diff options
Diffstat (limited to 'src/crypto/elliptic/p224.go')
-rw-r--r-- | src/crypto/elliptic/p224.go | 783 |
1 files changed, 783 insertions, 0 deletions
diff --git a/src/crypto/elliptic/p224.go b/src/crypto/elliptic/p224.go new file mode 100644 index 0000000..ff5c834 --- /dev/null +++ b/src/crypto/elliptic/p224.go @@ -0,0 +1,783 @@ +// Copyright 2012 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package elliptic + +// This is a constant-time, 32-bit implementation of P224. See FIPS 186-3, +// section D.2.2. +// +// See https://www.imperialviolet.org/2010/12/04/ecc.html ([1]) for background. + +import ( + "math/big" +) + +var p224 p224Curve + +type p224Curve struct { + *CurveParams + gx, gy, b p224FieldElement +} + +func initP224() { + // See FIPS 186-3, section D.2.2 + p224.CurveParams = &CurveParams{Name: "P-224"} + p224.P, _ = new(big.Int).SetString("26959946667150639794667015087019630673557916260026308143510066298881", 10) + p224.N, _ = new(big.Int).SetString("26959946667150639794667015087019625940457807714424391721682722368061", 10) + p224.B, _ = new(big.Int).SetString("b4050a850c04b3abf54132565044b0b7d7bfd8ba270b39432355ffb4", 16) + p224.Gx, _ = new(big.Int).SetString("b70e0cbd6bb4bf7f321390b94a03c1d356c21122343280d6115c1d21", 16) + p224.Gy, _ = new(big.Int).SetString("bd376388b5f723fb4c22dfe6cd4375a05a07476444d5819985007e34", 16) + p224.BitSize = 224 + + p224FromBig(&p224.gx, p224.Gx) + p224FromBig(&p224.gy, p224.Gy) + p224FromBig(&p224.b, p224.B) +} + +// P224 returns a Curve which implements P-224 (see FIPS 186-3, section D.2.2). +// +// The cryptographic operations are implemented using constant-time algorithms. +func P224() Curve { + initonce.Do(initAll) + return p224 +} + +func (curve p224Curve) Params() *CurveParams { + return curve.CurveParams +} + +func (curve p224Curve) IsOnCurve(bigX, bigY *big.Int) bool { + if bigX.Sign() < 0 || bigX.Cmp(curve.P) >= 0 || + bigY.Sign() < 0 || bigY.Cmp(curve.P) >= 0 { + return false + } + + var x, y p224FieldElement + p224FromBig(&x, bigX) + p224FromBig(&y, bigY) + + // y² = x³ - 3x + b + var tmp p224LargeFieldElement + var x3 p224FieldElement + p224Square(&x3, &x, &tmp) + p224Mul(&x3, &x3, &x, &tmp) + + for i := 0; i < 8; i++ { + x[i] *= 3 + } + p224Sub(&x3, &x3, &x) + p224Reduce(&x3) + p224Add(&x3, &x3, &curve.b) + p224Contract(&x3, &x3) + + p224Square(&y, &y, &tmp) + p224Contract(&y, &y) + + for i := 0; i < 8; i++ { + if y[i] != x3[i] { + return false + } + } + return true +} + +func (p224Curve) Add(bigX1, bigY1, bigX2, bigY2 *big.Int) (x, y *big.Int) { + var x1, y1, z1, x2, y2, z2, x3, y3, z3 p224FieldElement + + p224FromBig(&x1, bigX1) + p224FromBig(&y1, bigY1) + if bigX1.Sign() != 0 || bigY1.Sign() != 0 { + z1[0] = 1 + } + p224FromBig(&x2, bigX2) + p224FromBig(&y2, bigY2) + if bigX2.Sign() != 0 || bigY2.Sign() != 0 { + z2[0] = 1 + } + + p224AddJacobian(&x3, &y3, &z3, &x1, &y1, &z1, &x2, &y2, &z2) + return p224ToAffine(&x3, &y3, &z3) +} + +func (p224Curve) Double(bigX1, bigY1 *big.Int) (x, y *big.Int) { + var x1, y1, z1, x2, y2, z2 p224FieldElement + + p224FromBig(&x1, bigX1) + p224FromBig(&y1, bigY1) + z1[0] = 1 + + p224DoubleJacobian(&x2, &y2, &z2, &x1, &y1, &z1) + return