summaryrefslogtreecommitdiffstats
path: root/src/crypto/elliptic/p224.go
diff options
context:
space:
mode:
Diffstat (limited to 'src/crypto/elliptic/p224.go')
-rw-r--r--src/crypto/elliptic/p224.go783
1 files changed, 783 insertions, 0 deletions
diff --git a/src/crypto/elliptic/p224.go b/src/crypto/elliptic/p224.go
new file mode 100644
index 0000000..ff5c834
--- /dev/null
+++ b/src/crypto/elliptic/p224.go
@@ -0,0 +1,783 @@
+// Copyright 2012 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package elliptic
+
+// This is a constant-time, 32-bit implementation of P224. See FIPS 186-3,
+// section D.2.2.
+//
+// See https://www.imperialviolet.org/2010/12/04/ecc.html ([1]) for background.
+
+import (
+ "math/big"
+)
+
+var p224 p224Curve
+
+type p224Curve struct {
+ *CurveParams
+ gx, gy, b p224FieldElement
+}
+
+func initP224() {
+ // See FIPS 186-3, section D.2.2
+ p224.CurveParams = &CurveParams{Name: "P-224"}
+ p224.P, _ = new(big.Int).SetString("26959946667150639794667015087019630673557916260026308143510066298881", 10)
+ p224.N, _ = new(big.Int).SetString("26959946667150639794667015087019625940457807714424391721682722368061", 10)
+ p224.B, _ = new(big.Int).SetString("b4050a850c04b3abf54132565044b0b7d7bfd8ba270b39432355ffb4", 16)
+ p224.Gx, _ = new(big.Int).SetString("b70e0cbd6bb4bf7f321390b94a03c1d356c21122343280d6115c1d21", 16)
+ p224.Gy, _ = new(big.Int).SetString("bd376388b5f723fb4c22dfe6cd4375a05a07476444d5819985007e34", 16)
+ p224.BitSize = 224
+
+ p224FromBig(&p224.gx, p224.Gx)
+ p224FromBig(&p224.gy, p224.Gy)
+ p224FromBig(&p224.b, p224.B)
+}
+
+// P224 returns a Curve which implements P-224 (see FIPS 186-3, section D.2.2).
+//
+// The cryptographic operations are implemented using constant-time algorithms.
+func P224() Curve {
+ initonce.Do(initAll)
+ return p224
+}
+
+func (curve p224Curve) Params() *CurveParams {
+ return curve.CurveParams
+}
+
+func (curve p224Curve) IsOnCurve(bigX, bigY *big.Int) bool {
+ if bigX.Sign() < 0 || bigX.Cmp(curve.P) >= 0 ||
+ bigY.Sign() < 0 || bigY.Cmp(curve.P) >= 0 {
+ return false
+ }
+
+ var x, y p224FieldElement
+ p224FromBig(&x, bigX)
+ p224FromBig(&y, bigY)
+
+ // y² = x³ - 3x + b
+ var tmp p224LargeFieldElement
+ var x3 p224FieldElement
+ p224Square(&x3, &x, &tmp)
+ p224Mul(&x3, &x3, &x, &tmp)
+
+ for i := 0; i < 8; i++ {
+ x[i] *= 3
+ }
+ p224Sub(&x3, &x3, &x)
+ p224Reduce(&x3)
+ p224Add(&x3, &x3, &curve.b)
+ p224Contract(&x3, &x3)
+
+ p224Square(&y, &y, &tmp)
+ p224Contract(&y, &y)
+
+ for i := 0; i < 8; i++ {
+ if y[i] != x3[i] {
+ return false
+ }
+ }
+ return true
+}
+
+func (p224Curve) Add(bigX1, bigY1, bigX2, bigY2 *big.Int) (x, y *big.Int) {
+ var x1, y1, z1, x2, y2, z2, x3, y3, z3 p224FieldElement
+
+ p224FromBig(&x1, bigX1)
+ p224FromBig(&y1, bigY1)
+ if bigX1.Sign() != 0 || bigY1.Sign() != 0 {
+ z1[0] = 1
+ }
+ p224FromBig(&x2, bigX2)
+ p224FromBig(&y2, bigY2)
+ if bigX2.Sign() != 0 || bigY2.Sign() != 0 {
