diff options
Diffstat (limited to 'src/index/suffixarray/sais2.go')
-rw-r--r-- | src/index/suffixarray/sais2.go | 1741 |
1 files changed, 1741 insertions, 0 deletions
diff --git a/src/index/suffixarray/sais2.go b/src/index/suffixarray/sais2.go new file mode 100644 index 0000000..f124702 --- /dev/null +++ b/src/index/suffixarray/sais2.go @@ -0,0 +1,1741 @@ +// Copyright 2019 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +// Code generated by go generate; DO NOT EDIT. + +package suffixarray + +func text_64(text []byte, sa []int64) { + if int(int64(len(text))) != len(text) || len(text) != len(sa) { + panic("suffixarray: misuse of text_64") + } + sais_8_64(text, 256, sa, make([]int64, 2*256)) +} + +func sais_8_64(text []byte, textMax int, sa, tmp []int64) { + if len(sa) != len(text) || len(tmp) < int(textMax) { + panic("suffixarray: misuse of sais_8_64") + } + + // Trivial base cases. Sorting 0 or 1 things is easy. + if len(text) == 0 { + return + } + if len(text) == 1 { + sa[0] = 0 + return + } + + // Establish slices indexed by text character + // holding character frequency and bucket-sort offsets. + // If there's only enough tmp for one slice, + // we make it the bucket offsets and recompute + // the character frequency each time we need it. + var freq, bucket []int64 + if len(tmp) >= 2*textMax { + freq, bucket = tmp[:textMax], tmp[textMax:2*textMax] + freq[0] = -1 // mark as uninitialized + } else { + freq, bucket = nil, tmp[:textMax] + } + + // The SAIS algorithm. + // Each of these calls makes one scan through sa. + // See the individual functions for documentation + // about each's role in the algorithm. + numLMS := placeLMS_8_64(text, sa, freq, bucket) + if numLMS <= 1 { + // 0 or 1 items are already sorted. Do nothing. + } else { + induceSubL_8_64(text, sa, freq, bucket) + induceSubS_8_64(text, sa, freq, bucket) + length_8_64(text, sa, numLMS) + maxID := assignID_8_64(text, sa, numLMS) + if maxID < numLMS { + map_64(sa, numLMS) + recurse_64(sa, tmp, numLMS, maxID) + unmap_8_64(text, sa, numLMS) + } else { + // If maxID == numLMS, then each LMS-substring + // is unique, so the relative ordering of two LMS-suffixes + // is determined by just the leading LMS-substring. + // That is, the LMS-suffix sort order matches the + // (simpler) LMS-substring sort order. + // Copy the original LMS-substring order into the + // suffix array destination. + copy(sa, sa[len(sa)-numLMS:]) + } + expand_8_64(text, freq, bucket, sa, numLMS) + } + induceL_8_64(text, sa, freq, bucket) + induceS_8_64(text, sa, freq, bucket) + + // Mark for caller that we overwrote tmp. + tmp[0] = -1 +} + +func sais_32(text []int32, textMax int, sa, tmp []int32) { + if len(sa) != len(text) || len(tmp) < int(textMax) { + panic("suffixarray: misuse of sais_32") + } + + // Trivial base cases. Sorting 0 or 1 things is easy. + if len(text) == 0 { + return + } + if len(text) == 1 { + sa[0] = 0 + return + } + + // Establish slices indexed by text character + // holding character frequency and bucket-sort offsets. + // If there's only enough tmp for one slice, + // we make it the bucket offsets and recompute + // the character frequency each time we need it. + var freq, bucket []int32 + if len(tmp) >= 2*textMax { + freq, bucket = tmp[:textMax], tmp[textMax:2*textMax] + freq[0] = -1 // mark as uninitialized + } else { + freq, bucket = nil, tmp[:textMax] + } + + // The SAIS algorithm. + // Each of these calls makes one scan through sa. + // See the individual functions for documentation + // about each's role in the algorithm. + numLMS := placeLMS_32(text, sa, freq, bucket) + if numLMS <= 1 { + // 0 or 1 items are already sorted. Do nothing. + } else { + induceSubL_32(text, sa, freq, bucket) + induceSubS_32(text, sa, freq, bucket) + length_32(text, sa, numLMS) + maxID := assignID_32(text, sa, numLMS) + if maxID < numLMS { + map_32(sa, numLMS) + recurse_32(sa, tmp, numLMS, maxID) + unmap_32(text, sa, numLMS) + } else { + // If maxID == numLMS, then each LMS-substring + // is unique, so the relative ordering of two LMS-suffixes + // is determined by just the leading LMS-substring. + // That is, the LMS-suffix sort order matches the + // (simpler) LMS-substring sort order. + // Copy the original LMS-substring order into the + // suffix array destination. + copy(sa, sa[len(sa)-numLMS:]) + } + expand_32(text, freq, bucket, sa, numLMS) + } + induceL_32(text, sa, freq, bucket) + induceS_32(text, sa, freq, bucket) + + // Mark for caller that we overwrote tmp. + tmp[0] = -1 +} + +func sais_64(text []int64, textMax int, sa, tmp []int64) { + if len(sa) != len(text) || len(tmp) < int(textMax) { + panic("suffixarray: misuse of sais_64") + } + + // Trivial base cases. Sorting 0 or 1 things is easy. + if len(text) == 0 { + return + } + if len(text) == 1 { + sa[0] = 0 + return + } + + // Establish slices indexed by text character + // holding character frequency and bucket-sort offsets. + // If there's only enough tmp for one slice, + // we make it the bucket offsets and recompute + // the character frequency each time we need it. + var freq, bucket []int64 + if len(tmp) >= 2*textMax { + freq, bucket = tmp[:textMax], tmp[textMax:2*textMax] + freq[0] = -1 // mark as uninitialized + } else { + freq, bucket = nil, tmp[:textMax] + } + + // The SAIS algorithm. + // Each of these calls makes one scan through sa. + // See the individual functions for documentation + // about each's role in the algorithm. + numLMS := placeLMS_64(text, sa, freq, bucket) + if numLMS <= 1 { + // 0 or 1 items are already sorted. Do nothing. + } else { + induceSubL_64(text, sa, freq, bucket) + induceSubS_64(text, sa, freq, bucket) + length_64(text, sa, numLMS) + maxID := assignID_64(text, sa, numLMS) + if maxID < numLMS { + map_64(sa, numLMS) + recurse_64(sa, tmp, numLMS, maxID) + unmap_64(text, sa, numLMS) + } else { + // If maxID == numLMS, then each LMS-substring + // is unique, so the relative ordering of two LMS-suffixes + // is determined by just the leading LMS-substring. + // That is, the LMS-suffix sort order matches the + // (simpler) LMS-substring sort order. + // Copy the original LMS-substring order into the + // suffix array destination. + copy(sa, sa[len(sa)-numLMS:]) + } + expand_64(text, freq, bucket, sa, numLMS) + } + induceL_64(text, sa, freq, bucket) + induceS_64(text, sa, freq, bucket) + + // Mark for caller that we overwrote tmp. + tmp[0] = -1 +} + +func freq_8_64(text []byte, freq, bucket []int64) []int64 { + if freq != nil && freq[0] >= 0 { + return freq // already computed + } + if freq == nil { + freq = bucket + } + + freq = freq[:256] // eliminate bounds check for freq[c] below + for i := range freq { + freq[i] = 0 + } + for _, c := range text { + freq[c]++ + } + return freq +} + +func freq_32(text []int32, freq, bucket []int32) []int32 { + if freq != nil && freq[0] >= 0 { + return freq // already computed + } + if freq == nil { + freq = bucket + } + + for i := range freq { + freq[i] = 0 + } + for _, c := range text { + freq[c]++ + } + return freq +} + +func freq_64(text []int64, freq, bucket []int64) []int64 { + if freq != nil && freq[0] >= 0 { + return freq // already computed + } + if freq == nil { + freq = bucket + } + + for i := range freq { + freq[i] = 0 + } + for _, c := range text { + freq[c]++ + } + return freq +} + +func bucketMin_8_64(text []byte, freq, bucket []int64) { + freq = freq_8_64(text, freq, bucket) + freq = freq[:256] // establish len(freq) = 256, so 0 ≤ i < 256 below + bucket = bucket[:256] // eliminate bounds check for bucket[i] below + total := int64(0) + for i, n := range freq { + bucket[i] = total + total += n + } +} + +func bucketMin_32(text []int32, freq, bucket []int32) { + freq = freq_32(text, freq, bucket) + total := int32(0) + for i, n := range freq { + bucket[i] = total + total += n + } +} + +func bucketMin_64(text []int64, freq, bucket []int64) { + freq = freq_64(text, freq, bucket) + total := int64(0) + for i, n := range freq { + bucket[i] = total + total += n + } +} + +func bucketMax_8_64(text []byte, freq, bucket []int64) { + freq = freq_8_64(text, freq, bucket) + freq = freq[:256] // establish len(freq) = 256, so 0 ≤ i < 256 below + bucket = bucket[:256] // eliminate bounds check for bucket[i] below + total := int64(0) + for i, n := range freq { + total += n + bucket[i] = total + } +} + +func bucketMax_32(text []int32, freq, bucket []int32) { + freq = freq_32(text, freq, bucket) + total := int32(0) + for i, n := range freq { + total += n + bucket[i] = total + } +} + +func bucketMax_64(text []int64, freq, bucket []int64) { + freq = freq_64(text, freq, bucket) + total := int64(0) + for i, n := range freq { + total += n + bucket[i] = total + } +} + +func placeLMS_8_64(text []byte, sa, freq, bucket []int64) int { + bucketMax_8_64(text, freq, bucket) + + numLMS := 0 + lastB := int64(-1) + bucket = bucket[:256] // eliminate bounds check for bucket[c1] below + + // The next stanza of code (until the blank line) loop backward + // over text, stopping to execute a code body at each position i + // such that text[i] is an L-character and text[i+1] is an S-character. + // That is, i+1 is the position of the start of an LMS-substring. + // These could be hoisted out into a function with a callback, + // but at a significant speed cost. Instead, we just write these + // seven lines a few times in this source file. The copies below + // refer back to the pattern established by this original as the + // "LMS-substring iterator". + // + // In every scan through the text, c0, c1 are successive characters of text. + // In this backward scan, c0 == text[i] and c1 == text[i+1]. + // By scanning backward, we can keep track of whether the current + // position is type-S or type-L according to the usual definition: + // + // - position len(text) is type S with text[len(text)] == -1 (the sentinel) + // - position i is type S if text[i] < text[i+1], or if text[i] == text[i+1] && i+1 is type S. + // - position i is type L if text[i] > text[i+1], or if text[i] == text[i+1] && i+1 is type L. + // + // The backward scan lets us maintain the current type, + // update it when we see c0 != c1, and otherwise leave it alone. + // We want to identify all S positions with a preceding L. + // Position len(text) is one such position by definition, but we have + // nowhere to write it down, so we eliminate it by untruthfully + // setting isTypeS = false at the start of the loop. + c0, c1, isTypeS := byte(0), byte(0), false + for i := len(text) - 1; i >= 0; i-- { + c0, c1 = text[i], c0 + if c0 < c1 { + isTypeS = true + } else if c0 > c1 && isTypeS { + isTypeS = false + + // Bucket the index i+1 for the start of an LMS-substring. + b := bucket[c1] - 1 + bucket[c1] = b + sa[b] = int64(i + 1) + lastB = b + numLMS++ + } + } + + // We recorded the LMS-substring starts but really want the ends. + // Luckily, with two differences, the start indexes and the end indexes are the same. + // The first difference is that the rightmost LMS-substring's end index is len(text), + // so the caller must pretend that sa[-1] == len(text), as noted above. + // The second difference is that the first leftmost LMS-substring start index + // does not end an earlier LMS-substring, so as an optimization we can omit + // that leftmost LMS-substring start index (the last one we wrote). + // + // Exception: if numLMS <= 1, the caller is not going to bother with + // the recursion at all and will treat the result as containing LMS-substring starts. + // In that case, we don't remove the final entry. + if numLMS > 1 { + sa[lastB] = 0 + } + return numLMS +} + +func placeLMS_32(text []int32, sa, freq, bucket []int32) int { + bucketMax_32(text, freq, bucket) + + numLMS := 0 + lastB := int32(-1) + + // The next stanza of code (until the blank line) loop backward + // over text, stopping to execute a code body at each position i + // such that text[i] is an L-character and text[i+1] is an S-character. + // That is, i+1 is the position of the start of an LMS-substring. + // These could be hoisted out into a function with a callback, + // but at a significant speed cost. Instead, we just write these + // seven lines a few times in this source file. The copies below + // refer back to the pattern established by this original as the + // "LMS-substring iterator". + // + // In every scan through the text, c0, c1 are successive characters of text. + // In this backward scan, c0 == text[i] and c1 == text[i+1]. + // By scanning backward, we can keep track of whether the current + // position is type-S or type-L according to the usual definition: + // + // - position len(text) is type S with text[len(text)] == -1 (the sentinel) + // - position i is type S if text[i] < text[i+1], or if text[i] == text[i+1] && i+1 is type S. + // - position i is type L if text[i] > text[i+1], or if text[i] == text[i+1] && i+1 is type L. + // + // The backward scan lets us maintain the current type, + // update it when we see c0 != c1, and otherwise leave it alone. + // We want to identify all S positions with a preceding L. + // Position len(text) is one such position by definition, but we have + // nowhere to write it down, so we eliminate it by untruthfully + // setting isTypeS = false at the start of the loop. + c0, c1, isTypeS := int32(0), int32(0), false + for i := len(text) - 1; i >= 0; i-- { + c0, c1 = text[i], c0 + if c0 < c1 { + isTypeS = true + } else if c0 > c1 && isTypeS { + isTypeS = false + + // Bucket the index i+1 for the start of an LMS-substring. + b := bucket[c1] - 1 + bucket[c1] = b + sa[b] = int32(i + 1) + lastB = b + numLMS++ + } + } + + // We recorded the LMS-substring starts but really want the