p224ToAffine(&x2, &y2, &z2) +} + +func (p224Curve) ScalarMult(bigX1, bigY1 *big.Int, scalar []byte) (x, y *big.Int) { + var x1, y1, z1, x2, y2, z2 p224FieldElement + + p224FromBig(&x1, bigX1) + p224FromBig(&y1, bigY1) + z1[0] = 1 + + p224ScalarMult(&x2, &y2, &z2, &x1, &y1, &z1, scalar) + return p224ToAffine(&x2, &y2, &z2) +} + +func (curve p224Curve) ScalarBaseMult(scalar []byte) (x, y *big.Int) { + var z1, x2, y2, z2 p224FieldElement + + z1[0] = 1 + p224ScalarMult(&x2, &y2, &z2, &curve.gx, &curve.gy, &z1, scalar) + return p224ToAffine(&x2, &y2, &z2) +} + +// Field element functions. +// +// The field that we're dealing with is ℤ/pℤ where p = 2**224 - 2**96 + 1. +// +// Field elements are represented by a FieldElement, which is a typedef to an +// array of 8 uint32's. The value of a FieldElement, a, is: +// a[0] + 2**28·a[1] + 2**56·a[1] + ... + 2**196·a[7] +// +// Using 28-bit limbs means that there's only 4 bits of headroom, which is less +// than we would really like. But it has the useful feature that we hit 2**224 +// exactly, making the reflections during a reduce much nicer. +type p224FieldElement [8]uint32 + +// p224P is the order of the field, represented as a p224FieldElement. +var p224P = [8]uint32{1, 0, 0, 0xffff000, 0xfffffff, 0xfffffff, 0xfffffff, 0xfffffff} + +// p224IsZero returns 1 if a == 0 mod p and 0 otherwise. +// +// a[i] < 2**29 +func p224IsZero(a *p224FieldElement) uint32 { + // Since a p224FieldElement contains 224 bits there are two possible + // representations of 0: 0 and p. + var minimal p224FieldElement + p224Contract(&minimal, a) + + var isZero, isP uint32 + for i, v := range minimal { + isZero |= v + isP |= v - p224P[i] + } + + // If either isZero or isP is 0, then we should return 1. + isZero |= isZero >> 16 + isZero |= isZero >> 8 + isZero |= isZero >> 4 + isZero |= isZero >> 2 + isZero |= isZero >> 1 + + isP |= isP >> 16 + isP |= isP >> 8 + isP |= isP >> 4 + isP |= isP >> 2 + isP |= isP >> 1 + + // For isZero and isP, the LSB is 0 iff all the bits are zero. + result := isZero & isP + result = (^result) & 1 + + return result +} + +// p224Add computes *out = a+b +// +// a[i] + b[i] < 2**32 +func p224Add(out, a, b *p224FieldElement) { + for i := 0; i < 8; i++ { + out[i] = a[i] + b[i] + } +} + +const two31p3 = 1<<31 + 1<<3 +const two31m3 = 1<<31 - 1<<3 +const two31m15m3 = 1<<31 - 1<<15 - 1<<3 + +// p224ZeroModP31 is 0 mod p where bit 31 is set in all limbs so that we can +// subtract smaller amounts without underflow. See the section "Subtraction" in +// [1] for reasoning. +var p224ZeroModP31 = []uint32{two31p3, two31m3, two31m3, two31m15m3, two31m3, two31m3, two31m3, two31m3} + +// p224Sub computes *out = a-b +// +// a[i], b[i] < 2**30 +// out[i] < 2**32 +func p224Sub(out, a, b *p224FieldElement) { + for i := 0; i < 8; i++ { + out[i] = a[i] + p224ZeroModP31[i] - b[i] + } +} + +// LargeFieldElement also represents an element of the field. The limbs are +// still spaced 28-bits apart and in little-endian order. So the limbs are at +// 0, 28, 56, ..., 392 bits, each 64-bits wide. +type p224LargeFieldElement [15]uint64 + +const two63p35 = 1<<63 + 1<<35 +const