1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
|
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package linalg
import "math"
// Numeric is type bound that matches any numeric type.
// It would likely be in a constraints package in the standard library.
type Numeric interface {
type int, int8, int16, int32, int64,
uint, uint8, uint16, uint32, uint64, uintptr,
float32, float64,
complex64, complex128
}
func DotProduct[T Numeric](s1, s2 []T) T {
if len(s1) != len(s2) {
panic("DotProduct: slices of unequal length")
}
var r T
for i := range s1 {
r += s1[i] * s2[i]
}
return r
}
// NumericAbs matches numeric types with an Abs method.
type NumericAbs[T any] interface {
Numeric
Abs() T
}
// AbsDifference computes the absolute value of the difference of
// a and b, where the absolute value is determined by the Abs method.
func AbsDifference[T NumericAbs](a, b T) T {
d := a - b
return d.Abs()
}
// OrderedNumeric is a type bound that matches numeric types that support the < operator.
type OrderedNumeric interface {
type int, int8, int16, int32, int64,
uint, uint8, uint16, uint32, uint64, uintptr,
float32, float64
}
// Complex is a type bound that matches the two complex types, which do not have a < operator.
type Complex interface {
type complex64, complex128
}
// OrderedAbs is a helper type that defines an Abs method for
// ordered numeric types.
type OrderedAbs[T OrderedNumeric] T
func (a OrderedAbs[T]) Abs() OrderedAbs[T] {
if a < 0 {
return -a
}
return a
}
// ComplexAbs is a helper type that defines an Abs method for
// complex types.
type ComplexAbs[T Complex] T
func (a ComplexAbs[T]) Abs() ComplexAbs[T] {
r := float64(real(a))
i := float64(imag(a))
d := math.Sqrt(r * r + i * i)
return ComplexAbs[T](complex(d, 0))
}
func OrderedAbsDifference[T OrderedNumeric](a, b T) T {
return T(AbsDifference(OrderedAbs[T](a), OrderedAbs[T](b)))
}
func ComplexAbsDifference[T Complex](a, b T) T {
return T(AbsDifference(ComplexAbs[T](a), ComplexAbs[T](b)))
}
|