summaryrefslogtreecommitdiffstats
path: root/test/nilptr.go
blob: c9a044dd362edc713c838a864dd98b024cdbcff6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
// run

// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Test that the implementation catches nil ptr indirection
// in a large address space.

// +build !aix
// +build !darwin !arm64
// Address space starts at 1<<32 on AIX and on darwin/arm64, so dummy is too far.

package main

import "unsafe"

// Having a big address space means that indexing
// at a 256 MB offset from a nil pointer might not
// cause a memory access fault. This test checks
// that Go is doing the correct explicit checks to catch
// these nil pointer accesses, not just relying on the hardware.
var dummy [256 << 20]byte // give us a big address space

func main() {
	// the test only tests what we intend to test
	// if dummy starts in the first 256 MB of memory.
	// otherwise there might not be anything mapped
	// at the address that might be accidentally
	// dereferenced below.
	if uintptr(unsafe.Pointer(&dummy)) > 256<<20 {
		panic("dummy too far out")
	}

	shouldPanic(p1)
	shouldPanic(p2)
	shouldPanic(p3)
	shouldPanic(p4)
	shouldPanic(p5)
	shouldPanic(p6)
	shouldPanic(p7)
	shouldPanic(p8)
	shouldPanic(p9)
	shouldPanic(p10)
	shouldPanic(p11)
	shouldPanic(p12)
	shouldPanic(p13)
	shouldPanic(p14)
	shouldPanic(p15)
	shouldPanic(p16)
}

func shouldPanic(f func()) {
	defer func() {
		if recover() == nil {
			panic("memory reference did not panic")
		}
	}()
	f()
}

func p1() {
	// Array index.
	var p *[1 << 30]byte = nil
	println(p[256<<20]) // very likely to be inside dummy, but should panic
}

var xb byte

func p2() {
	var p *[1 << 30]byte = nil
	xb = 123

	// Array index.
	println(p[uintptr(unsafe.Pointer(&xb))]) // should panic
}

func p3() {
	// Array to slice.
	var p *[1 << 30]byte = nil
	var x []byte = p[0:] // should panic
	_ = x
}

var q *[1 << 30]byte

func p4() {
	// Array to slice.
	var x []byte
	var y = &x
	*y = q[0:] // should crash (uses arraytoslice runtime routine)
}

func fb([]byte) {
	panic("unreachable")
}

func p5() {
	// Array to slice.
	var p *[1 << 30]byte = nil
	fb(p[0:]) // should crash
}

func p6() {
	// Array to slice.
	var p *[1 << 30]byte = nil
	var _ []byte = p[10 : len(p)-10] // should crash
}

type T struct {
	x [256 << 20]byte
	i int
}

func f() *T {
	return nil
}

var y *T
var x = &y

func p7() {
	// Struct field access with large offset.
	println(f().i) // should crash
}

func p8() {
	// Struct field access with large offset.
	println((*x).i) // should crash
}

func p9() {
	// Struct field access with large offset.
	var t *T
	println(&t.i) // should crash
}

func p10() {
	// Struct field access with large offset.
	var t *T
	println(t.i) // should crash
}

type T1 struct {
	T
}

type T2 struct {
	*T1
}

func p11() {
	t := &T2{}
	p := &t.i
	println(*p)
}

// ADDR(DOT(IND(p))) needs a check also
func p12() {
	var p *T = nil
	println(*(&((*p).i)))
}

// Tests suggested in golang.org/issue/6080.

func p13() {
	var x *[10]int
	y := x[:]
	_ = y
}

func p14() {
	println((*[1]int)(nil)[:])
}

func p15() {
	for i := range (*[1]int)(nil)[:] {
		_ = i
	}
}

func p16() {
	for i, v := range (*[1]int)(nil)[:] {
		_ = i + v
	}
}