two63m35 = 1<<63 - 1<<35 +const two63m35m19 = 1<<63 - 1<<35 - 1<<19 + +// p224ZeroModP63 is 0 mod p where bit 63 is set in all limbs. See the section +// "Subtraction" in [1] for why. +var p224ZeroModP63 = [8]uint64{two63p35, two63m35, two63m35, two63m35, two63m35m19, two63m35, two63m35, two63m35} + +const bottom12Bits = 0xfff +const bottom28Bits = 0xfffffff + +// p224Mul computes *out = a*b +// +// a[i] < 2**29, b[i] < 2**30 (or vice versa) +// out[i] < 2**29 +func p224Mul(out, a, b *p224FieldElement, tmp *p224LargeFieldElement) { + for i := 0; i < 15; i++ { + tmp[i] = 0 + } + + for i := 0; i < 8; i++ { + for j := 0; j < 8; j++ { + tmp[i+j] += uint64(a[i]) * uint64(b[j]) + } + } + + p224ReduceLarge(out, tmp) +} + +// Square computes *out = a*a +// +// a[i] < 2**29 +// out[i] < 2**29 +func p224Square(out, a *p224FieldElement, tmp *p224LargeFieldElement) { + for i := 0; i < 15; i++ { + tmp[i] = 0 + } + + for i := 0; i < 8; i++ { + for j := 0; j <= i; j++ { + r := uint64(a[i]) * uint64(a[j]) + if i == j { + tmp[i+j] += r + } else { + tmp[i+j] += r << 1 + } + } + } + + p224ReduceLarge(out, tmp) +} + +// ReduceLarge converts a p224LargeFieldElement to a p224FieldElement. +// +// in[i] < 2**62 +func p224ReduceLarge(out *p224FieldElement, in *p224LargeFieldElement) { + for i := 0; i < 8; i++ { + in[i] += p224ZeroModP63[i] + } + + // Eliminate the coefficients at 2**224 and greater. + for i := 14; i >= 8; i-- { + in[i-8] -= in[i] + in[i-5] += (in[i] & 0xffff) << 12 + in[i-4] += in[i] >> 16 + } + in[8] = 0 + // in[0..8] < 2**64 + + // As the values become small enough, we start to store them in |out| + // and use 32-bit operations. + for i := 1; i < 8; i++ { + in[i+1] += in[i] >> 28 + out[i] = uint32(in[i] & bottom28Bits) + } + in[0] -= in[8] + out[3] += uint32(in[8]&0xffff) << 12 + out[4] += uint32(in[8] >> 16) + // in[0] < 2**64 + // out[3] < 2**29 + // out[4] < 2**29 + // out[1,2,5..7] < 2**28 + + out[0] = uint32(in[0] & bottom28Bits) + out[1] += uint32((in[0] >> 28) & bottom28Bits) + out[2] += uint32(in[0] >> 56) + // out[0] < 2**28 + // out[1..4] < 2**29 + // out[5..7] < 2**28 +} + +// Reduce reduces the coefficients of a to smaller bounds. +// +// On entry: a[i] < 2**31 + 2**30 +// On exit: a[i] < 2**29 +func p224Reduce(a *p224FieldElement) { + for i := 0; i < 7; i++ { + a[i+1] += a[i] >> 28 + a[i] &= bottom28Bits + } + top := a[7] >> 28 + a[7] &= bottom28Bits + + // top < 2**4 + mask := top + mask |= mask >> 2 + mask |= mask >> 1 + mask <<= 31 + mask = uint32(int32(mask) >> 31) + // Mask is all ones if top != 0, all zero otherwise + + a[0] -= top + a[3] += top << 12 + + // We may have just made a[0] negative but, if we did, then we must + // have added something to a[3], this it's > 2**12. Therefore we can + // carry down to a[0]. + a[3] -= 1 & mask + a[2] += mask & (1<<28 - 1) + a[1] += mask & (1<<28 - 1) + a[0] += mask & (1 << 28) +} + +// p224Invert calculates *out = in**-1 by computing in**(2**224 - 2**96 - 1), +// i.e. Fermat's little theorem. +func p224Invert(out, in *p224FieldElement) { + var f1, f2, f3, f4 p224FieldElement + var c p224LargeFieldElement + + p224Square(&f1, in, &c) // 2 + p224Mul(&f1, &f1, in, &c) // 