+ z2[0] = 1
+ }
+
+ p224AddJacobian(&x3, &y3, &z3, &x1, &y1, &z1, &x2, &y2, &z2)
+ return p224ToAffine(&x3, &y3, &z3)
+}
+
+func (p224Curve) Double(bigX1, bigY1 *big.Int) (x, y *big.Int) {
+ var x1, y1, z1, x2, y2, z2 p224FieldElement
+
+ p224FromBig(&x1, bigX1)
+ p224FromBig(&y1, bigY1)
+ z1[0] = 1
+
+ p224DoubleJacobian(&x2, &y2, &z2, &x1, &y1, &z1)
+ return p224ToAffine(&x2, &y2, &z2)
+}
+
+func (p224Curve) ScalarMult(bigX1, bigY1 *big.Int, scalar []byte) (x, y *big.Int) {
+ var x1, y1, z1, x2, y2, z2 p224FieldElement
+
+ p224FromBig(&x1, bigX1)
+ p224FromBig(&y1, bigY1)
+ z1[0] = 1
+
+ p224ScalarMult(&x2, &y2, &z2, &x1, &y1, &z1, scalar)
+ return p224ToAffine(&x2, &y2, &z2)
+}
+
+func (curve p224Curve) ScalarBaseMult(scalar []byte) (x, y *big.Int) {
+ var z1, x2, y2, z2 p224FieldElement
+
+ z1[0] = 1
+ p224ScalarMult(&x2, &y2, &z2, &curve.gx, &curve.gy, &z1, scalar)
+ return p224ToAffine(&x2, &y2, &z2)
+}
+
+// Field element functions.
+//
+// The field that we're dealing with is ℤ/pℤ where p = 2**224 - 2**96 + 1.
+//
+// Field elements are represented by a FieldElement, which is a typedef to an
+// array of 8 uint32's. The value of a FieldElement, a, is:
+// a[0] + 2**28·a[1] + 2**56·a[1] + ... + 2**196·a[7]
+//
+// Using 28-bit limbs means that there's only 4 bits of headroom, which is less
+// than we would really like. But it has the useful feature that we hit 2**224
+// exactly, making the reflections during a reduce much nicer.
+type p224FieldElement [8]uint32
+
+// p224P is the order of the field, represented as a p224FieldElement.
+var p224P = [8]uint32{1, 0, 0, 0xffff000, 0xfffffff, 0xfffffff, 0xfffffff, 0xfffffff}
+
+// p224IsZero returns 1 if a == 0 mod p and 0 otherwise.
+//
+// a[i] < 2**29
+func p224IsZero(a *p224FieldElement) uint32 {
+ // Since a p224FieldElement contains 224 bits there are two possible
+ // representations of 0: 0 and p.
+ var minimal p224FieldElement
+ p224Contract(&minimal, a)
+
+ var isZero, isP uint32
+ for i, v := range minimal {
+ isZero |= v
+ isP |= v - p224P[i]
+ }
+
+ // If either isZero or isP is 0, then we should return 1.
+ isZero |= isZero >> 16
+ isZero |= isZero >> 8
+ isZero |= isZero >> 4
+ isZero |= isZero >> 2
+ isZero |= isZero >> 1
+
+ isP |= isP >> 16
+ isP |= isP >> 8
+ isP |= isP >> 4
+ isP |= isP >> 2
+ isP |= isP >> 1
+
+ // For isZero and isP, the LSB is 0 iff all the bits are zero.
+ result := isZero & isP
+ result = (^result) & 1
+
+ return result
+}
+
+// p224Add computes *out = a+b
+//
+// a[i] + b[i] < 2**32
+func p224Add(out, a, b *p224FieldElement) {
+ for i := 0; i < 8; i++ {
+ out[i] = a[i] + b[i]
+ }
+}
+
+const two31p3 = 1<<31 + 1<<3
+const two31m3 = 1<<31 - 1<<3
+const two31m15m3 = 1<<31 - 1<<15 - 1<<3
+
+// p224ZeroModP31 is 0 mod p where bit 31 is set in all limbs so that we can
+// subtract smaller amounts without underflow. See the section "Subtraction" in
+// [1] for reasoning.
