg1 (ContextRecord) into position
MOVW R5, 12(R13) // Move arg2 (original g) into position
BL (R7) // Call the go routine
MOVW 16(R13), R4 // Fetch return value from stack
// Compute the value of the g0 stack pointer after deallocating
// this frame, then allocating 8 bytes. We may need to store
// the resume SP and PC on the g0 stack to work around
// control flow guard when we resume from the exception.
ADD $(40+20), R13, R12
// switch back to original stack and g
MOVW 24(R13), R13
MOVW 20(R13), g
BL runtime·save_g(SB)
done:
MOVW R4, R0 // move retval into position
ADD $(8 + 20), R13 // free locals
MOVM.IA.W (R13), [R3, R4-R11, R14] // pop {r3, r4-r11, lr}
// if return value is CONTINUE_SEARCH, do not set up control
// flow guard workaround
CMP $0, R0
BEQ return
// Check if we need to set up the control flow guard workaround.
// On Windows/ARM, the stack pointer must lie within system
// stack limits when we resume from exception.
// Store the resume SP and PC on the g0 stack,
// and return to returntramp on the g0 stack. returntramp
// pops the saved PC and SP from the g0 stack, resuming execution
// at the desired location.
// If returntramp has already been set up by a previous exception
// handler, don't clobber the stored SP and PC on the stack.
MOVW 4(R3), R3 // PEXCEPTION_POINTERS->Context
MOVW 0x40(R3), R2 // load PC from context record
MOVW $returntramp<>(SB), R1
CMP R1, R2
B.EQ return // do not clobber saved SP/PC
// Save resume SP and PC on g0 stack
MOVW 0x38(R3), R2 // load SP from context record
MOVW R2, 0(R12) // Store resume SP on g0 stack
MOVW 0x40(R3), R2 // load PC from context record
MOVW R2, 4(R12) // Store resume PC on g0 stack
// Set up context record to return to returntramp on g0 stack
MOVW R12, 0x38(R3) // save g0 stack pointer
// in context record
MOVW $returntramp<>(SB), R2 // save resume address
MOVW R2, 0x40(R3) // in context record
return:
B (R14) // return
//
// Trampoline to resume execution from exception handler.
// This is part of the control flow guard workaround.
// It switches stacks and jumps to the continuation address.
//
TEXT returntramp<>(SB),NOSPLIT|NOFRAME,$0
MOVM.IA (R13), [R13, R15] // ldm sp, [sp, pc]
TEXT runtime·exceptiontramp(SB),NOSPLIT|NOFRAME,$0
MOVW $runtime·exceptionhandler(SB), R1
B sigtramp<>(SB)
TEXT runtime·firstcontinuetramp(SB),NOSPLIT|NOFRAME,$0
MOVW $runtime·firstcontinuehandler(SB), R1
B sigtramp<>(SB)
TEXT runtime·lastcontinuetramp(SB),NOSPLIT|NOFRAME,$0
MOVW $runtime·lastcontinuehandler(SB), R1
B sigtramp<>(SB)
TEXT runtime·ctrlhandler(SB),NOSPLIT|NOFRAME,$0
MOVW $runtime·ctrlhandler1(SB), R1
B runtime·externalthreadhandler(SB)
TEXT runtime·profileloop(SB),NOSPLIT|NOFRAME,$0
MOVW $runtime·profileloop1(SB), R1
B runtime·externalthreadhandler(SB)
// int32 externalthreadhandler(uint32 arg, int (*func)(uint32))
// stack layout:
// +----------------+
// | callee-save |
// | registers |
// +----------------+
// | m |
// +----------------+
// 20| g |
// +----------------+
// 16| func ptr (r1) |
// +----------------+
// 12| argument (r0) |
