summaryrefslogtreecommitdiffstats
path: root/src/internal/trace/mud.go
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-28 13:15:26 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-28 13:15:26 +0000
commit82539ad8d59729fb45b0bb0edda8f2bddb719eb1 (patch)
tree58f0b58e6f44f0e04d4a6373132cf426fa835fa7 /src/internal/trace/mud.go
parentInitial commit. (diff)
downloadgolang-1.17-upstream.tar.xz
golang-1.17-upstream.zip
Adding upstream version 1.17.13.upstream/1.17.13upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/internal/trace/mud.go')
-rw-r--r--src/internal/trace/mud.go223
1 files changed, 223 insertions, 0 deletions
diff --git a/src/internal/trace/mud.go b/src/internal/trace/mud.go
new file mode 100644
index 0000000..8826306
--- /dev/null
+++ b/src/internal/trace/mud.go
@@ -0,0 +1,223 @@
+// Copyright 2017 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package trace
+
+import (
+ "math"
+ "sort"
+)
+
+// mud is an updatable mutator utilization distribution.
+//
+// This is a continuous distribution of duration over mutator
+// utilization. For example, the integral from mutator utilization a
+// to b is the total duration during which the mutator utilization was
+// in the range [a, b].
+//
+// This distribution is *not* normalized (it is not a probability
+// distribution). This makes it easier to work with as it's being
+// updated.
+//
+// It is represented as the sum of scaled uniform distribution
+// functions and Dirac delta functions (which are treated as
+// degenerate uniform distributions).
+type mud struct {
+ sorted, unsorted []edge
+
+ // trackMass is the inverse cumulative sum to track as the
+ // distribution is updated.
+ trackMass float64
+ // trackBucket is the bucket in which trackMass falls. If the
+ // total mass of the distribution is < trackMass, this is
+ // len(hist).
+ trackBucket int
+ // trackSum is the cumulative sum of hist[:trackBucket]. Once
+ // trackSum >= trackMass, trackBucket must be recomputed.
+ trackSum float64
+
+ // hist is a hierarchical histogram of distribution mass.
+ hist [mudDegree]float64
+}
+
+const (
+ // mudDegree is the number of buckets in the MUD summary
+ // histogram.
+ mudDegree = 1024
+)
+
+type edge struct {
+ // At x, the function increases by y.
+ x, delta float64
+ // Additionally at x is a Dirac delta function with area dirac.
+ dirac float64
+}
+
+// add adds a uniform function over [l, r] scaled so the total weight
+// of the uniform is area. If l==r, this adds a Dirac delta function.
+func (d *mud) add(l, r, area float64) {
+ if area == 0 {
+ return
+ }
+
+ if r < l {
+ l, r = r, l
+ }
+
+ // Add the edges.
+ if l == r {
+ d.unsorted = append(d.unsorted, edge{l, 0, area})
+ } else {
+ delta := area / (r - l)
+ d.unsorted = append(d.unsorted, edge{l, delta, 0}, edge{r, -delta, 0})
+ }
+
+ // Update the histogram.
+ h := &d.hist
+ lbFloat, lf := math.Modf(l * mudDegree)
+ lb := int(lbFloat)
+ if lb >= mudDegree {
+ lb, lf = mudDegree-1, 1
+ }
+ if l == r {
+ h[lb] += area
+ } else {
+ rbFloat, rf := math.Modf(r * mudDegree)
+ rb := int(rbFloat)
+ if rb >= mudDegree {
+ rb, rf = mudDegree-1, 1
+ }
+ if lb == rb {
+ h[lb] += area
+ } else {
+ perBucket := area / (r - l) / mudDegree
+ h[lb] += perBucket * (1 - lf)
+ h[rb] += perBucket * rf
+ for i := lb + 1; i < rb; i++ {
+ h[i] += perBucket
+ }
+ }
+ }
+
+ // Update mass tracking.