+var p224ZeroModP31 = []uint32{two31p3, two31m3, two31m3, two31m15m3, two31m3, two31m3, two31m3, two31m3}
+
+// p224Sub computes *out = a-b
+//
+// a[i], b[i] < 2**30
+// out[i] < 2**32
+func p224Sub(out, a, b *p224FieldElement) {
+ for i := 0; i < 8; i++ {
+ out[i] = a[i] + p224ZeroModP31[i] - b[i]
+ }
+}
+
+// LargeFieldElement also represents an element of the field. The limbs are
+// still spaced 28-bits apart and in little-endian order. So the limbs are at
+// 0, 28, 56, ..., 392 bits, each 64-bits wide.
+type p224LargeFieldElement [15]uint64
+
+const two63p35 = 1<<63 + 1<<35
+const two63m35 = 1<<63 - 1<<35
+const two63m35m19 = 1<<63 - 1<<35 - 1<<19
+
+// p224ZeroModP63 is 0 mod p where bit 63 is set in all limbs. See the section
+// "Subtraction" in [1] for why.
+var p224ZeroModP63 = [8]uint64{two63p35, two63m35, two63m35, two63m35, two63m35m19, two63m35, two63m35, two63m35}
+
+const bottom12Bits = 0xfff
+const bottom28Bits = 0xfffffff
+
+// p224Mul computes *out = a*b
+//
+// a[i] < 2**29, b[i] < 2**30 (or vice versa)
+// out[i] < 2**29
+func p224Mul(out, a, b *p224FieldElement, tmp *p224LargeFieldElement) {
+ for i := 0; i < 15; i++ {
+ tmp[i] = 0
+ }
+
+ for i := 0; i < 8; i++ {
+ for j := 0; j < 8; j++ {
+ tmp[i+j] += uint64(a[i]) * uint64(b[j])
+ }
+ }
+
+ p224ReduceLarge(out, tmp)
+}
+
+// Square computes *out = a*a
+//
+// a[i] < 2**29
+// out[i] < 2**29
+func p224Square(out, a *p224FieldElement, tmp *p224LargeFieldElement) {
+ for i := 0; i < 15; i++ {
+ tmp[i] = 0
+ }
+
+ for i := 0; i < 8; i++ {
+ for j := 0; j <= i; j++ {
+ r := uint64(a[i]) * uint64(a[j])
+ if i == j {
+ tmp[i+j] += r
+ } else {
+ tmp[i+j] += r << 1
+ }
+ }
+ }
+
+ p224ReduceLarge(out, tmp)
+}
+
+// ReduceLarge converts a p224LargeFieldElement to a p224FieldElement.
+//
+// in[i] < 2**62
+func p224ReduceLarge(out *p224FieldElement, in *p224LargeFieldElement) {
+ for i := 0; i < 8; i++ {
+ in[i] += p224ZeroModP63[i]
+ }
+
+ // Eliminate the coefficients at 2**224 and greater.
+ for i := 14; i >= 8; i-- {
+ in[i-8] -= in[i]
+ in[i-5] += (in[i] & 0xffff) << 12
+ in[i-4] += in[i] >> 16
+ }
+ in[8] = 0
+ // in[0..8] < 2**64
+
+ // As the values become small enough, we start to store them in |out|
+ // and use 32-bit operations.
+ for i := 1; i < 8; i++ {
+ in[i+1] += in[i] >> 28
+ out[i] = uint32(in[i] & bottom28Bits)
+ }
+ in[0] -= in[8]
+ out[3] += uint32(in[8]&0xffff) << 12
+ out[4] += uint32(in[8] >> 16)
+ // in[0] < 2**64
+ // out[3] < 2**29
+ // out[4] < 2**29
+ // out[1,2,5..7] < 2**28
+
+ out[0] = uint32(in[0] & bottom28Bits)
+ out[1] += uint32((in[0] >> 28) & bottom28Bits)
+ out[2] += uint32(in[0] >> 56)
+ // out[0] < 2**28
+ // out[1..4] < 2**29
+ // out[5..7] < 2**28
+}
+
+// Reduce reduces the coefficients of a to smaller bounds.