2**2 - 1 + p224Square(&f1, &f1, &c) // 2**3 - 2 + p224Mul(&f1, &f1, in, &c) // 2**3 - 1 + p224Square(&f2, &f1, &c) // 2**4 - 2 + p224Square(&f2, &f2, &c) // 2**5 - 4 + p224Square(&f2, &f2, &c) // 2**6 - 8 + p224Mul(&f1, &f1, &f2, &c) // 2**6 - 1 + p224Square(&f2, &f1, &c) // 2**7 - 2 + for i := 0; i < 5; i++ { // 2**12 - 2**6 + p224Square(&f2, &f2, &c) + } + p224Mul(&f2, &f2, &f1, &c) // 2**12 - 1 + p224Square(&f3, &f2, &c) // 2**13 - 2 + for i := 0; i < 11; i++ { // 2**24 - 2**12 + p224Square(&f3, &f3, &c) + } + p224Mul(&f2, &f3, &f2, &c) // 2**24 - 1 + p224Square(&f3, &f2, &c) // 2**25 - 2 + for i := 0; i < 23; i++ { // 2**48 - 2**24 + p224Square(&f3, &f3, &c) + } + p224Mul(&f3, &f3, &f2, &c) // 2**48 - 1 + p224Square(&f4, &f3, &c) // 2**49 - 2 + for i := 0; i < 47; i++ { // 2**96 - 2**48 + p224Square(&f4, &f4, &c) + } + p224Mul(&f3, &f3, &f4, &c) // 2**96 - 1 + p224Square(&f4, &f3, &c) // 2**97 - 2 + for i := 0; i < 23; i++ { // 2**120 - 2**24 + p224Square(&f4, &f4, &c) + } + p224Mul(&f2, &f4, &f2, &c) // 2**120 - 1 + for i := 0; i < 6; i++ { // 2**126 - 2**6 + p224Square(&f2, &f2, &c) + } + p224Mul(&f1, &f1, &f2, &c) // 2**126 - 1 + p224Square(&f1, &f1, &c) // 2**127 - 2 + p224Mul(&f1, &f1, in, &c) // 2**127 - 1 + for i := 0; i < 97; i++ { // 2**224 - 2**97 + p224Square(&f1, &f1, &c) + } + p224Mul(out, &f1, &f3, &c) // 2**224 - 2**96 - 1 +} + +// p224Contract converts a FieldElement to its unique, minimal form. +// +// On entry, in[i] < 2**29 +// On exit, out[i] < 2**28 and out < p +func p224Contract(out, in *p224FieldElement) { + copy(out[:], in[:]) + + // First, carry the bits above 28 to the higher limb. + for i := 0; i < 7; i++ { + out[i+1] += out[i] >> 28 + out[i] &= bottom28Bits + } + top := out[7] >> 28 + out[7] &= bottom28Bits + + // Use the reduction identity to carry the overflow. + // + // a + top * 2²²⁴ = a + top * 2⁹⁶ - top + out[0] -= top + out[3] += top << 12 + + // We may just have made out[0] negative. So we carry down. If we made + // out[0] negative then we know that out[3] is sufficiently positive + // because we just added to it. + for i := 0; i < 3; i++ { + mask := uint32(int32(out[i]) >> 31) + out[i] += (1 << 28) & mask + out[i+1] -= 1 & mask + } + + // We might have pushed out[3] over 2**28 so we perform another, partial, + // carry chain. + for i := 3; i < 7; i++ { + out[i+1] += out[i] >> 28 + out[i] &= bottom28Bits + } + top = out[7] >> 28 + out[7] &= bottom28Bits + + // Eliminate top while maintaining the same value mod p. + out[0] -= top + out[3] += top << 12 + + // There are two cases to consider for out[3]: + // 1) The first time that we eliminated top, we didn't push out[3] over + // 2**28. In this case, the partial carry chain didn't change any values + // and top is now zero. + // 2) We did push out[3] over 2**28 the first time that we eliminated top. + // The first value of top was in [0..2], therefore, after overflowing + // and being reduced by the second carry chain, out[3] <= 2<<12 - 1. + // In both cases, out[3] cannot have overflowed when we eliminated top for + // the second time. + + // Again, we may just have made out[0] negative, so do the same carry