//---+----------------+
// 8 | param1 |
// +----------------+
// 4 | param0 |
// +----------------+
// 0 | retval |
// +----------------+
//
TEXT runtime·externalthreadhandler(SB),NOSPLIT|NOFRAME,$0
MOVM.DB.W [R4-R11, R14], (R13) // push {r4-r11, lr}
SUB $(m__size + g__size + 20), R13 // space for locals
MOVW R0, 12(R13)
MOVW R1, 16(R13)
// zero out m and g structures
ADD $20, R13, R0 // compute pointer to g
MOVW R0, 4(R13)
MOVW $(m__size + g__size), R0
MOVW R0, 8(R13)
BL runtime·memclrNoHeapPointers(SB)
// initialize m and g structures
ADD $20, R13, R2 // R2 = g
ADD $(20 + g__size), R13, R3 // R3 = m
MOVW R2, m_g0(R3) // m->g0 = g
MOVW R3, g_m(R2) // g->m = m
MOVW R2, m_curg(R3) // m->curg = g
MOVW R2, g
BL runtime·save_g(SB)
// set up stackguard stuff
MOVW R13, R0
MOVW R0, g_stack+stack_hi(g)
SUB $(32*1024), R0
MOVW R0, (g_stack+stack_lo)(g)
MOVW R0, g_stackguard0(g)
MOVW R0, g_stackguard1(g)
// move argument into position and call function
MOVW 12(R13), R0
MOVW R0, 4(R13)
MOVW 16(R13), R1
BL (R1)
// clear g
MOVW $0, g
BL runtime·save_g(SB)
MOVW 0(R13), R0 // load return value
ADD $(m__size + g__size + 20), R13 // free locals
MOVM.IA.W (R13), [R4-R11, R15] // pop {r4-r11, pc}
GLOBL runtime·cbctxts(SB), NOPTR, $4
TEXT runtime·callbackasm1(SB),NOSPLIT|NOFRAME,$0
// On entry, the trampoline in zcallback_windows_arm.s left
// the callback index in R12 (which is volatile in the C ABI).
// Push callback register arguments r0-r3. We do this first so
// they're contiguous with stack arguments.
MOVM.DB.W [R0-R3], (R13)
// Push C callee-save registers r4-r11 and lr.
MOVM.DB.W [R4-R11, R14], (R13)
SUB $(16 + callbackArgs__size), R13 // space for locals
// Create a struct callbackArgs on our stack.
MOVW R12, (16+callbackArgs_index)(R13) // callback index
MOVW $(16+callbackArgs__size+4*9)(R13), R0
MOVW R0, (16+callbackArgs_args)(R13) // address of args vector
MOVW $0, R0
MOVW R0, (16+callbackArgs_result)(R13) // result
// Prepare for entry to Go.
BL runtime·load_g(SB)
// Call cgocallback, which will call callbackWrap(frame).
MOVW $0, R0
MOVW R0, 12(R13) // context
MOVW $16(R13), R1 // R1 = &callbackArgs{...}
MOVW R1, 8(R13) // frame (address of callbackArgs)
MOVW $·callbackWrap(SB), R1
MOVW R1, 4(R13) // PC of function to call
BL runtime·cgocallback(SB)
// Get callback result.
MOVW (16+callbackArgs_result)(R13), R0
ADD $(16 + callbackArgs__size), R13 // free locals
MOVM.IA.W (R13), [R4-R11, R12] // pop {r4-r11, lr=>r12}
ADD $(4*4), R13 // skip r0-r3
B (R12) // return
// uint32 tstart_stdcall(M *newm);
TEXT runtime·tstart_stdcall(SB),NOSPLIT|NOFRAME,$0
MOVM.DB.W [R4-R11, R14], (R13) // push {r4-r11, lr}
MOVW m_g0(R0), g
MOVW R0, g_m(g)
BL runtime·save_g(SB)
// do per-thread TLS initialization
BL init_thread_tls<>(SB)
// Layout new m scheduler stack on os stack.
MOVW R13, R0
MOVW R0, g_stack+stack_hi(g)
SUB $(64*1024), R0
MOVW R0, (g_stack+stack_lo)(g)
MOVW R0, g_stackguard0(g)
MOVW R0, g_stackguard1(g)
BL runtime·emptyfunc(SB) // fault if stack check is wrong
BL runtime·mstart(SB)
// Exit the thread.