+//
+// On entry: a[i] < 2**31 + 2**30
+// On exit: a[i] < 2**29
+func p224Reduce(a *p224FieldElement) {
+ for i := 0; i < 7; i++ {
+ a[i+1] += a[i] >> 28
+ a[i] &= bottom28Bits
+ }
+ top := a[7] >> 28
+ a[7] &= bottom28Bits
+
+ // top < 2**4
+ mask := top
+ mask |= mask >> 2
+ mask |= mask >> 1
+ mask <<= 31
+ mask = uint32(int32(mask) >> 31)
+ // Mask is all ones if top != 0, all zero otherwise
+
+ a[0] -= top
+ a[3] += top << 12
+
+ // We may have just made a[0] negative but, if we did, then we must
+ // have added something to a[3], this it's > 2**12. Therefore we can
+ // carry down to a[0].
+ a[3] -= 1 & mask
+ a[2] += mask & (1<<28 - 1)
+ a[1] += mask & (1<<28 - 1)
+ a[0] += mask & (1 << 28)
+}
+
+// p224Invert calculates *out = in**-1 by computing in**(2**224 - 2**96 - 1),
+// i.e. Fermat's little theorem.
+func p224Invert(out, in *p224FieldElement) {
+ var f1, f2, f3, f4 p224FieldElement
+ var c p224LargeFieldElement
+
+ p224Square(&f1, in, &c) // 2
+ p224Mul(&f1, &f1, in, &c) // 2**2 - 1
+ p224Square(&f1, &f1, &c) // 2**3 - 2
+ p224Mul(&f1, &f1, in, &c) // 2**3 - 1
+ p224Square(&f2, &f1, &c) // 2**4 - 2
+ p224Square(&f2, &f2, &c) // 2**5 - 4
+ p224Square(&f2, &f2, &c) // 2**6 - 8
+ p224Mul(&f1, &f1, &f2, &c) // 2**6 - 1
+ p224Square(&f2, &f1, &c) // 2**7 - 2
+ for i := 0; i < 5; i++ { // 2**12 - 2**6
+ p224Square(&f2, &f2, &c)
+ }
+ p224Mul(&f2, &f2, &f1, &c) // 2**12 - 1
+ p224Square(&f3, &f2, &c) // 2**13 - 2
+ for i := 0; i < 11; i++ { // 2**24 - 2**12
+ p224Square(&f3, &f3, &c)
+ }
+ p224Mul(&f2, &f3, &f2, &c) // 2**24 - 1
+ p224Square(&f3, &f2, &c) // 2**25 - 2
+ for i := 0; i < 23; i++ { // 2**48 - 2**24
+ p224Square(&f3, &f3, &c)
+ }
+ p224Mul(&f3, &f3, &f2, &c) // 2**48 - 1
+ p224Square(&f4, &f3, &c) // 2**49 - 2
+ for i := 0; i < 47; i++ { // 2**96 - 2**48
+ p224Square(&f4, &f4, &c)
+ }
+ p224Mul(&f3, &f3, &f4, &c) // 2**96 - 1
+ p224Square(&f4, &f3, &c) // 2**97 - 2
+ for i := 0; i < 23; i++ { // 2**120 - 2**24
+ p224Square(&f4, &f4, &c)
+ }
+ p224Mul(&f2, &f4, &f2, &c) // 2**120 - 1
+ for i := 0; i < 6; i++ { // 2**126 - 2**6
+ p224Square(&f2, &f2, &c)
+ }
+ p224Mul(&f1, &f1, &f2, &c) // 2**126 - 1
+ p224Square(&f1, &f1, &c) // 2**127 - 2
+ p224Mul(&f1, &f1, in, &c) // 2**127 - 1
+ for i := 0; i < 97; i++ { // 2**224 - 2**97
+ p224Square(&f1, &f1, &c)
+ }
+ p224Mul(out, &f1, &f3, &c) // 2**224 - 2**96 - 1
+}
+
+// p224Contract converts a FieldElement to its unique, minimal form.
+//
+// On entry, in[i] < 2**29
+// On exit, out[i] < 2**28 and out < p
+func p224Contract(out, in *p224FieldElement) {
+ copy(out[:], in[:])
+
+ // First, carry the bits above 28 to the higher limb.
