1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
|
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Based on CRYPTOGAMS code with the following comment:
// # ====================================================================
// # Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
// # project. The module is, however, dual licensed under OpenSSL and
// # CRYPTOGAMS licenses depending on where you obtain it. For further
// # details see http://www.openssl.org/~appro/cryptogams/.
// # ====================================================================
// This implementation is based on the ppc64 asm generated by the
// script https://github.com/dot-asm/cryptogams/blob/master/ppc/ghashp8-ppc.pl
// from commit d47afb3c.
// Changes were made due to differences in the ABI and some register usage.
// Some arguments were changed due to the way the Go code passes them.
#include "textflag.h"
#define XIP R3
#define HTBL R4
#define INP R5
#define LEN R6
#define XL V0
#define XM V1
#define XH V2
#define IN V3
#define ZERO V4
#define T0 V5
#define T1 V6
#define T2 V7
#define XC2 V8
#define H V9
#define HH V10
#define HL V11
#define LEMASK V12
#define XL1 V13
#define XM1 V14
#define XH1 V15
#define IN1 V16
#define H2 V17
#define H2H V18
#define H2L V19
#define XL3 V20
#define XM2 V21
#define IN2 V22
#define H3L V23
#define H3 V24
#define H3H V25
#define XH3 V26
#define XM3 V27
#define IN3 V28
#define H4L V29
#define H4 V30
#define H4H V31
#define IN0 IN
#define H21L HL
#define H21H HH
#define LOPERM H2L
#define HIPERM H2H
#define VXL VS32
#define VIN VS35
#define VXC2 VS40
#define VH VS41
#define VHH VS42
#define VHL VS43
#define VIN1 VS48
#define VH2 VS49
#define VH2H VS50
#define VH2L VS51
#define VIN2 VS54
#define VH3L VS55
#define VH3 VS56
#define VH3H VS57
#define VIN3 VS60
#define VH4L VS61
#define VH4 VS62
#define VH4H VS63
#define VIN0 VIN
// func gcmInit(productTable *[256]byte, h []byte)
TEXT ·gcmInit(SB), NOSPLIT, $0-32
MOVD productTable+0(FP), XIP
MOVD h+8(FP), HTBL
MOVD $0x10, R8
MOVD $0x20, R9
MOVD $0x30, R10
LXVD2X (HTBL)(R0), VH // Load H
VSPLTISB $-16, XC2 // 0xf0
VSPLTISB $1, T0 // one
VADDUBM XC2, XC2, XC2 // 0xe0
VXOR ZERO, ZERO, ZERO
VOR XC2, T0, XC2 // 0xe1
VSLDOI $15, XC2, ZERO, XC2 // 0xe1...
VSLDOI $1, ZERO, T0, T1 // ...1
VADDUBM XC2, XC2, XC2 // 0xc2...
VSPLTISB $7, T2
VOR XC2, T1, XC2 // 0xc2....01
VSPLTB $0, H, T1 // most significant byte
VSL H, T0, H // H<<=1
VSRAB T1, T2, T1 // broadcast carry bit
VAND T1, XC2, T1
VXOR H, T1, IN // twisted H
VSLDOI $8, IN, IN, H // twist even more ...