ends. + // Luckily, with two differences, the start indexes and the end indexes are the same. + // The first difference is that the rightmost LMS-substring's end index is len(text), + // so the caller must pretend that sa[-1] == len(text), as noted above. + // The second difference is that the first leftmost LMS-substring start index + // does not end an earlier LMS-substring, so as an optimization we can omit + // that leftmost LMS-substring start index (the last one we wrote). + // + // Exception: if numLMS <= 1, the caller is not going to bother with + // the recursion at all and will treat the result as containing LMS-substring starts. + // In that case, we don't remove the final entry. + if numLMS > 1 { + sa[lastB] = 0 + } + return numLMS +} + +func placeLMS_64(text []int64, sa, freq, bucket []int64) int { + bucketMax_64(text, freq, bucket) + + numLMS := 0 + lastB := int64(-1) + + // The next stanza of code (until the blank line) loop backward + // over text, stopping to execute a code body at each position i + // such that text[i] is an L-character and text[i+1] is an S-character. + // That is, i+1 is the position of the start of an LMS-substring. + // These could be hoisted out into a function with a callback, + // but at a significant speed cost. Instead, we just write these + // seven lines a few times in this source file. The copies below + // refer back to the pattern established by this original as the + // "LMS-substring iterator". + // + // In every scan through the text, c0, c1 are successive characters of text. + // In this backward scan, c0 == text[i] and c1 == text[i+1]. + // By scanning backward, we can keep track of whether the current + // position is type-S or type-L according to the usual definition: + // + // - position len(text) is type S with text[len(text)] == -1 (the sentinel) + // - position i is type S if text[i] < text[i+1], or if text[i] == text[i+1] && i+1 is type S. + // - position i is type L if text[i] > text[i+1], or if text[i] == text[i+1] && i+1 is type L. + // + // The backward scan lets us maintain the current type, + // update it when we see c0 != c1, and otherwise leave it alone. + // We want to identify all S positions with a preceding L. + // Position len(text) is one such position by definition, but we have + // nowhere to write it down, so we eliminate it by untruthfully + // setting isTypeS = false at the start of the loop. + c0, c1, isTypeS := int64(0), int64(0), false + for i := len(text) - 1; i >= 0; i-- { + c0, c1 = text[i], c0 + if c0 < c1 { + isTypeS = true + } else if c0 > c1 && isTypeS { + isTypeS = false + + // Bucket the index i+1 for the start of an LMS-substring. + b := bucket[c1] - 1 + bucket[c1] = b + sa[b] = int64(i + 1) + lastB = b + numLMS++ + } + } + + // We recorded the LMS-substring starts but really want the ends. + // Luckily, with two differences, the start indexes and the end indexes are the same. + // The first difference is that the rightmost LMS-substring's end index is len(text), + // so the caller must pretend that sa[-1] == len(text), as noted above. + // The second difference is that the first leftmost LMS-substring start index + // does not end an earlier LMS-substring, so as an optimization we can omit + // that leftmost LMS-substring start index (the last one we wrote). + // + // Exception: if numLMS <= 1, the caller is not going to bother with + // the recursion at all and will treat the result as containing LMS-substring starts. + // In that case, we don't remove the final entry. + if numLMS > 1 { + sa[lastB] = 0 + } + return numLMS +} + +func induceSubL_8_64(text []byte, sa, freq, bucket []int64) { + // Initialize positions for left side of character buckets. + bucketMin_8_64(text, freq, bucket) + bucket = bucket[:256] // eliminate bounds check for bucket[cB] below + + // As we scan the array left-to-right, each sa[i] = j > 0 is a correctly + // sorted suffix array entry (for text[j:]) for which we know that j-1 is type L. + // Because j-1 is type L, inserting it into sa now will sort it correctly. + // But we want to distinguish a j-1 with j-2 of type L from type S. + // We can process the former but want to leave the latter for the caller. + // We record the difference by negating j-1 if it is preceded by type S. + // Either way, the insertion (into the text[j-1] bucket) is guaranteed to + // happen at sa[i´] for some i´ > i, that is, in the portion of sa we have + // yet to scan. A single pass therefore sees indexes j, j-1, j-2, j-3, + // and so on, in sorted but not necessarily adjacent order, until it finds + // one preceded by an index of type S, at which point it must stop. + // + // As we scan through the array, we clear the worked entries (sa[i] > 0) to zero, + // and we flip sa[i] < 0 to -sa[i], so that the loop finishes with sa containing + // only the indexes of the leftmost L-type indexes for each LMS-substring. + // + // The suffix array sa therefore serves simultaneously as input, output, + // and a miraculously well-tailored work queue. + + // placeLMS_8_64 left out the implicit entry sa[-1] == len(text), + // corresponding to the identified type-L index len(text)-1. + // Process it before the left-to-right scan of sa proper. + // See body in loop for commentary. + k := len(text) - 1 + c0, c1 := text[k-1], text[k] + if c0 < c1 { + k = -k + } + + // Cache recently used bucket index: + // we're processing suffixes in sorted order + // and accessing buckets indexed by the + // byte before the sorted order, which still + // has very good locality. + // Invariant: b is cached, possibly dirty copy of bucket[cB]. + cB := c1 + b := bucket[cB] + sa[b] = int64(k) + b++ + + for i := 0; i < len(sa); i++ { + j := int(sa[i]) + if j == 0 { + // Skip empty entry. + continue + } + if j < 0 { + // Leave discovered type-S index for caller. + sa[i] = int64(-j) + continue + } + sa[i] = 0 + + // Index j was on work queue, meaning k := j-1 is L-type, + // so we can now place k correctly into sa. + // If k-1 is L-type, queue k for processing later in this loop. + // If k-1 is S-type (text[k-1] < text[k]), queue -k to save for the caller. + k := j - 1 + c0, c1 := text[k-1], text[k] + if c0 < c1 { + k = -k + } + + if cB != c1 { + bucket[cB] = b + cB = c1 + b = bucket[cB] + } + sa[b] = int64(k) + b++ + } +} + +func induceSubL_32(text []int32, sa, freq, bucket []int32) { + // Initialize positions for left side of character buckets. + bucketMin_32(text, freq, bucket) + + // As we scan the array left-to-right, each sa[i] = j > 0 is a correctly + // sorted suffix array entry (for text[j:]) for which we know that j-1 is type L. + // Because j-1 is type L, inserting it into sa now will sort it correctly. + // But we want to distinguish a j-1 with j-2 of type L from type S. + // We can process the former but want to leave the latter