+ for i := 0; i < 7; i++ {
+ out[i+1] += out[i] >> 28
+ out[i] &= bottom28Bits
+ }
+ top := out[7] >> 28
+ out[7] &= bottom28Bits
+
+ // Use the reduction identity to carry the overflow.
+ //
+ // a + top * 2²²⁴ = a + top * 2⁹⁶ - top
+ out[0] -= top
+ out[3] += top << 12
+
+ // We may just have made out[0] negative. So we carry down. If we made
+ // out[0] negative then we know that out[3] is sufficiently positive
+ // because we just added to it.
+ for i := 0; i < 3; i++ {
+ mask := uint32(int32(out[i]) >> 31)
+ out[i] += (1 << 28) & mask
+ out[i+1] -= 1 & mask
+ }
+
+ // We might have pushed out[3] over 2**28 so we perform another, partial,
+ // carry chain.
+ for i := 3; i < 7; i++ {
+ out[i+1] += out[i] >> 28
+ out[i] &= bottom28Bits
+ }
+ top = out[7] >> 28
+ out[7] &= bottom28Bits
+
+ // Eliminate top while maintaining the same value mod p.
+ out[0] -= top
+ out[3] += top << 12
+
+ // There are two cases to consider for out[3]:
+ // 1) The first time that we eliminated top, we didn't push out[3] over
+ // 2**28. In this case, the partial carry chain didn't change any values
+ // and top is now zero.
+ // 2) We did push out[3] over 2**28 the first time that we eliminated top.
+ // The first value of top was in [0..2], therefore, after overflowing
+ // and being reduced by the second carry chain, out[3] <= 2<<12 - 1.
+ // In both cases, out[3] cannot have overflowed when we eliminated top for
+ // the second time.
+
+ // Again, we may just have made out[0] negative, so do the same carry down.
+ // As before, if we made out[0] negative then we know that out[3] is
+ // sufficiently positive.
+ for i := 0; i < 3; i++ {
+ mask := uint32(int32(out[i]) >> 31)
+ out[i] += (1 << 28) & mask
+ out[i+1] -= 1 & mask
+ }
+
+ // Now we see if the value is >= p and, if so, subtract p.
+
+ // First we build a mask from the top four limbs, which must all be
+ // equal to bottom28Bits if the whole value is >= p. If top4AllOnes
+ // ends up with any zero bits in the bottom 28 bits, then this wasn't
+ // true.
+ top4AllOnes := uint32(0xffffffff)
+ for i := 4; i < 8; i++ {
+ top4AllOnes &= out[i]
+ }
+ top4AllOnes |= 0xf0000000
+ // Now we replicate any zero bits to all the bits in top4AllOnes.
+ top4AllOnes &= top4AllOnes >> 16
+ top4AllOnes &= top4AllOnes >> 8
+ top4AllOnes &= top4AllOnes >> 4
+ top4AllOnes &= top4AllOnes >> 2
+ top4AllOnes &= top4AllOnes >> 1
+ top4AllOnes = uint32(int32(top4AllOnes<<31) >> 31)
+
+ // Now we test whether the bottom three limbs are non-zero.
+ bottom3NonZero := out[0] | out[1] | out[2]
+ bottom3NonZero |= bottom3NonZero >> 16
+ bottom3NonZero |= bottom3NonZero >> 8
+ bottom3NonZero |= bottom3NonZero >> 4
+ bottom3NonZero |= bottom3NonZero >> 2
+ bottom3NonZero |= bottom3NonZero >> 1
+ bottom3NonZero = uint32(int32(bottom3NonZero<<31) >> 31)
+
+ // Assuming top4AllOnes != 0, everything depends on the value of out[3].
+ // If it's > 0xffff000 then the whole value is > p
+ // If it's = 0xffff000 and bottom3NonZero != 0, then the whole value is >= p
+ // If it's < 0xffff000, then the whole value is < p
+ n := 0xffff000 - out[3]
+ out3Equal := n
+ out3Equal |= out3Equal >> 16
+ out3Equal |= out3Equal >> 8
+ out3Equal |= out3Equal >> 4
+ out3Equal |= out3Equal >> 2
+ out3Equal |= out3Equal >> 1
+ out3Equal = ^uint32(int32(out3Equal<<31) >> 31)
+
+ // If out[3] > 0xffff000 then n's MSB will be one.