MOVW $0, R0
MOVM.IA.W (R13), [R4-R11, R15] // pop {r4-r11, pc}
// onosstack calls fn on OS stack.
// adapted from asm_arm.s : systemstack
// func onosstack(fn unsafe.Pointer, arg uint32)
TEXT runtime·onosstack(SB),NOSPLIT,$0
MOVW fn+0(FP), R5 // R5 = fn
MOVW arg+4(FP), R6 // R6 = arg
// This function can be called when there is no g,
// for example, when we are handling a callback on a non-go thread.
// In this case we're already on the system stack.
CMP $0, g
BEQ noswitch
MOVW g_m(g), R1 // R1 = m
MOVW m_gsignal(R1), R2 // R2 = gsignal
CMP g, R2
B.EQ noswitch
MOVW m_g0(R1), R2 // R2 = g0
CMP g, R2
B.EQ noswitch
MOVW m_curg(R1), R3
CMP g, R3
B.EQ switch
// Bad: g is not gsignal, not g0, not curg. What is it?
// Hide call from linker nosplit analysis.
MOVW $runtime·badsystemstack(SB), R0
BL (R0)
B runtime·abort(SB)
switch:
// save our state in g->sched. Pretend to
// be systemstack_switch if the G stack is scanned.
MOVW $runtime·systemstack_switch(SB), R3
ADD $4, R3, R3 // get past push {lr}
MOVW R3, (g_sched+gobuf_pc)(g)
MOVW R13, (g_sched+gobuf_sp)(g)
MOVW LR, (g_sched+gobuf_lr)(g)
MOVW g, (g_sched+gobuf_g)(g)
// switch to g0
MOVW R2, g
MOVW (g_sched+gobuf_sp)(R2), R3
// make it look like mstart called systemstack on g0, to stop traceback
SUB $4, R3, R3
MOVW $runtime·mstart(SB), R4
MOVW R4, 0(R3)
MOVW R3, R13
// call target function
MOVW R6, R0 // arg
BL (R5)
// switch back to g
MOVW g_m(g), R1
MOVW m_curg(R1), g
MOVW (g_sched+gobuf_sp)(g), R13
MOVW $0, R3
MOVW R3, (g_sched+gobuf_sp)(g)
RET
noswitch:
// Using a tail call here cleans up tracebacks since we won't stop
// at an intermediate systemstack.
MOVW.P 4(R13), R14 // restore LR
MOVW R6, R0 // arg
B (R5)
// Runs on OS stack. Duration (in 100ns units) is in R0.
TEXT runtime·usleep2(SB),NOSPLIT|NOFRAME,$0
MOVM.DB.W [R4, R14], (R13) // push {r4, lr}
MOVW R13, R4 // Save SP
SUB $8, R13 // R13 = R13 - 8
BIC $0x7, R13 // Align SP for ABI
RSB $0, R0, R3 // R3 = -R0
MOVW $0, R1 // R1 = FALSE (alertable)
MOVW $-1, R0 // R0 = handle
MOVW R13, R2 // R2 = pTime
MOVW R3, 0(R2) // time_lo
MOVW R0, 4(R2) // time_hi
MOVW runtime·_NtWaitForSingleObject(SB), R3
BL (R3)
MOVW R4, R13 // Restore SP
MOVM.IA.W (R13), [R4, R15] // pop {R4, pc}
// Runs on OS stack. Duration (in 100ns units) is in R0.
// TODO: neeeds to be implemented properly.
TEXT runtime·usleep2HighRes(SB),NOSPLIT|NOFRAME,$0
B runtime·abort(SB)
// Runs on OS stack.