down. + // As before, if we made out[0] negative then we know that out[3] is + // sufficiently positive. + for i := 0; i < 3; i++ { + mask := uint32(int32(out[i]) >> 31) + out[i] += (1 << 28) & mask + out[i+1] -= 1 & mask + } + + // Now we see if the value is >= p and, if so, subtract p. + + // First we build a mask from the top four limbs, which must all be + // equal to bottom28Bits if the whole value is >= p. If top4AllOnes + // ends up with any zero bits in the bottom 28 bits, then this wasn't + // true. + top4AllOnes := uint32(0xffffffff) + for i := 4; i < 8; i++ { + top4AllOnes &= out[i] + } + top4AllOnes |= 0xf0000000 + // Now we replicate any zero bits to all the bits in top4AllOnes. + top4AllOnes &= top4AllOnes >> 16 + top4AllOnes &= top4AllOnes >> 8 + top4AllOnes &= top4AllOnes >> 4 + top4AllOnes &= top4AllOnes >> 2 + top4AllOnes &= top4AllOnes >> 1 + top4AllOnes = uint32(int32(top4AllOnes<<31) >> 31) + + // Now we test whether the bottom three limbs are non-zero. + bottom3NonZero := out[0] | out[1] | out[2] + bottom3NonZero |= bottom3NonZero >> 16 + bottom3NonZero |= bottom3NonZero >> 8 + bottom3NonZero |= bottom3NonZero >> 4 + bottom3NonZero |= bottom3NonZero >> 2 + bottom3NonZero |= bottom3NonZero >> 1 + bottom3NonZero = uint32(int32(bottom3NonZero<<31) >> 31) + + // Assuming top4AllOnes != 0, everything depends on the value of out[3]. + // If it's > 0xffff000 then the whole value is > p + // If it's = 0xffff000 and bottom3NonZero != 0, then the whole value is >= p + // If it's < 0xffff000, then the whole value is < p + n := 0xffff000 - out[3] + out3Equal := n + out3Equal |= out3Equal >> 16 + out3Equal |= out3Equal >> 8 + out3Equal |= out3Equal >> 4 + out3Equal |= out3Equal >> 2 + out3Equal |= out3Equal >> 1 + out3Equal = ^uint32(int32(out3Equal<<31) >> 31) + + // If out[3] > 0xffff000 then n's MSB will be one. + out3GT := uint32(int32(n) >> 31) + + mask := top4AllOnes & ((out3Equal & bottom3NonZero) | out3GT) + out[0] -= 1 & mask + out[3] -= 0xffff000 & mask + out[4] -= 0xfffffff & mask + out[5] -= 0xfffffff & mask + out[6] -= 0xfffffff & mask + out[7] -= 0xfffffff & mask + + // Do one final carry down, in case we made out[0] negative. One of + // out[0..3] needs to be positive and able to absorb the -1 or the value + // would have been < p, and the subtraction wouldn't have happened. + for i := 0; i < 3; i++ { + mask := uint32(int32(out[i]) >> 31) + out[i] += (1 << 28) & mask + out[i+1] -= 1 & mask + } +} + +// Group element functions. +// +// These functions deal with group elements. The group is an elliptic curve +// group with a = -3 defined in FIPS 186-3, section D.2.2. + +// p224AddJacobian computes *out = a+b where a != b. +func p224AddJacobian(x3, y3, z3, x1, y1, z1, x2, y2, z2 *p224FieldElement) { + // See https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-p224Add-2007-bl + var z1z1, z2z2, u1, u2, s1, s2, h, i, j, r, v p224FieldElement + var c p224LargeFieldElement + + z1IsZero := p224IsZero(z1) + z2IsZero := p224IsZero(z2) + + // Z1Z1 = Z1² + p224Square(&z1z1, z1, &c) + // Z2Z2 = Z2² + p224Square(&z2z2, z2, &c) + // U1 = X1*Z2Z2 + p224Mul(&u1, x1, &z2z2, &c) + // U2 = X2*Z1Z1 + p224Mul(&u2, x2, &z1z1, &c) + // S1 = Y1*Z2*Z2Z2 + p224Mul(&s1, z2, &z2z2, &c) + p224Mul(&s1, y1, &s1, &c) + // S2 = Y2*Z1*Z1Z1 + p224Mul(&s2, z1, &z1z1, &c) + p224Mul(&s2, y2, &s2, &c) + // H = U2-U1 + p224Sub(&h, &u2, &u1) + p224Reduce(&h) + xEqual := p224IsZero(&h) + // I = (2*H)² + for j := 0; j < 8; j++ { + i[j] = h[j] << 1 + } + p224Reduce(&i) + p224Square(&i, &i, &c) + // J = H*I + p224Mul(&j, &h, &i, &c) + // r = 2*(S2-S1) + p224Sub(&r, &s2, &s1) + p224Reduce(&r) + yEqual := p224IsZero(&r) + if xEqual == 1 && yEqual == 1 && z1IsZero == 0 && z2IsZero == 0 { + p224DoubleJacobian(x3, y3, z3, x1, y1, z1) + return + } + for i := 0; i < 8; i++ { + r[i] <<= 1 + } + p224Reduce(&r) + // V = U1*I + p224Mul(&v, &u1, &i, &c) + // Z3 = ((Z1+Z2)²-Z1Z1-Z2Z2)*H + p224Add(&z1z1, &z1z1, &z2z2) + p224Add(&z2z2, z1, z2) + p224Reduce(&z2z2) + p224Square(&z2z2, &z2z2, &c) + p224Sub(z3, &z2z2, &z1z1) + p224Reduce(z3) + p224Mul(z3, z3, &h, &c) + // X3 = r²-J-2*V + for i := 0; i < 8; i++ { + z1z1[i] = v[i] << 1 + } + p224Add(&z1z1, &j, &z1z1) + p224Reduce(&z1z1) + p224Square(x3, &r, &c) + p224Sub(x3, x3, &z1z1) + p224Reduce(x3) + // Y3 = r*(V-X3)-2*S1*J + for i := 0; i < 8; i++ { + s1[i] <<= 1 + } + p224Mul(&s1, &s1, &j, &c) + p224Sub(&z1z1, &v, x3) + p224Reduce(&z1z1) + p224Mul(&z1z1, &z1z1, &r, &c) + p224Sub(y3, &z1z1, &s1) + p224Reduce(y3) + + p224CopyConditional(x3, x2, z1IsZero) + p224CopyConditional(x3, x1, z2IsZero) + p224CopyConditional(y3, y2, z1IsZero) + p224CopyConditional(y3, y1, z2IsZero) + p224CopyConditional(z3, z2, z1IsZero) + p224CopyConditional(z3, z1, z2IsZero) +} + +// p224DoubleJacobian computes *out = a+a. +func p224DoubleJacobian(x3, y3, z3, x1, y1, z1 *p224FieldElement) { + var delta, gamma, beta, alpha, t p224FieldElement + var c p224LargeFieldElement + + p224Square(&delta, z1, &c) + p224Square(&gamma, y1, &c) + p224Mul(&beta, x1, &gamma, &c) + + // alpha = 3*(X1-delta)*(X1+delta) + p224Add(&t, x1, &delta) + for i := 0; i < 8; i++ { + t[i] += t[i] << 1 + } + p224Reduce(&t) + p224Sub(&alpha, x1, &delta) + p224Reduce(&alpha) + p224Mul(&alpha, &alpha, &t, &c) + + // Z3 = (Y1+Z1)²-gamma-delta + p224Add(z3, y1, z1) + p224Reduce(z3) + p224Square(z3, z3, &c) + p224Sub(z3, z3, &gamma) + p224Reduce(z3) + p224Sub(z3, z3, &delta) + p224Reduce(z3) + + // X3 = alpha²-8*beta + for i := 0; i < 8; i++ { + delta[i] = beta[i] << 3 + } + p224Reduce(&delta) + p224Square(x3, &alpha, &c) + p224Sub(x3, x3, &delta) + p224Reduce(x3) + + // Y3 = alpha*(4*beta-X3)-8*gamma² + for i := 0; i < 8; i++ { + beta[i] <<= 2 + } + p224Sub(&beta, &beta, x3) + p224Reduce(&beta) + p224Square(&gamma, &gamma, &c) + for i := 0; i < 8; i++ { + gamma[i] <<= 3 + } + p224Reduce(&gamma) + p224Mul(y3, &alpha, &beta, &c) + p224Sub(y3, y3, &gamma) + p224Reduce(y3) +} + +// p224CopyConditional sets *out = *in iff the least-significant-bit of control +// is true, and it runs in constant time. +func p224CopyConditional(out, in *p224FieldElement, control uint32) { + control <<= 31 + control = uint32(int32(control) >> 31) + + for i := 0; i < 8; i++ { + out[i] ^= (out[i] ^ in[i]) & control + } +} + +func p224ScalarMult(outX, outY, outZ, inX, inY, inZ *p224FieldElement, scalar []byte) { + var xx, yy, zz p224FieldElement + for i := 0; i < 8; i++ { + outX[i] = 0 + outY[i] = 0 + outZ[i] = 0 + } + + for _, byte := range scalar { + for bitNum := uint(0); bitNum < 8; bitNum++ { + p224DoubleJacobian(outX, outY, outZ, outX, outY, outZ) + bit := uint32((byte >> (7 - bitNum)) & 1) + p224AddJacobian(&xx, &yy, &zz, inX, inY, inZ, outX, outY, outZ) + p224CopyConditional(outX, &xx, bit) + p224CopyConditional(outY, &yy, bit) + p224CopyConditional(outZ, &zz, bit) + } + } +} + +// p224ToAffine converts from Jacobian to affine form. +func p224ToAffine(x, y, z *p224FieldElement) (*big.Int, *big.Int) { + var zinv, zinvsq, outx, outy p224FieldElement + var tmp p224LargeFieldElement + + if isPointAtInfinity := p224IsZero(z); isPointAtInfinity == 1 { + return new(big.Int), new(big.Int) + } + + p224Invert(&zinv, z) + p224Square(&zinvsq, &zinv, &tmp) + p224Mul(x, x, &zinvsq, &tmp) + p224Mul(&zinvsq, &zinvsq, &zinv, &tmp) + p224Mul(y, y, &zinvsq, &tmp) + + p224Contract(&outx, x) + p224Contract(&outy, y) + return p224ToBig(&outx), p224ToBig(&outy) +} + +// get28BitsFromEnd returns the least-significant 28 bits from buf>>shift, +// where buf is interpreted as a big-endian number. +func get28BitsFromEnd(buf []byte, shift uint) (uint32, []byte) { + var ret uint32 + + for i := uint(0); i < 4; i++ { + var b byte + if l := len(buf); l > 0 { + b = buf[l-1] + // We don't remove the byte if we're about to return and we're not + // reading all of it. + if i != 3 || shift == 4 { + buf = buf[:l-1] + } + } + ret |= uint32(b) << (8 * i) >> shift + } + ret &= bottom28Bits + return ret, buf +} + +// p224FromBig sets *out = *in. +func p224FromBig(out *p224FieldElement, in *big.Int) { + bytes := in.Bytes() + out[0], bytes = get28BitsFromEnd(bytes, 0) + out[1], bytes = get28BitsFromEnd(bytes, 4) + out[2], bytes = get28BitsFromEnd(bytes, 0) + out[3], bytes = get28BitsFromEnd(bytes, 4) + out[4], bytes = get28BitsFromEnd(bytes, 0) + out[5], bytes = get28BitsFromEnd(bytes, 4) + out[6], bytes = get28BitsFromEnd(bytes, 0) + out[7], bytes = get28BitsFromEnd(bytes, 4) +} + +// p224ToBig returns in as a big.Int. +func p224ToBig(in *p224FieldElement) *big.Int { + var buf [28]byte + buf[27] = byte(in[0]) + buf[26] = byte(in[0] >> 8) + buf[25] = byte(in[0] >> 16) + buf[24] = byte(((in[0] >> 24) & 0x0f) | (in[1]<<4)&0xf0) + + buf[23] = byte(in[1] >> 4) + buf[22] = byte(in[1] >> 12) + buf[21] = byte(in[1] >> 20) + + buf[20] = byte(in[2]) + buf[19] = byte(in[2] >> 8) + buf[18] = byte(in[2] >> 16) + buf[17] = byte(((in[2] >> 24) & 0x0f) | (in[3]<<4)&0xf0) + + buf[16] = byte(in[3] >> 4) + buf[15] = byte(in[3] >> 12) + buf[14] = byte(in[3] >> 20) + + buf[13] = byte(in[4]) + buf[12] = byte(in[4] >> 8) + buf[11] = byte(in[4] >> 16) + buf[10] = byte(((in[4] >> 24) & 0x0f) | (in[5]<<4)&0xf0) + + buf[9] = byte(in[5] >> 4) + buf[8] = byte(in[5] >> 12) + buf[7] = byte(in[5] >> 20) + + buf[6] = byte(in[6]) + buf[5] = byte(in[6] >> 8) + buf[4] = byte(in[6] >> 16) + buf[3] = byte(((in[6] >> 24) & 0x0f) | (in[7]<<4)&0xf0) + + buf[2] = byte(in[7] >> 4) + buf[1] = byte(in[7] >> 12) + buf[0] = byte(in[7] >> 20) + + return new(big.Int).SetBytes(buf[:]) +} |