+ out3GT := uint32(int32(n) >> 31)
+
+ mask := top4AllOnes & ((out3Equal & bottom3NonZero) | out3GT)
+ out[0] -= 1 & mask
+ out[3] -= 0xffff000 & mask
+ out[4] -= 0xfffffff & mask
+ out[5] -= 0xfffffff & mask
+ out[6] -= 0xfffffff & mask
+ out[7] -= 0xfffffff & mask
+
+ // Do one final carry down, in case we made out[0] negative. One of
+ // out[0..3] needs to be positive and able to absorb the -1 or the value
+ // would have been < p, and the subtraction wouldn't have happened.
+ for i := 0; i < 3; i++ {
+ mask := uint32(int32(out[i]) >> 31)
+ out[i] += (1 << 28) & mask
+ out[i+1] -= 1 & mask
+ }
+}
+
+// Group element functions.
+//
+// These functions deal with group elements. The group is an elliptic curve
+// group with a = -3 defined in FIPS 186-3, section D.2.2.
+
+// p224AddJacobian computes *out = a+b where a != b.
+func p224AddJacobian(x3, y3, z3, x1, y1, z1, x2, y2, z2 *p224FieldElement) {
+ // See https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-p224Add-2007-bl
+ var z1z1, z2z2, u1, u2, s1, s2, h, i, j, r, v p224FieldElement
+ var c p224LargeFieldElement
+
+ z1IsZero := p224IsZero(z1)
+ z2IsZero := p224IsZero(z2)
+
+ // Z1Z1 = Z1²
+ p224Square(&z1z1, z1, &c)
+ // Z2Z2 = Z2²
+ p224Square(&z2z2, z2, &c)
+ // U1 = X1*Z2Z2
+ p224Mul(&u1, x1, &z2z2, &c)
+ // U2 = X2*Z1Z1
+ p224Mul(&u2, x2, &z1z1, &c)
+ // S1 = Y1*Z2*Z2Z2
+ p224Mul(&s1, z2, &z2z2, &c)
+ p224Mul(&s1, y1, &s1, &c)
+ // S2 = Y2*Z1*Z1Z1
+ p224Mul(&s2, z1, &z1z1, &c)
+ p224Mul(&s2, y2, &s2, &c)
+ // H = U2-U1
+ p224Sub(&h, &u2, &u1)
+ p224Reduce(&h)
+ xEqual := p224IsZero(&h)
+ // I = (2*H)²
+ for j := 0; j < 8; j++ {
+ i[j] = h[j] << 1
+ }
+ p224Reduce(&i)
+ p224Square(&i, &i, &c)
+ // J = H*I
+ p224Mul(&j, &h, &i, &c)
+ // r = 2*(S2-S1)
+ p224Sub(&r, &s2, &s1)
+ p224Reduce(&r)
+ yEqual := p224IsZero(&r)
+ if xEqual == 1 && yEqual == 1 && z1IsZero == 0 && z2IsZero == 0 {
+ p224DoubleJacobian(x3, y3, z3, x1, y1, z1)
+ return
+ }
+ for i := 0; i < 8; i++ {
+ r[i] <<= 1
+ }
+ p224Reduce(&r)
+ // V = U1*I
+ p224Mul(&v, &u1, &i, &c)
+ // Z3 = ((Z1+Z2)²-Z1Z1-Z2Z2)*H
+ p224Add(&z1z1, &z1z1, &z2z2)
+ p224Add(&z2z2, z1, z2)
+ p224Reduce(&z2z2)
+ p224Square(&z2z2, &z2z2, &c)
+ p224Sub(z3, &z2z2, &z1z1)
+ p224Reduce(z3)
+ p224Mul(z3, z3, &h, &c)
+ // X3 = r²-J-2*V
+ for i := 0; i < 8; i++ {
+ z1z1[i] = v[i] << 1
+ }
+ p224Add(&z1z1, &j, &z1z1)
+ p224Reduce(&z1z1)
+ p224Square(x3, &r, &c)
+ p224Sub(x3, x3, &z1z1)
+ p224Reduce(x3)
+ // Y3 = r*(V-X3)-2*S1*J
+ for i := 0; i < 8; i++ {
+ s1[i] <<= 1
+ }
+ p224Mul(&s1, &s1, &j, &c)
+ p224Sub(&z1z1, &v, x3)
+ p224Reduce(&z1z1)
+ p224Mul(&z1z1, &z1z1, &r, &c)
+ p224Sub(y3, &z1z1, &s1)
+ p224Reduce(y3)
+
+ p224CopyConditional(x3, x2, z1IsZero)
+ p224CopyConditional(x3, x1, z2IsZero)
+ p224CopyConditional(y3, y2, z1IsZero)
+ p224CopyConditional(y3, y1, z2IsZero)
+ p224CopyConditional(z3, z2, z1IsZero)
+ p224CopyConditional(z3, z1, z2IsZero)
+}
+
+// p224DoubleJacobian computes *out = a+a.