TEXT runtime·switchtothread(SB),NOSPLIT|NOFRAME,$0
MOVM.DB.W [R4, R14], (R13) // push {R4, lr}
MOVW R13, R4
BIC $0x7, R13 // alignment for ABI
MOVW runtime·_SwitchToThread(SB), R0
BL (R0)
MOVW R4, R13 // restore stack pointer
MOVM.IA.W (R13), [R4, R15] // pop {R4, pc}
TEXT ·publicationBarrier(SB),NOSPLIT|NOFRAME,$0-0
B runtime·armPublicationBarrier(SB)
// never called (cgo not supported)
TEXT runtime·read_tls_fallback(SB),NOSPLIT|NOFRAME,$0
MOVW $0xabcd, R0
MOVW R0, (R0)
RET
// See http://www.dcl.hpi.uni-potsdam.de/research/WRK/2007/08/getting-os-information-the-kuser_shared_data-structure/
// Must read hi1, then lo, then hi2. The snapshot is valid if hi1 == hi2.
#define _INTERRUPT_TIME 0x7ffe0008
#define _SYSTEM_TIME 0x7ffe0014
#define time_lo 0
#define time_hi1 4
#define time_hi2 8
TEXT runtime·nanotime1(SB),NOSPLIT,$0-8
MOVW $0, R0
MOVB runtime·useQPCTime(SB), R0
CMP $0, R0
BNE useQPC
MOVW $_INTERRUPT_TIME, R3
loop:
MOVW time_hi1(R3), R1
MOVW time_lo(R3), R0
MOVW time_hi2(R3), R2
CMP R1, R2
BNE loop
// wintime = R1:R0, multiply by 100
MOVW $100, R2
MULLU R0, R2, (R4, R3) // R4:R3 = R1:R0 * R2
MULA R1, R2, R4, R4
// wintime*100 = R4:R3
MOVW R3, ret_lo+0(FP)
MOVW R4, ret_hi+4(FP)
RET
useQPC:
B runtime·nanotimeQPC(SB) // tail call
RET
TEXT time·now(SB),NOSPLIT,$0-20
MOVW $0, R0
MOVB runtime·useQPCTime(SB), R0
CMP $0, R0
BNE useQPC
MOVW $_INTERRUPT_TIME, R3
loop:
MOVW time_hi1(R3), R1
MOVW time_lo(R3), R0
MOVW time_hi2(R3), R2
CMP R1, R2
BNE loop
// wintime = R1:R0, multiply by 100
MOVW $100, R2
MULLU R0, R2, (R4, R3) // R4:R3 = R1:R0 * R2
MULA R1, R2, R4, R4
// wintime*100 = R4:R3
MOVW R3, mono+12(FP)
MOVW R4, mono+16(FP)
MOVW $_SYSTEM_TIME, R3
wall:
MOVW time_hi1(R3), R1
MOVW time_lo(R3), R0
MOVW time_hi2(R3), R2
CMP R1, R2
BNE wall
// w = R1:R0 in 100ns untis
// convert to Unix epoch (but still 100ns units)
#define delta 116444736000000000
SUB.S $(delta & 0xFFFFFFFF), R0
SBC $(delta >> 32), R1
// Convert to nSec
MOVW $100, R2
MULLU R0, R2, (R4, R3) // R4:R3 = R1:R0 * R2
MULA R1, R2, R4, R4
// w = R2:R1 in nSec
MOVW R3, R1 // R4:R3 -> R2:R1
MOVW R4, R2
// multiply nanoseconds by reciprocal of 10**9 (scaled by 2**61)
// to get seconds (96 bit scaled result)
MOVW $0x89705f41, R3 // 2**61 * 10**-9
MULLU R1,R3,(R6,R5) // R7:R6:R5 = R2:R1 * R3
MOVW $0,R7
MULALU R2,R3,(R7,R6)
// unscale by discarding low 32 bits, shifting the rest by 29
MOVW R6>>29,R6 // R7:R6 = (R7:R6:R5 >> 61)
ORR R7<<3,R6
MOVW R7>>29,R7
// subtract (10**9 * sec) from nsec to get nanosecond remainder
MOVW $1000000000, R5 // 10**9
MULLU R6,R5,(R9,R8) // R9:R8 = R7:R6 * R5
MULA R7,R5,R9,R9
SUB.S R8,R1 // R2:R1 -= R9:R8
SBC R9,R2
// because reciprocal was a truncated repeating fraction, quotient
// may be slightly too small -- adjust to make remainder < 10**9
CMP R5,R1 // if remainder > 10**9
SUB.HS R5,R1 // remainder -= 10**9
ADD.HS $1,R6 // sec += 1
MOVW R6,sec_lo+0(FP)
MOVW R7,sec_hi+4(FP)
MOVW R1,nsec+8(FP)
RET
useQPC:
B runtime·nanotimeQPC(SB) // tail call
RET
// save_g saves the g register (R10) into thread local memory
// so that we can call externally compiled
// ARM code that will overwrite those registers.