VSLDOI $8, ZERO, XC2, XC2 // 0xc2.0
VSLDOI $8, ZERO, H, HL // ... and split
VSLDOI $8, H, ZERO, HH
STXVD2X VXC2, (XIP+R0) // save pre-computed table
STXVD2X VHL, (XIP+R8)
MOVD $0x40, R8
STXVD2X VH, (XIP+R9)
MOVD $0x50, R9
STXVD2X VHH, (XIP+R10)
MOVD $0x60, R10
VPMSUMD IN, HL, XL // H.lo·H.lo
VPMSUMD IN, H, XM // H.hi·H.lo+H.lo·H.hi
VPMSUMD IN, HH, XH // H.hi·H.hi
VPMSUMD XL, XC2, T2 // 1st reduction phase
VSLDOI $8, XM, ZERO, T0
VSLDOI $8, ZERO, XM, T1
VXOR XL, T0, XL
VXOR XH, T1, XH
VSLDOI $8, XL, XL, XL
VXOR XL, T2, XL
VSLDOI $8, XL, XL, T1 // 2nd reduction phase
VPMSUMD XL, XC2, XL
VXOR T1, XH, T1
VXOR XL, T1, IN1
VSLDOI $8, IN1, IN1, H2
VSLDOI $8, ZERO, H2, H2L
VSLDOI $8, H2, ZERO, H2H
STXVD2X VH2L, (XIP+R8) // save H^2
MOVD $0x70, R8
STXVD2X VH2, (XIP+R9)
MOVD $0x80, R9
STXVD2X VH2H, (XIP+R10)
MOVD $0x90, R10
VPMSUMD IN, H2L, XL // H.lo·H^2.lo
VPMSUMD IN1, H2L, XL1 // H^2.lo·H^2.lo
VPMSUMD IN, H2, XM // H.hi·H^2.lo+H.lo·H^2.hi
VPMSUMD IN1, H2, XM1 // H^2.hi·H^2.lo+H^2.lo·H^2.hi
VPMSUMD IN, H2H, XH // H.hi·H^2.hi
VPMSUMD IN1, H2H, XH1 // H^2.hi·H^2.hi
VPMSUMD XL, XC2, T2 // 1st reduction phase
VPMSUMD XL1, XC2, HH // 1st reduction phase
VSLDOI $8, XM, ZERO, T0
VSLDOI $8, ZERO, XM, T1
VSLDOI $8, XM1, ZERO, HL
VSLDOI $8, ZERO, XM1, H
VXOR XL, T0, XL
VXOR XH, T1, XH
VXOR XL1, HL, XL1
VXOR XH1, H, XH1
VSLDOI $8, XL, XL, XL
VSLDOI $8, XL1, XL1, XL1
VXOR XL, T2, XL
VXOR XL1, HH, XL1
VSLDOI $8, XL, XL, T1 // 2nd reduction phase
VSLDOI $8, XL1, XL1, H // 2nd reduction phase
VPMSUMD XL, XC2, XL
VPMSUMD XL1, XC2, XL1
VXOR T1, XH, T1
VXOR H, XH1, H
VXOR XL, T1, XL
VXOR XL1, H, XL1
VSLDOI $8, XL, XL, H
VSLDOI $8, XL1, XL1, H2
VSLDOI $8, ZERO, H, HL
VSLDOI $8, H, ZERO, HH
VSLDOI $8, ZERO, H2, H2L
VSLDOI $8, H2, ZERO, H2H
STXVD2X VHL, (XIP+R8) // save H^3
MOVD $0xa0, R8
STXVD2X VH, (XIP+R9)
MOVD $0xb0, R9
STXVD2X VHH, (XIP+R10)
MOVD $0xc0, R10
STXVD2X VH2L, (XIP+R8) // save H^4
STXVD2X VH2, (XIP+R9)
STXVD2X VH2H, (XIP+R10)
RET
// func gcmHash(output []byte, productTable *[256]byte, inp []byte, len int)
TEXT ·gcmHash(SB), NOSPLIT, $0-64
MOVD output+0(FP), XIP
MOVD productTable+24(FP), HTBL
MOVD inp+32(FP), INP
MOVD len+56(FP), LEN
MOVD $0x10, R8
MOVD $0x20, R9
MOVD $0x30, R10
LXVD2X (XIP)(R0), VXL // load Xi
LXVD2X (HTBL)(R8), VHL // load pre-computed table