+func p224DoubleJacobian(x3, y3, z3, x1, y1, z1 *p224FieldElement) {
+ var delta, gamma, beta, alpha, t p224FieldElement
+ var c p224LargeFieldElement
+
+ p224Square(&delta, z1, &c)
+ p224Square(&gamma, y1, &c)
+ p224Mul(&beta, x1, &gamma, &c)
+
+ // alpha = 3*(X1-delta)*(X1+delta)
+ p224Add(&t, x1, &delta)
+ for i := 0; i < 8; i++ {
+ t[i] += t[i] << 1
+ }
+ p224Reduce(&t)
+ p224Sub(&alpha, x1, &delta)
+ p224Reduce(&alpha)
+ p224Mul(&alpha, &alpha, &t, &c)
+
+ // Z3 = (Y1+Z1)²-gamma-delta
+ p224Add(z3, y1, z1)
+ p224Reduce(z3)
+ p224Square(z3, z3, &c)
+ p224Sub(z3, z3, &gamma)
+ p224Reduce(z3)
+ p224Sub(z3, z3, &delta)
+ p224Reduce(z3)
+
+ // X3 = alpha²-8*beta
+ for i := 0; i < 8; i++ {
+ delta[i] = beta[i] << 3
+ }
+ p224Reduce(&delta)
+ p224Square(x3, &alpha, &c)
+ p224Sub(x3, x3, &delta)
+ p224Reduce(x3)
+
+ // Y3 = alpha*(4*beta-X3)-8*gamma²
+ for i := 0; i < 8; i++ {
+ beta[i] <<= 2
+ }
+ p224Sub(&beta, &beta, x3)
+ p224Reduce(&beta)
+ p224Square(&gamma, &gamma, &c)
+ for i := 0; i < 8; i++ {
+ gamma[i] <<= 3
+ }
+ p224Reduce(&gamma)
+ p224Mul(y3, &alpha, &beta, &c)
+ p224Sub(y3, y3, &gamma)
+ p224Reduce(y3)
+}
+
+// p224CopyConditional sets *out = *in iff the least-significant-bit of control
+// is true, and it runs in constant time.
+func p224CopyConditional(out, in *p224FieldElement, control uint32) {
+ control <<= 31
+ control = uint32(int32(control) >> 31)
+
+ for i := 0; i < 8; i++ {
+ out[i] ^= (out[i] ^ in[i]) & control
+ }
+}
+
+func p224ScalarMult(outX, outY, outZ, inX, inY, inZ *p224FieldElement, scalar []byte) {
+ var xx, yy, zz p224FieldElement
+ for i := 0; i < 8; i++ {
+ outX[i] = 0
+ outY[i] = 0
+ outZ[i] = 0
+ }
+
+ for _, byte := range scalar {
+ for bitNum := uint(0); bitNum < 8; bitNum++ {
+ p224DoubleJacobian(outX, outY, outZ, outX, outY, outZ)
+ bit := uint32((byte >> (7 - bitNum)) & 1)
+ p224AddJacobian(&xx, &yy, &zz, inX, inY, inZ, outX, outY, outZ)
+ p224CopyConditional(outX, &xx, bit)
+ p224CopyConditional(outY, &yy, bit)
+ p224CopyConditional(outZ, &zz, bit)
+ }
+ }
+}
+
+// p224ToAffine converts from Jacobian to affine form.