// NOTE: runtime.gogo assumes that R1 is preserved by this function.
// runtime.mcall assumes this function only clobbers R0 and R11.
// Returns with g in R0.
// Save the value in the _TEB->TlsSlots array.
// Effectively implements TlsSetValue().
// tls_g stores the TLS slot allocated TlsAlloc().
TEXT runtime·save_g(SB),NOSPLIT|NOFRAME,$0
MRC 15, 0, R0, C13, C0, 2
ADD $0xe10, R0
MOVW $runtime·tls_g(SB), R11
MOVW (R11), R11
MOVW g, R11<<2(R0)
MOVW g, R0 // preserve R0 across call to setg<>
RET
// load_g loads the g register from thread-local memory,
// for use after calling externally compiled
// ARM code that overwrote those registers.
// Get the value from the _TEB->TlsSlots array.
// Effectively implements TlsGetValue().
TEXT runtime·load_g(SB),NOSPLIT|NOFRAME,$0
MRC 15, 0, R0, C13, C0, 2
ADD $0xe10, R0
MOVW $runtime·tls_g(SB), g
MOVW (g), g
MOVW g<<2(R0), g
RET
// This is called from rt0_go, which runs on the system stack
// using the initial stack allocated by the OS.
// It calls back into standard C using the BL below.
// To do that, the stack pointer must be 8-byte-aligned.
TEXT runtime·_initcgo(SB),NOSPLIT|NOFRAME,$0
MOVM.DB.W [R4, R14], (R13) // push {r4, lr}
// Ensure stack is 8-byte aligned before calling C code
MOVW R13, R4
BIC $0x7, R13
// Allocate a TLS slot to hold g across calls to external code
MOVW $runtime·_TlsAlloc(SB), R0
MOVW (R0), R0
BL (R0)
// Assert that slot is less than 64 so we can use _TEB->TlsSlots
CMP $64, R0
MOVW $runtime·abort(SB), R1
BL.GE (R1)
// Save Slot into tls_g
MOVW $runtime·tls_g(SB), R1
MOVW R0, (R1)
BL init_thread_tls<>(SB)
MOVW R4, R13
MOVM.IA.W (R13), [R4, R15] // pop {r4, pc}
// void init_thread_tls()
//
// Does per-thread TLS initialization. Saves a pointer to the TLS slot
// holding G, in the current m.
//
// g->m->tls[0] = &_TEB->TlsSlots[tls_g]
//
// The purpose of this is to enable the profiling handler to get the
// current g associated with the thread. We cannot use m->curg because curg
// only holds the current user g. If the thread is executing system code or
// external code, m->curg will be NULL. The thread's TLS slot always holds
// the current g, so save a reference to this location so the profiling
// handler can get the real g from the thread's m.
//
// Clobbers R0-R3
TEXT init_thread_tls<>(SB),NOSPLIT|NOFRAME,$0
// compute &_TEB->TlsSlots[tls_g]
MRC 15, 0, R0, C13, C0, 2
ADD $0xe10, R0
MOVW $runtime·tls_g(SB), R1
MOVW (R1), R1
MOVW R1<<2, R1
ADD R1, R0
// save in g->m->tls[0]
MOVW g_m(g), R1
MOVW R0, m_tls(R1)
RET
// Holds the TLS Slot, which was allocated by TlsAlloc()
GLOBL runtime·tls_g+0(SB), NOPTR, $4
|