MOVD $0x40, R8
LVSL (R0)(R0), LEMASK
LXVD2X (HTBL)(R9), VH
MOVD $0x50, R9
VSPLTISB $0x07, T0
LXVD2X (HTBL)(R10), VHH
MOVD $0x60, R10
VXOR LEMASK, T0, LEMASK
LXVD2X (HTBL)(R0), VXC2
VPERM XL, XL, LEMASK, XL
VXOR ZERO, ZERO, ZERO
CMPU LEN, $64
BGE gcm_ghash_p8_4x
LXVD2X (INP)(R0), VIN
ADD $16, INP, INP
SUBCCC $16, LEN, LEN
VPERM IN, IN, LEMASK, IN
VXOR IN, XL, IN
BEQ short
LXVD2X (HTBL)(R8), VH2L // load H^2
MOVD $16, R8
LXVD2X (HTBL)(R9), VH2
ADD LEN, INP, R9 // end of input
LXVD2X (HTBL)(R10), VH2H
loop_2x:
LXVD2X (INP)(R0), VIN1
VPERM IN1, IN1, LEMASK, IN1
SUBC $32, LEN, LEN
VPMSUMD IN, H2L, XL // H^2.lo·Xi.lo
VPMSUMD IN1, HL, XL1 // H.lo·Xi+1.lo
SUBE R11, R11, R11 // borrow?-1:0
VPMSUMD IN, H2, XM // H^2.hi·Xi.lo+H^2.lo·Xi.hi
VPMSUMD IN1, H, XM1 // H.hi·Xi+1.lo+H.lo·Xi+1.hi
AND LEN, R11, R11
VPMSUMD IN, H2H, XH // H^2.hi·Xi.hi
VPMSUMD IN1, HH, XH1 // H.hi·Xi+1.hi
ADD R11, INP, INP
VXOR XL, XL1, XL
VXOR XM, XM1, XM
VPMSUMD XL, XC2, T2 // 1st reduction phase
VSLDOI $8, XM, ZERO, T0
VSLDOI $8, ZERO, XM, T1
VXOR XH, XH1, XH
VXOR XL, T0, XL
VXOR XH, T1, XH
VSLDOI $8, XL, XL, XL
VXOR XL, T2, XL
LXVD2X (INP)(R8), VIN
ADD $32, INP, INP
VSLDOI $8, XL, XL, T1 // 2nd reduction phase
VPMSUMD XL, XC2, XL
VPERM IN, IN, LEMASK, IN
VXOR T1, XH, T1
VXOR IN, T1, IN
VXOR IN, XL, IN
CMP R9, INP
BGT loop_2x // done yet?
CMPWU LEN, $0
BNE even
short:
VPMSUMD IN, HL, XL // H.lo·Xi.lo
VPMSUMD IN, H, XM // H.hi·Xi.lo+H.lo·Xi.hi
VPMSUMD IN, HH, XH // H.hi·Xi.hi
VPMSUMD XL, XC2, T2 // 1st reduction phase
VSLDOI $8, XM, ZERO, T0
VSLDOI $8, ZERO, XM, T1
VXOR XL, T0, XL
VXOR XH, T1, XH
VSLDOI $8, XL, XL, XL
VXOR XL, T2, XL
VSLDOI $8, XL, XL, T1 // 2nd reduction phase
VPMSUMD XL, XC2, XL
VXOR T1, XH, T1
even:
VXOR XL, T1, XL
VPERM XL, XL, LEMASK, XL
STXVD2X VXL, (XIP+R0)
OR R12, R12, R12 // write out Xi
RET
gcm_ghash_p8_4x:
LVSL (R8)(R0), T0 // 0x0001..0e0f
MOVD $0x70, R8
LXVD2X (HTBL)(R9), VH2
MOVD $0x80, R9
VSPLTISB $8, T1 // 0x0808..0808
MOVD $0x90, R10
LXVD2X (HTBL)(R8), VH3L // load H^3
MOVD $0xa0, R8
LXVD2X (HTBL)(R9), VH3
MOVD $0xb0, R9
LXVD2X (HTBL)(R10), VH3H
MOVD $0xc0, R10
LXVD2X (HTBL)(R8), VH4L // load H^4
MOVD $0x10, R8
LXVD2X (HTBL)(R9), VH4
MOVD $0x20, R9
LXVD2X (HTBL)(R10), VH4H
MOVD $0x30, R10
VSLDOI $8, ZERO, T1, T2 // 0x0000..0808