+func p224ToAffine(x, y, z *p224FieldElement) (*big.Int, *big.Int) {
+ var zinv, zinvsq, outx, outy p224FieldElement
+ var tmp p224LargeFieldElement
+
+ if isPointAtInfinity := p224IsZero(z); isPointAtInfinity == 1 {
+ return new(big.Int), new(big.Int)
+ }
+
+ p224Invert(&zinv, z)
+ p224Square(&zinvsq, &zinv, &tmp)
+ p224Mul(x, x, &zinvsq, &tmp)
+ p224Mul(&zinvsq, &zinvsq, &zinv, &tmp)
+ p224Mul(y, y, &zinvsq, &tmp)
+
+ p224Contract(&outx, x)
+ p224Contract(&outy, y)
+ return p224ToBig(&outx), p224ToBig(&outy)
+}
+
+// get28BitsFromEnd returns the least-significant 28 bits from buf>>shift,
+// where buf is interpreted as a big-endian number.
+func get28BitsFromEnd(buf []byte, shift uint) (uint32, []byte) {
+ var ret uint32
+
+ for i := uint(0); i < 4; i++ {
+ var b byte
+ if l := len(buf); l > 0 {
+ b = buf[l-1]
+ // We don't remove the byte if we're about to return and we're not
+ // reading all of it.
+ if i != 3 || shift == 4 {
+ buf = buf[:l-1]
+ }
+ }
+ ret |= uint32(b) << (8 * i) >> shift
+ }
+ ret &= bottom28Bits
+ return ret, buf
+}
+
+// p224FromBig sets *out = *in.
+func p224FromBig(out *p224FieldElement, in *big.Int) {
+ bytes := in.Bytes()
+ out[0], bytes = get28BitsFromEnd(bytes, 0)
+ out[1], bytes = get28BitsFromEnd(bytes, 4)
+ out[2], bytes = get28BitsFromEnd(bytes, 0)
+ out[3], bytes = get28BitsFromEnd(bytes, 4)
+ out[4], bytes = get28BitsFromEnd(bytes, 0)
+ out[5], bytes = get28BitsFromEnd(bytes, 4)
+ out[6], bytes = get28BitsFromEnd(bytes, 0)
+ out[7], bytes = get28BitsFromEnd(bytes, 4)
+}
+
+// p224ToBig returns in as a big.Int.
+func p224ToBig(in *p224FieldElement) *big.Int {
+ var buf [28]byte
+ buf[27] = byte(in[0])
+ buf[26] = byte(in[0] >> 8)
+ buf[25] = byte(in[0] >> 16)
+ buf[24] = byte(((in[0] >> 24) & 0x0f) | (in[1]<<4)&0xf0)
+
+ buf[23] = byte(in[1] >> 4)
+ buf[22] = byte(in[1] >> 12)
+ buf[21] = byte(in[1] >> 20)
+
+ buf[20] = byte(in[2])
+ buf[19] = byte(in[2] >> 8)
+ buf[18] = byte(in[2] >> 16)
+ buf[17] = byte(((in[2] >> 24) & 0x0f) | (in[3]<<4)&0xf0)
+
+ buf[16] = byte(in[3] >> 4)
+ buf[15] = byte(in[3] >> 12)
+ buf[14] = byte(in[3] >> 20)
+
+ buf[13] = byte(in[4])
+ buf[12] = byte(in[4] >> 8)
+ buf[11] = byte(in[4] >> 16)
+ buf[10] = byte(((in[4] >> 24) & 0x0f) | (in[5]<<4)&0xf0)
+
+ buf[9] = byte(in[5] >> 4)
+ buf[8] = byte(in[5] >> 12)
+ buf[7] = byte(in[5] >> 20)
+
+ buf[6] = byte(in[6])
+ buf[5] = byte(in[6] >> 8)
+ buf[4] = byte(in[6] >> 16)
+ buf[3] = byte(((in[6] >> 24) & 0x0f) | (in[7]<<4)&0xf0)
+
+ buf[2] = byte(in[7] >> 4)
+ buf[1] = byte(in[7] >> 12)
+ buf[0] = byte(in[7] >> 20)
+
+ return new(big.Int).SetBytes(buf[:])
+}