for the caller. + // We record the difference by negating j-1 if it is preceded by type S. + // Either way, the insertion (into the text[j-1] bucket) is guaranteed to + // happen at sa[i´] for some i´ > i, that is, in the portion of sa we have + // yet to scan. A single pass therefore sees indexes j, j-1, j-2, j-3, + // and so on, in sorted but not necessarily adjacent order, until it finds + // one preceded by an index of type S, at which point it must stop. + // + // As we scan through the array, we clear the worked entries (sa[i] > 0) to zero, + // and we flip sa[i] < 0 to -sa[i], so that the loop finishes with sa containing + // only the indexes of the leftmost L-type indexes for each LMS-substring. + // + // The suffix array sa therefore serves simultaneously as input, output, + // and a miraculously well-tailored work queue. + + // placeLMS_32 left out the implicit entry sa[-1] == len(text), + // corresponding to the identified type-L index len(text)-1. + // Process it before the left-to-right scan of sa proper. + // See body in loop for commentary. + k := len(text) - 1 + c0, c1 := text[k-1], text[k] + if c0 < c1 { + k = -k + } + + // Cache recently used bucket index: + // we're processing suffixes in sorted order + // and accessing buckets indexed by the + // int32 before the sorted order, which still + // has very good locality. + // Invariant: b is cached, possibly dirty copy of bucket[cB]. + cB := c1 + b := bucket[cB] + sa[b] = int32(k) + b++ + + for i := 0; i < len(sa); i++ { + j := int(sa[i]) + if j == 0 { + // Skip empty entry. + continue + } + if j < 0 { + // Leave discovered type-S index for caller. + sa[i] = int32(-j) + continue + } + sa[i] = 0 + + // Index j was on work queue, meaning k := j-1 is L-type, + // so we can now place k correctly into sa. + // If k-1 is L-type, queue k for processing later in this loop. + // If k-1 is S-type (text[k-1] < text[k]), queue -k to save for the caller. + k := j - 1 + c0, c1 := text[k-1], text[k] + if c0 < c1 { + k = -k + } + + if cB != c1 { + bucket[cB] = b + cB = c1 + b = bucket[cB] + } + sa[b] = int32(k) + b++ + } +} + +func induceSubL_64(text []int64, sa, freq, bucket []int64) { + // Initialize positions for left side of character buckets. + bucketMin_64(text, freq, bucket) + + // As we scan the array left-to-right, each sa[i] = j > 0 is a correctly + // sorted suffix array entry (for text[j:]) for which we know that j-1 is type L. + // Because j-1 is type L, inserting it into sa now will sort it correctly. + // But we want to distinguish a j-1 with j-2 of type L from type S. + // We can process the former but want to leave the latter for the caller. + // We record the difference by negating j-1 if it is preceded by type S. + // Either way, the insertion (into the text[j-1] bucket) is guaranteed to + // happen at sa[i´] for some i´ > i, that is, in the portion of sa we have + // yet to scan. A single pass therefore sees indexes j, j-1, j-2, j-3, + // and so on, in sorted but not necessarily adjacent order, until it finds + // one preceded by an index of type S, at which point it must stop. + // + // As we scan through the array, we clear the worked entries (sa[i] > 0) to zero, + // and we flip sa[i] < 0 to -sa[i], so that the loop finishes with sa containing + // only the indexes of the leftmost L-type indexes for each LMS-substring. + // + // The suffix array sa therefore serves simultaneously as input, output, + // and a miraculously well-tailored work queue. + + // placeLMS_64 left out the implicit entry sa[-1] == len(text), + // corresponding to the identified type-L index len(text)-1. + // Process it before the left-to-right scan of sa proper. + // See body in loop for commentary. + k := len(text) - 1 + c0, c1 := text[k-1], text[k] + if c0 < c1 { + k = -k + } + + // Cache recently used bucket index: + // we're processing suffixes in sorted order + // and accessing buckets indexed by the + // int64 before the sorted order, which still + // has very good locality. + // Invariant: b is cached, possibly dirty copy of bucket[cB]. + cB := c1 + b := bucket[cB] + sa[b] = int64(k) + b++ + + for i := 0; i < len(sa); i++ { + j := int(sa[i]) + if j == 0 { + // Skip empty entry. + continue + } + if j < 0 { + // Leave discovered type-S index for caller. + sa[i] = int64(-j) + continue + } + sa[i] = 0 + + // Index j was on work queue, meaning k := j-1 is L-type, + // so we can now place k correctly into sa. + // If k-1 is L-type, queue k for processing later in this loop. + // If k-1 is S-type (text[k-1] < text[k]), queue -k to save for the caller. + k := j - 1 + c0, c1 := text[k-1], text[k] + if c0 < c1 { + k = -k + } + + if cB != c1 { + bucket[cB] = b + cB = c1 + b = bucket[cB] + } + sa[b] = int64(k) + b++ + } +} + +func induceSubS_8_64(text []byte, sa, freq, bucket []int64) { + // Initialize positions for right side of character buckets. + bucketMax_8_64(text, freq, bucket) + bucket = bucket[:256] // eliminate bounds check for bucket[cB] below + + // Analogous to induceSubL_8_64 above, + // as we scan the array right-to-left, each sa[i] = j > 0 is a correctly + // sorted suffix array entry (for text[j:]) for which we know that j-1 is type S. + // Because j-1 is type S, inserting it into sa now will sort it correctly. + // But we want to distinguish a j-1 with j-2 of type S from type L. + // We can process the former but want to leave the latter for the caller. + // We record the difference by negating j-1 if it is preceded by type L. + // Either way, the insertion (into the text[j-1] bucket) is guaranteed to + // happen at sa[i´] for some i´ < i, that is, in the portion of sa we have + // yet to scan. A single pass therefore sees indexes j, j-1, j-2, j-3, + // and so on, in sorted but not necessarily adjacent order, until it finds + // one preceded by an index of type L, at which point it must stop. + // That index (preceded by one of type L) is an LMS-substring start. + // + // As we scan through the array, we clear the worked entries (sa[i] > 0) to zero, + // and we flip sa[i] < 0 to -sa[i] and compact into the top of sa, + // so that the loop finishes with the top of sa containing exactly + // the LMS-substring start indexes, sorted by LMS-substring. + + // Cache recently used bucket index: + cB := byte(0) + b := bucket[cB] + + top := len(sa) + for i := len(sa) - 1; i >= 0; i-- { + j := int(sa[i]) + if j == 0 { + // Skip empty entry. + continue + } + sa[i] = 0 + if j < 0 { + // Leave discovered LMS-substring start index for caller. + top-- + sa[top] = int64(-j) + continue + } + + // Index j was on work queue, meaning k := j-1 is S-type, + // so we can now place k correctly into sa. + // If k-1 is S-type, queue k for processing later in this loop. + // If k-1 is L-type (text[k-1] > text[k]), queue -k to save for the caller. + k := j - 1 + c1 := text[k] + c0 := text[k-1] + if c0 > c1 { + k = -k + } + + if cB != c1 { + bucket[cB] = b + cB = c1 + b = bucket[cB] + } + b-- + sa[b] = int64(k) + } +} + +func induceSubS_32(text []int32, sa, freq, bucket []int32) { + // Initialize positions for right side of character buckets. + bucketMax_32(text, freq, bucket) + + // Analogous to induceSubL_32 above, + // as we scan the array right-to-left, each sa[i] = j > 0 is a correctly + // sorted suffix array entry (for text[j:]) for which we know that j-1 is type S. + // Because j-1 is type S, inserting it into sa now will sort it correctly. + // But we want to distinguish a j-1 with j-2 of type S from type L. + // We can process the former but want to leave the latter for the caller. + // We record the difference by negating j-1 if it is preceded by type L. + // Either way, the insertion (into the text[j-1] bucket) is guaranteed to + // happen at sa[i´] for some i´ < i, that is, in the portion of sa we have + // yet to scan. A single pass therefore sees indexes j, j-1, j-2, j-3, + // and so on, in sorted but not necessarily adjacent order, until it finds + // one preceded by an index of type L, at which point it must stop. + // That index (preceded by one of type L) is an LMS-substring start. + // + // As we scan through the array, we clear the worked entries (sa[i] > 0) to zero, + // and we flip sa[i] < 0 to -sa[i] and compact into the top of sa, + // so that the loop finishes with the top of sa containing exactly + // the LMS-substring start indexes, sorted by LMS-substring. + + // Cache recently used bucket index: + cB := int32(0) + b := bucket[cB] + + top := len(sa) + for i := len(sa) - 1; i >= 0; i-- { + j := int(sa[i]) + if j == 0 { + // Skip empty entry. + continue + } + sa[i] = 0 + if j < 0 { + // Leave discovered LMS-substring start index for caller. + top-- + sa[top] = int32(-j) + continue + } + + // Index j was on work queue, meaning k := j-1 is S-type, + // so we can now place k correctly into sa. + // If k-1 is S-type, queue k for processing later in this loop. + // If k-1 is L-type (text[k-1] > text[k]), queue -k to save for the caller. + k := j - 1 + c1 := text[k] + c0 := text[k-1] + if c0 > c1 { + k = -k + } + + if cB != c1 { + bucket[cB] = b + cB = c1 + b = bucket[cB] + } + b-- + sa[b] = int32(k) + } +} + +func induceSubS_64(text []int64, sa, freq, bucket []int64) { + // Initialize positions for right side of character buckets. + bucketMax_64(text, freq, bucket) + + // Analogous to induceSubL_64 above, + // as we scan the array right-to-left, each sa[i] = j > 0 is a correctly + // sorted suffix array entry (for text[j:]) for which we know that j-1 is type S. + // Because j-1 is type S, inserting it into sa now will sort it correctly. + // But we want to distinguish a j-1 with j-2 of type S from type L. + // We can process the former but want to leave the latter for the caller. + // We record the difference by negating j-1 if it is preceded by type L. + // Either way, the insertion (into the text[j-1] bucket) is guaranteed to + // happen at sa[i´] for some i´ < i, that is, in the portion of sa we have + // yet to scan. A single pass therefore sees indexes j, j-1, j-2, j-3, + // and so on, in sorted but not necessarily adjacent order, until it finds + // one preceded by an index of type L, at which point it must stop. + // That index (preceded by one of type L) is an LMS-substring start. + // + // As we scan through the array, we clear the worked entries (sa[i] > 0) to zero, + // and we flip sa[i] < 0 to -sa[i] and compact into the top of sa, + // so that the loop finishes with the top of sa containing exactly + // the LMS-substring start indexes, sorted by LMS-substring. + + // Cache recently used bucket index: + cB := int64(0) + b := bucket[cB] + + top := len(sa) + for i := len(sa) - 1; i >= 0; i-- { + j := int(sa[i]) + if j == 0 { + // Skip empty entry. + continue + } + sa[i] = 0 + if j < 0 { + // Leave discovered LMS-substring start index for caller. + top-- + sa[top] = int64(-j) + continue + } + + // Index j was on work queue, meaning k := j-1 is S-type, + // so we can now place k correctly into sa. + // If k-1 is S-type, queue k for processing later in this loop. + // If k-1 is L-type (text[k-1] > text[k]), queue -k to save for the caller. + k := j - 1 + c1 := text[k] + c0 := text[k-1] + if c0 > c1 { + k = -k + } + + if cB != c1 { + bucket[cB] = b + cB = c1 + b = bucket[cB] + } + b-- + sa[b] = int64(k) + } +} + +func length_8_64(text []byte, sa []int64, numLMS int) { + end := 0 // index of current LMS-substring end (0 indicates final LMS-substring) + + // The encoding of N text bytes into a “length” word + // adds 1 to each byte, packs them into the bottom + // N*8 bits of a word, and then bitwise inverts the result. + // That is, the text sequence A B C (hex 41 42 43) + // encodes as ^uint64(0x42_43_44). + // LMS-substrings can never start or end with 0xFF. + // Adding 1 ensures the encoded byte sequence never + // starts or ends with 0x00, so that present bytes can be + // distinguished from zero-padding in the top bits, + // so the length need not be separately encoded. + // Inverting the bytes increases the chance that a + // 4-byte encoding will still be ≥ len(text). + // In particular, if the first byte is ASCII (<= 0x7E, so +1 <= 0x7F) + // then the high bit of the inversion will be set, + // making it clearly not a valid length (it would be a negative one). + // + // cx holds the pre-inverted encoding (the packed incremented bytes). + cx := uint64(0) // byte-only + + // This stanza (until the blank line) is the "LMS-substring iterator", + // described in placeLMS_8_64 above, with one line added to maintain cx. + c0, c1, isTypeS := byte(0), byte(0), false + for i := len(text) - 1; i >= 0; i-- { + c0, c1 = text[i], c0 + cx = cx<<8 | uint64(c1+1) // byte-only + if c0 < c1 { + isTypeS = true + } else if c0 > c1 && isTypeS { + isTypeS = false + + // Index j = i+1 is the start of an LMS-substring. + // Compute length or encoded text to store in sa[j/2]. + j := i + 1 + var code int64 + if end == 0 { + code = 0 + } else { + code = int64(end - j) + if code <= 64/8 && ^cx >= uint64(len(text)) { // byte-only + code = int64(^cx) // byte-only + } // byte-only + } + sa[j>>1] = code + end = j + 1 + cx = uint64(c1 + 1) // byte-only + } + } +} + +func length_32(text []int32, sa []int32, numLMS int) { + end := 0 // index of current LMS-substring end (0 indicates final LMS-substring) + + // The encoding of N text int32s into a “length” word + // adds 1 to each int32, packs them into the bottom + // N*8 bits of a word, and then bitwise inverts the result. + // That is, the text sequence A B C (hex 41 42 43) + // encodes as ^uint32(0x42_43_44). + // LMS-substrings can never start or end with 0xFF. + // Adding 1 ensures the encoded int32 sequence never + // starts or ends with 0x00, so that present int32s can be + // distinguished from zero-padding in the top bits, + // so the length need not be separately encoded. + // Inverting the int32s increases the chance that a + // 4-int32 encoding will still be ≥ len(text). + // In particular, if the first int32 is ASCII (<= 0x7E, so +1 <= 0x7F) + // then the high bit of the inversion will be set, + // making it clearly not a valid length (it would be a negative one). + // + // cx holds the pre-inverted encoding (the packed incremented int32s). + + // This stanza (until the blank line) is the "LMS-substring iterator", + // described in placeLMS_32 above, with one line added to maintain cx. + c0, c1, isTypeS := int32(0), int32(0), false + for i := len(text) - 1; i >= 0; i-- { + c0, c1 = text[i], c0 + if c0 < c1 { + isTypeS = true + } else if c0 > c1 && isTypeS { + isTypeS = false + + // Index j = i+1 is the start of an LMS-substring. + // Compute length or encoded text to store in sa[j/2]. + j := i + 1 + var code int32 + if end == 0 { + code = 0 + } else { + code = int32(end - j) + } + sa[j>>1] = code + end = j + 1 + } + } +} + +func length_64(text []int64, sa []int64, numLMS int) { + end := 0 // index of current LMS-substring end (0 indicates final LMS-substring) + + // The encoding of N text int64s into a “length” word + // adds 1 to each int64, packs them into the bottom + // N*8 bits of a word, and then bitwise inverts the result. + // That is, the text sequence A B C (hex 41 42 43) + // encodes as ^uint64(0x42_43_44). + // LMS-substrings can never start or end with 0xFF. + // Adding 1 ensures the encoded int64 sequence never + // starts or ends with 0x00, so that present int64s can be + // distinguished from zero-padding in the top bits, + // so the length need not be separately encoded. + // Inverting the int64s increases the chance that a + // 4-int64 encoding will still be ≥ len(text). + // In particular, if the first int64 is ASCII (<= 0x7E, so +1 <= 0x7F) + // then the high bit of the inversion will be set, + // making it clearly not a valid length (it would be a negative one). + // + // cx holds the pre-inverted encoding (the packed incremented int64s). + + // This stanza (until the blank line) is the "LMS-substring iterator", + // described in placeLMS_64 above, with one line added to maintain cx. + c0, c1, isTypeS := int64(0), int64(0), false + for i := len(text) - 1; i >= 0; i-- { + c0, c1 = text[i], c0 + if c0 < c1 { + isTypeS = true + } else if c0 > c1 && isTypeS { + isTypeS = false + + // Index j = i+1 is the start of an LMS-substring. + // Compute length or encoded text to store in sa[j/2]. + j := i + 1 + var code int64 + if end == 0 { + code = 0 + } else { + code = int64(end - j) + } + sa[j>>1] = code + end = j + 1 + } + } +} + +func assignID_8_64(text []byte, sa []int64, numLMS int) int { + id := 0 + lastLen := int64(-1) // impossible + lastPos := int64(0) + for _, j := range sa[len(sa)-numLMS:] { + // Is the LMS-substring at index j new, or is it the same as the last one we saw? + n := sa[j/2] + if n != lastLen { + goto New + } + if uint64(n) >= uint64(len(text)) { + // “Length” is really encoded full text, and they match. + goto Same + } + { + // Compare actual texts. + n := int(n) + this := text[j:][:n] + last := text[lastPos:][:n] + for i := 0; i < n; i++ { + if this[i] != last[i] { + goto New + } + } + goto Same + } + New: + id++ + lastPos = j + lastLen = n + Same: + sa[j/2] = int64(id) + } + return id +} + +func assignID_32(text []int32, sa []int32, numLMS int) int { + id := 0 + lastLen := int32(-1) // impossible + lastPos := int32(0) + for _, j := range sa[len(sa)-numLMS:] { + // Is the LMS-substring at index j new, or is it the same as the last one we saw? + n := sa[j/2] + if n != lastLen { + goto New + } + if uint32(n) >= uint32(len(text)) { + // “Length” is really encoded full text, and they match. + goto Same + } + { + // Compare actual texts. + n := int(n) + this := text[j:][:n] + last := text[lastPos:][:n] + for i := 0; i < n; i++ { + if this[i] != last[i] { + goto New + } + } + goto Same + } + New: + id++ + lastPos = j + lastLen = n + Same: + sa[j/2] = int32(id) + } + return id +} + +func assignID_64(text []int64, sa []int64, numLMS int) int { + id := 0 + lastLen := int64(-1) // impossible + lastPos := int64(0) + for _, j := range sa[len(sa)-numLMS:] { + // Is the LMS-substring at index j new, or is it the same as the last one we saw? + n := sa[j/2] + if n != lastLen { + goto New + } + if uint64(n) >= uint64(len(text)) { + // “Length” is really encoded full text, and they match. + goto Same + } + { + // Compare actual texts. + n := int(n) + this := text[j:][:n] + last := text[lastPos:][:n] + for i := 0; i < n; i++ { + if this[i] != last[i] { + goto New + } + } + goto Same + } + New: + id++ + lastPos = j + lastLen = n + Same: + sa[j/2] = int64(id) + } + return id +} + +func map_64(sa []int64, numLMS int) { + w := len(sa) + for i := len(sa) / 2; i >= 0; i-- { + j := sa[i] + if j > 0 { + w-- + sa[w] = j - 1 + } + } +} + +func recurse_64(sa, oldTmp []int64, numLMS, maxID int) { + dst, saTmp, text := sa[:numLMS], sa[numLMS:len(sa)-numLMS], sa[len(sa)-numLMS:] + + // Set up temporary space for recursive call. + // We must pass sais_64 a tmp buffer wiith at least maxID entries. + // + // The subproblem is guaranteed to have length at most len(sa)/2, + // so that sa can hold both the subproblem and its suffix array. + // Nearly all the time, however, the subproblem has length < len(sa)/3, + // in which case there is a subproblem-sized middle of sa that + // we can reuse for temporary space (saTmp). + // When recurse_64 is called from sais_8_64, oldTmp is length 512 + // (from text_64), and saTmp will typically be much larger, so we'll use saTmp. + // When deeper recursions come back to recurse_64, now oldTmp is + // the saTmp from the top-most recursion, it is typically larger than + // the current saTmp (because the current sa gets smaller and smaller + // as the recursion gets deeper), and we keep reusing that top-most + // large saTmp instead of the offered smaller ones. + // + // Why is the subproblem length so often just under len(sa)/3? + // See Nong, Zhang, and Chen, section 3.6 for a plausible explanation. + // In brief, the len(sa)/2 case would correspond to an SLSLSLSLSLSL pattern + // in the input, perfect alternation of larger and smaller input bytes. + // Real text doesn't do that. If each L-type index is randomly followed + // by either an L-type or S-type index, then half the substrings will + // be of the form SLS, but the other half will be longer. Of that half, + // half (a quarter overall) will be SLLS; an eighth will be SLLLS, and so on. + // Not counting the final S in each (which overlaps the first S in the next), + // This works out to an average length 2×½ + 3×¼ + 4×⅛ + ... = 3. + // The space we need is further reduced by the fact that many of the + // short patterns like SLS will often be the same character sequences + // repeated throughout the text, reducing maxID relative to numLMS. + // + // For short inputs, the averages may not run in our favor, but then we + // can often fall back to using the length-512 tmp available in the + // top-most call. (Also a short allocation would not be a big deal.) + // + // For pathological inputs, we fall back to allocating a new tmp of length + // max(maxID, numLMS/2). This level of the recursion needs maxID, + // and all deeper levels of the recursion will need no more than numLMS/2, + // so this one allocation is guaranteed to suffice for the entire stack + // of recursive calls. + tmp := oldTmp + if len(tmp) < len(saTmp) { + tmp = saTmp + } + if len(tmp) < numLMS { + // TestSAIS/forcealloc reaches this code. + n := maxID + if n < numLMS/2 { + n = numLMS / 2 + } + tmp = make([]int64, n) + } + + // sais_64 requires that the caller arrange to clear dst, + // because in general the caller may know dst is + // freshly-allocated and already cleared. But this one is not. + for i := range dst { + dst[i] = 0 + } + sais_64(text, maxID, dst, tmp) +} + +func unmap_8_64(text []byte, sa []int64, numLMS int) { + unmap := sa[len(sa)-numLMS:] + j := len(unmap) + + // "LMS-substring iterator" (see placeLMS_8_64 above). + c0, c1, isTypeS := byte(0), byte(0), false + for i := len(text) - 1; i >= 0; i-- { + c0, c1 = text[i], c0 + if c0 < c1 { + isTypeS = true + } else if c0 > c1 && isTypeS { + isTypeS = false + + // Populate inverse map. + j-- + unmap[j] = int64(i + 1) + } + } + + // Apply inverse map to subproblem suffix array. + sa = sa[:numLMS] + for i := 0; i < len(sa); i++ { + sa[i] = unmap[sa[i]] + } +} + +func unmap_32(text []int32, sa []int32, numLMS int) { + unmap := sa[len(sa)-numLMS:] + j := len(unmap) + + // "LMS-substring iterator" (see placeLMS_32 above). + c0, c1, isTypeS := int32(0), int32(0), false + for i := len(text) - 1; i >= 0; i-- { + c0, c1 = text[i], c0 + if c0 < c1 { + isTypeS = true + } else if c0 > c1 && isTypeS { + isTypeS = false + + // Populate inverse map. + j-- + unmap[j] = int32(i + 1) + } + } + + // Apply inverse map to subproblem suffix array. + sa = sa[:numLMS] + for i := 0; i < len(sa); i++ { + sa[i] = unmap[sa[i]] + } +} + +func unmap_64(text []int64, sa []int64, numLMS int) { + unmap := sa[len(sa)-numLMS:] + j := len(unmap) + + // "LMS-substring iterator" (see placeLMS_64 above). + c0, c1, isTypeS := int64(0), int64(0), false + for i := len(text) - 1; i >= 0; i-- { + c0, c1 = text[i], c0 + if c0 < c1 { + isTypeS = true + } else if c0 > c1 && isTypeS { + isTypeS = false + + // Populate inverse map. + j-- + unmap[j] = int64(i + 1) + } + } + + // Apply inverse map to subproblem suffix array. + sa = sa[:numLMS] + for i := 0; i < len(sa); i++ { + sa[i] = unmap[sa[i]] + } +} + +func expand_8_64(text []byte, freq, bucket, sa []int64, numLMS int) { + bucketMax_8_64(text, freq, bucket) + bucket = bucket[:256] // eliminate bound check for bucket[c] below + + // Loop backward through sa, always tracking + // the next index to populate from sa[:numLMS]. + // When we get to one, populate it. + // Zero the rest of the slots; they have dead values in them. + x := numLMS - 1 + saX := sa[x] + c := text[saX] + b := bucket[c] - 1 + bucket[c] = b + + for i := len(sa) - 1; i >= 0; i-- { + if i != int(b) { + sa[i] = 0 + continue + } + sa[i] = saX + + // Load next entry to put down (if any). + if x > 0 { + x-- + saX = sa[x] // TODO bounds check + c = text[saX] + b = bucket[c] - 1 + bucket[c] = b + } + } +} + +func expand_32(text []int32, freq, bucket, sa []int32, numLMS int) { + bucketMax_32(text, freq, bucket) + + // Loop backward through sa, always tracking + // the next index to populate from sa[:numLMS]. + // When we get to one, populate it. + // Zero the rest of the slots; they have dead values in them. + x := numLMS - 1 + saX := sa[x] + c := text[saX] + b := bucket[c] - 1 + bucket[c] = b + + for i := len(sa) - 1; i >= 0; i-- { + if i != int(b) { + sa[i] = 0 + continue + } + sa[i] = saX + + // Load next entry to put down (if any). + if x > 0 { + x-- + saX = sa[x] // TODO bounds check + c = text[saX] + b = bucket[c] - 1 + bucket[c] = b + } + } +} + +func expand_64(text []int64, freq, bucket, sa []int64, numLMS int) { + bucketMax_64(text, freq, bucket) + + // Loop backward through sa, always tracking + // the next index to populate from sa[:numLMS]. + // When we get to one, populate it. + // Zero the rest of the slots; they have dead values in them. + x := numLMS - 1 + saX := sa[x] + c := text[saX] + b := bucket[c] - 1 + bucket[c] = b + + for i := len(sa) - 1; i >= 0; i-- { + if i != int(b) { + sa[i] = 0 + continue + } + sa[i] = saX + + // Load next entry to put down (if any). + if x > 0 { + x-- + saX = sa[x] // TODO bounds check + c = text[saX] + b = bucket[c] - 1 + bucket[c] = b + } + } +} + +func induceL_8_64(text []byte, sa, freq, bucket []int64) { + // Initialize positions for left side of character buckets. + bucketMin_8_64(text, freq, bucket) + bucket = bucket[:256] // eliminate bounds check for bucket[cB] below + + // This scan is similar to the one in induceSubL_8_64 above. + // That one arranges to clear all but the leftmost L-type indexes. + // This scan leaves all the L-type indexes and the original S-type + // indexes, but it negates the positive leftmost L-type indexes + // (the ones that induceS_8_64 needs to process). + + // expand_8_64 left out the implicit entry sa[-1] == len(text), + // corresponding to the identified type-L index len(text)-1. + // Process it before the left-to-right scan of sa proper. + // See body in loop for commentary. + k := len(text) - 1 + c0, c1 := text[k-1], text[k] + if c0 < c1 { + k = -k + } + + // Cache recently used bucket index. + cB := c1 + b := bucket[cB] + sa[b] = int64(k) + b++ + + for i := 0; i < len(sa); i++ { + j := int(sa[i]) + if j <= 0 { + // Skip empty or negated entry (including negated zero). + continue + } + + // Index j was on work queue, meaning k := j-1 is L-type, + // so we can now place k correctly into sa. + // If k-1 is L-type, queue k for processing later in this loop. + // If k-1 is S-type (text[k-1] < text[k]), queue -k to save for the caller. + // If k is zero, k-1 doesn't exist, so we only need to leave it + // for the caller. The caller can't tell the difference between + // an empty slot and a non-empty zero, but there's no need + // to distinguish them anyway: the final suffix array will end up + // with one zero somewhere, and that will be a real zero. + k := j - 1 + c1 := text[k] + if k > 0 { + if c0 := text[k-1]; c0 < c1 { + k = -k + } + } + + if cB != c1 { + bucket[cB] = b + cB = c1 + b = bucket[cB] + } + sa[b] = int64(k) + b++ + } +} + +func induceL_32(text []int32, sa, freq, bucket []int32) { + // Initialize positions for left side of character buckets. + bucketMin_32(text, freq, bucket) + + // This scan is similar to the one in induceSubL_32 above. + // That one arranges to clear all but the leftmost L-type indexes. + // This scan leaves all the L-type indexes and the original S-type + // indexes, but it negates the positive leftmost L-type indexes + // (the ones that induceS_32 needs to process). + + // expand_32 left out the implicit entry sa[-1] == len(text), + // corresponding to the identified type-L index len(text)-1. + // Process it before the left-to-right scan of sa proper. + // See body in loop for commentary. + k := len(text) - 1 + c0, c1 := text[k-1], text[k] + if c0 < c1 { + k = -k + } + + // Cache recently used bucket index. + cB := c1 + b := bucket[cB] + sa[b] = int32(k) + b++ + + for i := 0; i < len(sa); i++ { + j := int(sa[i]) + if j <= 0 { + // Skip empty or negated entry (including negated zero). + continue + } + + // Index j was on work queue, meaning k := j-1 is L-type, + // so we can now place k correctly into sa. + // If k-1 is L-type, queue k for processing later in this loop. + // If k-1 is S-type (text[k-1] < text[k]), queue -k to save for the caller. + // If k is zero, k-1 doesn't exist, so we only need to leave it + // for the caller. The caller can't tell the difference between + // an empty slot and a non-empty zero, but there's no need + // to distinguish them anyway: the final suffix array will end up + // with one zero somewhere, and that will be a real zero. + k := j - 1 + c1 := text[k] + if k > 0 { + if c0 := text[k-1]; c0 < c1 { + k = -k + } + } + + if cB != c1 { + bucket[cB] = b + cB = c1 + b = bucket[cB] + } + sa[b] = int32(k) + b++ + } +} + +func induceL_64(text []int64, sa, freq, bucket []int64) { + // Initialize positions for left side of character buckets. + bucketMin_64(text, freq, bucket) + + // This scan is similar to the one in induceSubL_64 above. + // That one arranges to clear all but the leftmost L-type indexes. + // This scan leaves all the L-type indexes and the original S-type + // indexes, but it negates the positive leftmost L-type indexes + // (the ones that induceS_64 needs to process). + + // expand_64 left out the implicit entry sa[-1] == len(text), + // corresponding to the identified type-L index len(text)-1. + // Process it before the left-to-right scan of sa proper. + // See body in loop for commentary. + k := len(text) - 1 + c0, c1 := text[k-1], text[k] + if c0 < c1 { + k = -k + } + + // Cache recently used bucket index. + cB := c1 + b := bucket[cB] + sa[b] = int64(k) + b++ + + for i := 0; i < len(sa); i++ { + j := int(sa[i]) + if j <= 0 { + // Skip empty or negated entry (including negated zero). + continue + } + + // Index j was on work queue, meaning k := j-1 is L-type, + // so we can now place k correctly into sa. + // If k-1 is L-type, queue k for processing later in this loop. + // If k-1 is S-type (text[k-1] < text[k]), queue -k to save for the caller. + // If k is zero, k-1 doesn't exist, so we only need to leave it + // for the caller. The caller can't tell the difference between + // an empty slot and a non-empty zero, but there's no need + // to distinguish them anyway: the final suffix array will end up + // with one zero somewhere, and that will be a real zero. + k := j - 1 + c1 := text[k] + if k > 0 { + if c0 := text[k-1]; c0 < c1 { + k = -k + } + } + + if cB != c1 { + bucket[cB] = b + cB = c1 + b = bucket[cB] + } + sa[b] = int64(k) + b++ + } +} + +func induceS_8_64(text []byte, sa, freq, bucket []int64) { + // Initialize positions for right side of character buckets. + bucketMax_8_64(text, freq, bucket) + bucket = bucket[:256] // eliminate bounds check for bucket[cB] below + + cB := byte(0) + b := bucket[cB] + + for i := len(sa) - 1; i >= 0; i-- { + j := int(sa[i]) + if j >= 0 { + // Skip non-flagged entry. + // (This loop can't see an empty entry; 0 means the real zero index.) + continue + } + + // Negative j is a work queue entry; rewrite to positive j for final suffix array. + j = -j + sa[i] = int64(j) + + // Index j was on work queue (encoded as -j but now decoded), + // meaning k := j-1 is L-type, + // so we can now place k correctly into sa. + // If k-1 is S-type, queue -k for processing later in this loop. + // If k-1 is L-type (text[k-1] > text[k]), queue k to save for the caller. + // If k is zero, k-1 doesn't exist, so we only need to leave it + // for the caller. + k := j - 1 + c1 := text[k] + if k > 0 { + if c0 := text[k-1]; c0 <= c1 { + k = -k + } + } + + if cB != c1 { + bucket[cB] = b + cB = c1 + b = bucket[cB] + } + b-- + sa[b] = int64(k) + } +} + +func induceS_32(text []int32, sa, freq, bucket []int32) { + // Initialize positions for right side of character buckets. + bucketMax_32(text, freq, bucket) + + cB := int32(0) + b := bucket[cB] + + for i := len(sa) - 1; i >= 0; i-- { + j := int(sa[i]) + if j >= 0 { + // Skip non-flagged entry. + // (This loop can't see an empty entry; 0 means the real zero index.) + continue + } + + // Negative j is a work queue entry; rewrite to positive j for final suffix array. + j = -j + sa[i] = int32(j) + + // Index j was on work queue (encoded as -j but now decoded), + // meaning k := j-1 is L-type, + // so we can now place k correctly into sa. + // If k-1 is S-type, queue -k for processing later in this loop. + // If k-1 is L-type (text[k-1] > text[k]), queue k to save for the caller. + // If k is zero, k-1 doesn't exist, so we only need to leave it + // for the caller. + k := j - 1 + c1 := text[k] + if k > 0 { + if c0 := text[k-1]; c0 <= c1 { + k = -k + } + } + + if cB != c1 { + bucket[cB] = b + cB = c1 + b = bucket[cB] + } + b-- + sa[b] = int32(k) + } +} + +func induceS_64(text []int64, sa, freq, bucket []int64) { + // Initialize positions for right side of character buckets. + bucketMax_64(text, freq, bucket) + + cB := int64(0) + b := bucket[cB] + + for i := len(sa) - 1; i >= 0; i-- { + j := int(sa[i]) + if j >= 0 { + // Skip non-flagged entry. + // (This loop can't see an empty entry; 0 means the real zero index.) + continue + } + + // Negative j is a work queue entry; rewrite to positive j for final suffix array. + j = -j + sa[i] = int64(j) + + // Index j was on work queue (encoded as -j but now decoded), + // meaning k := j-1 is L-type, + // so we can now place k correctly into sa. + // If k-1 is S-type, queue -k for processing later in this loop. + // If k-1 is L-type (text[k-1] > text[k]), queue k to save for the caller. + // If k is zero, k-1 doesn't exist, so we only need to leave it + // for the caller. + k := j - 1 + c1 := text[k] + if k > 0 { + if c0 := text[k-1]; c0 <= c1 { + k = -k + } + } + + if cB != c1 { + bucket[cB] = b + cB = c1 + b = bucket[cB] + } + b-- + sa[b] = int64(k) + } +} |