VADDUBM T0, T2, HIPERM // 0x0001..1617
VADDUBM T1, HIPERM, LOPERM // 0x0809..1e1f
SRD $4, LEN, LEN // this allows to use sign bit as carry
LXVD2X (INP)(R0), VIN0 // load input
LXVD2X (INP)(R8), VIN1
SUBCCC $8, LEN, LEN
LXVD2X (INP)(R9), VIN2
LXVD2X (INP)(R10), VIN3
ADD $0x40, INP, INP
VPERM IN0, IN0, LEMASK, IN0
VPERM IN1, IN1, LEMASK, IN1
VPERM IN2, IN2, LEMASK, IN2
VPERM IN3, IN3, LEMASK, IN3
VXOR IN0, XL, XH
VPMSUMD IN1, H3L, XL1
VPMSUMD IN1, H3, XM1
VPMSUMD IN1, H3H, XH1
VPERM H2, H, HIPERM, H21L
VPERM IN2, IN3, LOPERM, T0
VPERM H2, H, LOPERM, H21H
VPERM IN2, IN3, HIPERM, T1
VPMSUMD IN2, H2, XM2 // H^2.lo·Xi+2.hi+H^2.hi·Xi+2.lo
VPMSUMD T0, H21L, XL3 // H^2.lo·Xi+2.lo+H.lo·Xi+3.lo
VPMSUMD IN3, H, XM3 // H.hi·Xi+3.lo +H.lo·Xi+3.hi
VPMSUMD T1, H21H, XH3 // H^2.hi·Xi+2.hi+H.hi·Xi+3.hi
VXOR XM2, XM1, XM2
VXOR XL3, XL1, XL3
VXOR XM3, XM2, XM3
VXOR XH3, XH1, XH3
BLT tail_4x
loop_4x:
LXVD2X (INP)(R0), VIN0
LXVD2X (INP)(R8), VIN1
SUBCCC $4, LEN, LEN
LXVD2X (INP)(R9), VIN2
LXVD2X (INP)(R10), VIN3
ADD $0x40, INP, INP
VPERM IN1, IN1, LEMASK, IN1
VPERM IN2, IN2, LEMASK, IN2
VPERM IN3, IN3, LEMASK, IN3
VPERM IN0, IN0, LEMASK, IN0
VPMSUMD XH, H4L, XL // H^4.lo·Xi.lo
VPMSUMD XH, H4, XM // H^4.hi·Xi.lo+H^4.lo·Xi.hi
VPMSUMD XH, H4H, XH // H^4.hi·Xi.hi
VPMSUMD IN1, H3L, XL1
VPMSUMD IN1, H3, XM1
VPMSUMD IN1, H3H, XH1
VXOR XL, XL3, XL
VXOR XM, XM3, XM
VXOR XH, XH3, XH
VPERM IN2, IN3, LOPERM, T0
VPERM IN2, IN3, HIPERM, T1
VPMSUMD XL, XC2, T2 // 1st reduction phase
VPMSUMD T0, H21L, XL3 // H.lo·Xi+3.lo +H^2.lo·Xi+2.lo
VPMSUMD T1, H21H, XH3 // H.hi·Xi+3.hi +H^2.hi·Xi+2.hi
VSLDOI $8, XM, ZERO, T0
VSLDOI $8, ZERO, XM, T1
VXOR XL, T0, XL
VXOR XH, T1, XH
VSLDOI $8, XL, XL, XL
VXOR XL, T2, XL
VSLDOI $8, XL, XL, T1 // 2nd reduction phase
VPMSUMD IN2, H2, XM2 // H^2.hi·Xi+2.lo+H^2.lo·Xi+2.hi
VPMSUMD IN3, H, XM3 // H.hi·Xi+3.lo +H.lo·Xi+3.hi
VPMSUMD XL, XC2, XL
VXOR XL3, XL1, XL3
VXOR XH3, XH1, XH3
VXOR XH, IN0, XH
VXOR XM2, XM1, XM2
VXOR XH, T1, XH
VXOR XM3, XM2, XM3
VXOR XH, XL, XH
BGE loop_4x
tail_4x:
VPMSUMD XH, H4L, XL // H^4.lo·Xi.lo
VPMSUMD XH, H4, XM // H^4.hi·Xi.lo+H^4.lo·Xi.hi
VPMSUMD XH, H4H, XH // H^4.hi·Xi.hi
VXOR XL, XL3, XL
VXOR XM, XM3, XM
VPMSUMD XL, XC2, T2 // 1st reduction phase
VSLDOI $8, XM, ZERO, T0
VSLDOI $8, ZERO, XM, T1