+ if thresh := float64(d.trackBucket) / mudDegree; l < thresh {
+ if r < thresh {
+ d.trackSum += area
+ } else {
+ d.trackSum += area * (thresh - l) / (r - l)
+ }
+ if d.trackSum >= d.trackMass {
+ // The tracked mass now falls in a different
+ // bucket. Recompute the inverse cumulative sum.
+ d.setTrackMass(d.trackMass)
+ }
+ }
+}
+
+// setTrackMass sets the mass to track the inverse cumulative sum for.
+//
+// Specifically, mass is a cumulative duration, and the mutator
+// utilization bounds for this duration can be queried using
+// approxInvCumulativeSum.
+func (d *mud) setTrackMass(mass float64) {
+ d.trackMass = mass
+
+ // Find the bucket currently containing trackMass by computing
+ // the cumulative sum.
+ sum := 0.0
+ for i, val := range d.hist[:] {
+ newSum := sum + val
+ if newSum > mass {
+ // mass falls in bucket i.
+ d.trackBucket = i
+ d.trackSum = sum
+ return
+ }
+ sum = newSum
+ }
+ d.trackBucket = len(d.hist)
+ d.trackSum = sum
+}
+
+// approxInvCumulativeSum is like invCumulativeSum, but specifically
+// operates on the tracked mass and returns an upper and lower bound
+// approximation of the inverse cumulative sum.
+//
+// The true inverse cumulative sum will be in the range [lower, upper).
+func (d *mud) approxInvCumulativeSum() (float64, float64, bool) {
+ if d.trackBucket == len(d.hist) {
+ return math.NaN(), math.NaN(), false
+ }
+ return float64(d.trackBucket) / mudDegree, float64(d.trackBucket+1) / mudDegree, true
+}
+
+// invCumulativeSum returns x such that the integral of d from -∞ to x
+// is y. If the total weight of d is less than y, it returns the
+// maximum of the distribution and false.
+//
+// Specifically, y is a cumulative duration, and invCumulativeSum
+// returns the mutator utilization x such that at least y time has
+// been spent with mutator utilization <= x.
+func (d *mud) invCumulativeSum(y float64) (float64, bool) {
+ if len(d.sorted) == 0 && len(d.unsorted) == 0 {
+ return math.NaN(), false
+ }
+
+ // Sort edges.
+ edges := d.unsorted
+ sort.Slice(edges, func(i, j int) bool {
+ return edges[i].x < edges[j].x
+ })
+ // Merge with sorted edges.
+ d.unsorted = nil
+ if d.sorted == nil {
+ d.sorted = edges
+ } else {
+ oldSorted := d.sorted
+ newSorted := make([]edge, len(oldSorted)+len(edges))
+ i, j := 0, 0
+ for o := range newSorted {
+ if i >= len(oldSorted) {
+ copy(newSorted[o:], edges[j:])
+ break
+ } else if j >= len(edges) {
+ copy(newSorted[o:], oldSorted[i:])
+ break
+ } else if oldSorted[i].x < edges[j].x {
+ newSorted[o] = oldSorted[i]
+ i++
+ } else {
+ newSorted[o] = edges[j]
+ j++
+ }
+ }
+ d.sorted = newSorted
+ }
+
+ // Traverse edges in order computing a cumulative sum.
+ csum, rate, prevX := 0.0, 0.0, 0.0
+ for _, e := range d.sorted {
+ newCsum := csum + (e.x-prevX)*rate
+ if newCsum >= y {
+ // y was exceeded between the previous edge
+ // and this one.
+ if rate == 0 {
+ // Anywhere between prevX and
+ // e.x will do. We return e.x
+ // because that takes care of
+ // the y==0 case naturally.
+ return e.x, true
+ }
+ return (y-csum)/rate + prevX, true
+ }
+ newCsum += e.dirac
+ if newCsum >= y {
+ // y was exceeded by the Dirac delta at e.x.
+ return e.x, true
+ }
+ csum, prevX = newCsum, e.x
+ rate += e.delta
+ }
+ return prevX, false
+}