diff options
Diffstat (limited to '')
-rw-r--r-- | src/go/parser/testdata/linalg.go2 | 83 |
1 files changed, 83 insertions, 0 deletions
diff --git a/src/go/parser/testdata/linalg.go2 b/src/go/parser/testdata/linalg.go2 new file mode 100644 index 0000000..fba0d02 --- /dev/null +++ b/src/go/parser/testdata/linalg.go2 @@ -0,0 +1,83 @@ +// Copyright 2019 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package linalg + +import "math" + +// Numeric is type bound that matches any numeric type. +// It would likely be in a constraints package in the standard library. +type Numeric interface { + type int, int8, int16, int32, int64, + uint, uint8, uint16, uint32, uint64, uintptr, + float32, float64, + complex64, complex128 +} + +func DotProduct[T Numeric](s1, s2 []T) T { + if len(s1) != len(s2) { + panic("DotProduct: slices of unequal length") + } + var r T + for i := range s1 { + r += s1[i] * s2[i] + } + return r +} + +// NumericAbs matches numeric types with an Abs method. +type NumericAbs[T any] interface { + Numeric + + Abs() T +} + +// AbsDifference computes the absolute value of the difference of +// a and b, where the absolute value is determined by the Abs method. +func AbsDifference[T NumericAbs](a, b T) T { + d := a - b + return d.Abs() +} + +// OrderedNumeric is a type bound that matches numeric types that support the < operator. +type OrderedNumeric interface { + type int, int8, int16, int32, int64, + uint, uint8, uint16, uint32, uint64, uintptr, + float32, float64 +} + +// Complex is a type bound that matches the two complex types, which do not have a < operator. +type Complex interface { + type complex64, complex128 +} + +// OrderedAbs is a helper type that defines an Abs method for +// ordered numeric types. +type OrderedAbs[T OrderedNumeric] T + +func (a OrderedAbs[T]) Abs() OrderedAbs[T] { + if a < 0 { + return -a + } + return a +} + +// ComplexAbs is a helper type that defines an Abs method for +// complex types. +type ComplexAbs[T Complex] T + +func (a ComplexAbs[T]) Abs() ComplexAbs[T] { + r := float64(real(a)) + i := float64(imag(a)) + d := math.Sqrt(r * r + i * i) + return ComplexAbs[T](complex(d, 0)) +} + +func OrderedAbsDifference[T OrderedNumeric](a, b T) T { + return T(AbsDifference(OrderedAbs[T](a), OrderedAbs[T](b))) +} + +func ComplexAbsDifference[T Complex](a, b T) T { + return T(AbsDifference(ComplexAbs[T](a), ComplexAbs[T](b))) +} |