VXOR XH, XH3, XH
VXOR XL, T0, XL
VXOR XH, T1, XH
VSLDOI $8, XL, XL, XL
VXOR XL, T2, XL
VSLDOI $8, XL, XL, T1 // 2nd reduction phase
VPMSUMD XL, XC2, XL
VXOR T1, XH, T1
VXOR XL, T1, XL
ADDCCC $4, LEN, LEN
BEQ done_4x
LXVD2X (INP)(R0), VIN0
CMPU LEN, $2
MOVD $-4, LEN
BLT one
LXVD2X (INP)(R8), VIN1
BEQ two
three:
LXVD2X (INP)(R9), VIN2
VPERM IN0, IN0, LEMASK, IN0
VPERM IN1, IN1, LEMASK, IN1
VPERM IN2, IN2, LEMASK, IN2
VXOR IN0, XL, XH
VOR H3L, H3L, H4L
VOR H3, H3, H4
VOR H3H, H3H, H4H
VPERM IN1, IN2, LOPERM, T0
VPERM IN1, IN2, HIPERM, T1
VPMSUMD IN1, H2, XM2 // H^2.lo·Xi+1.hi+H^2.hi·Xi+1.lo
VPMSUMD IN2, H, XM3 // H.hi·Xi+2.lo +H.lo·Xi+2.hi
VPMSUMD T0, H21L, XL3 // H^2.lo·Xi+1.lo+H.lo·Xi+2.lo
VPMSUMD T1, H21H, XH3 // H^2.hi·Xi+1.hi+H.hi·Xi+2.hi
VXOR XM3, XM2, XM3
JMP tail_4x
two:
VPERM IN0, IN0, LEMASK, IN0
VPERM IN1, IN1, LEMASK, IN1
VXOR IN, XL, XH
VPERM ZERO, IN1, LOPERM, T0
VPERM ZERO, IN1, HIPERM, T1
VSLDOI $8, ZERO, H2, H4L
VOR H2, H2, H4
VSLDOI $8, H2, ZERO, H4H
VPMSUMD T0, H21L, XL3 // H.lo·Xi+1.lo
VPMSUMD IN1, H, XM3 // H.hi·Xi+1.lo+H.lo·Xi+2.hi
VPMSUMD T1, H21H, XH3 // H.hi·Xi+1.hi
JMP tail_4x
one:
VPERM IN0, IN0, LEMASK, IN0
VSLDOI $8, ZERO, H, H4L
VOR H, H, H4
VSLDOI $8, H, ZERO, H4H
VXOR IN0, XL, XH
VXOR XL3, XL3, XL3
VXOR XM3, XM3, XM3
VXOR XH3, XH3, XH3
JMP tail_4x
done_4x:
VPERM XL, XL, LEMASK, XL
STXVD2X VXL, (XIP+R0) // write out Xi
RET
// func gcmMul(output []byte, productTable *[256]byte)
TEXT ·gcmMul(SB), NOSPLIT, $0-32
MOVD output+0(FP), XIP
MOVD productTable+24(FP), HTBL
MOVD $0x10, R8
MOVD $0x20, R9
MOVD $0x30, R10
LXVD2X (XIP)(R0), VIN // load Xi
LXVD2X (HTBL)(R8), VHL // Load pre-computed table
LVSL (R0)(R0), LEMASK
LXVD2X (HTBL)(R9), VH
VSPLTISB $0x07, T0
LXVD2X (HTBL)(R10), VHH
VXOR LEMASK, T0, LEMASK
LXVD2X (HTBL)(R0), VXC2
VPERM IN, IN, LEMASK, IN
VXOR ZERO, ZERO, ZERO
VPMSUMD IN, HL, XL // H.lo·Xi.lo
VPMSUMD IN, H, XM // H.hi·Xi.lo+H.lo·Xi.hi
VPMSUMD IN, HH, XH // H.hi·Xi.hi
VPMSUMD XL, XC2, T2 // 1st reduction phase
VSLDOI $8, XM, ZERO, T0
VSLDOI $8, ZERO, XM, T1
VXOR XL, T0, XL
VXOR XH, T1, XH
VSLDOI $8, XL, XL, XL
VXOR XL, T2, XL
VSLDOI $8, XL, XL, T1 // 2nd reduction phase
VPMSUMD XL, XC2, XL
VXOR T1, XH, T1
VXOR XL, T1, XL
VPERM XL, XL, LEMASK, XL
STXVD2X VXL, (XIP+R0) // write out Xi
RET
|