1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
|
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build !amd64 && !arm64
// +build !amd64,!arm64
package elliptic
// This file contains a constant-time, 32-bit implementation of P256.
import (
"math/big"
)
type p256Curve struct {
*CurveParams
}
var (
p256Params *CurveParams
// RInverse contains 1/R mod p - the inverse of the Montgomery constant
// (2**257).
p256RInverse *big.Int
)
func initP256() {
// See FIPS 186-3, section D.2.3
p256Params = &CurveParams{Name: "P-256"}
p256Params.P, _ = new(big.Int).SetString("115792089210356248762697446949407573530086143415290314195533631308867097853951", 10)
p256Params.N, _ = new(big.Int).SetString("115792089210356248762697446949407573529996955224135760342422259061068512044369", 10)
p256Params.B, _ = new(big.Int).SetString("5ac635d8aa3a93e7b3ebbd55769886bc651d06b0cc53b0f63bce3c3e27d2604b", 16)
p256Params.Gx, _ = new(big.Int).SetString("6b17d1f2e12c4247f8bce6e563a440f277037d812deb33a0f4a13945d898c296", 16)
p256Params.Gy, _ = new(big.Int).SetString("4fe342e2fe1a7f9b8ee7eb4a7c0f9e162bce33576b315ececbb6406837bf51f5", 16)
p256Params.BitSize = 256
p256RInverse, _ = new(big.Int).SetString("7fffffff00000001fffffffe8000000100000000ffffffff0000000180000000", 16)
// Arch-specific initialization, i.e. let a platform dynamically pick a P256 implementation
initP256Arch()
}
func (curve p256Curve) Params() *CurveParams {
return curve.CurveParams
}
// p256GetScalar endian-swaps the big-endian scalar value from in and writes it
// to out. If the scalar is equal or greater than the order of the group, it's
// reduced modulo that order.
func p256GetScalar(out *[32]byte, in []byte) {
n := new(big.Int).SetBytes(in)
var scalarBytes []byte
if n.Cmp(p256Params.N) >= 0 || len(in) > len(out) {
n.Mod(n, p256Params.N)
scalarBytes = n.Bytes()
} else {
scalarBytes = in
}
for i, v := range scalarBytes {
out[len(scalarBytes)-(1+i)] = v
}
}
func (p256Curve) ScalarBaseMult(scalar []byte) (x, y *big.Int) {
var scalarReversed [32]byte
p256GetScalar(&scalarReversed, scalar)
var x1, y1, z1 [p256Limbs]uint32
p256ScalarBaseMult(&x1, &y1, &z1, &scalarReversed)
return p256ToAffine(&x1, &y1, &z1)
}
func (p256Curve) ScalarMult(bigX, bigY *big.Int, scalar []byte) (x, y *big.Int) {
var scalarReversed [32]byte
p256GetScalar(&scalarReversed, scalar)
var px, py, x1, y1, z1 [p256Limbs]uint32
p256FromBig(&px, bigX)
p256FromBig(&py, bigY)
p256ScalarMult(&x1, &y1, &z1, &px, &py, &scalarReversed)
return p256ToAffine(&x1, &y1, &z1)
}
// Field elements are represented as nine, unsigned 32-bit words.
//
// The value of a field element is:
// x[0] + (x[1] * 2**29) + (x[2] * 2**57) + ... + (x[8] * 2**228)
//
// That is, each limb is alternately 29 or 28-bits wide in little-endian
// order.
//
// This means that a field element hits 2**257, rather than 2**256 as we would
// like. A 28, 29, ... pattern would cause us to hit 2**256, but that causes
// problems when multiplying as terms end up one bit short of a limb which
// would require much bit-shifting to correct.
//
// Finally, the values stored in a field element are in Montgomery form. So the
// value |y| is stored as (y*R) mod p, where p is the P-256 prime and R is
// 2**257.
const (
p256Limbs = 9
bottom29Bits = 0x1fffffff
)
var (
// p256One is the number 1 as a field element.
p256One = [p256Limbs]uint32{2, 0, 0, 0xffff800, 0x1fffffff, 0xfffffff, 0x1fbfffff, 0x1ffffff, 0}
p256Zero = [p256Limbs]uint32{0, 0, 0, 0, 0, 0, 0, 0, 0}
// p256P is the prime modulus as a field element.
p256P = [p256Limbs]uint32{0x1fffffff, 0xfffffff, 0x1fffffff, 0x3ff, 0, 0, 0x200000, 0xf000000, 0xfffffff}
// p2562P is the twice prime modulus as a field element.
p2562P = [p256Limbs]uint32{0x1ffffffe, 0xfffffff, 0x1fffffff, 0x7ff, 0, 0, 0x400000, 0xe000000, 0x1fffffff}
)
// p256Precomputed contains precomputed values to aid the calculation of scalar
// multiples of the base point, G. It's actually two, equal length, tables
// concatenated.
//
// The first table contains (x,y) field element pairs for 16 multiples of the
// base point, G.
//
// Index | Index (binary) | Value
// 0 | 0000 | 0G (all zeros, omitted)
// 1 | 0001 | G
// 2 | 0010 | 2**64G
// 3 | 0011 | 2**64G + G
// 4 | 0100 | 2**128G
// 5 | 0101 | 2**128G + G
// 6 | 0110 | 2**128G + 2**64G
// 7 | 0111 | 2**128G + 2**64G + G
// 8 | 1000 | 2**192G
// 9 | 1001 | 2**192G + G
// 10 | 1010 | 2**192G + 2**64G
// 11 | 1011 | 2**192G + 2**64G + G
// 12 | 1100 | 2**192G + 2**128G
// 13 | 1101 | 2**192G + 2**128G + G
// 14 | 1110 | 2**192G + 2**128G + 2**64G
// 15 | 1111 | 2**192G + 2**128G + 2**64G + G
//
// The second table follows the same style, but the terms are 2**32G,
// 2**96G, 2**160G, 2**224G.
//
// This is ~2KB of data.
var p256Precomputed = [p256Limbs * 2 * 15 * 2]uint32{
0x11522878, 0xe730d41, 0xdb60179, 0x4afe2ff, 0x12883add, 0xcaddd88, 0x119e7edc, 0xd4a6eab, 0x3120bee,
0x1d2aac15, 0xf25357c, 0x19e45cdd, 0x5c721d0, 0x1992c5a5, 0xa237487, 0x154ba21, 0x14b10bb, 0xae3fe3,
0xd41a576, 0x922fc51, 0x234994f, 0x60b60d3, 0x164586ae, 0xce95f18, 0x1fe49073, 0x3fa36cc, 0x5ebcd2c,
0xb402f2f, 0x15c70bf, 0x1561925c, 0x5a26704, 0xda91e90, 0xcdc1c7f, 0x1ea12446, 0xe1ade1e, 0xec91f22,
0x26f7778, 0x566847e, 0xa0bec9e, 0x234f453, 0x1a31f21a, 0xd85e75c, 0x56c7109, 0xa267a00, 0xb57c050,
0x98fb57, 0xaa837cc, 0x60c0792, 0xcfa5e19, 0x61bab9e, 0x589e39b, 0xa324c5, 0x7d6dee7, 0x2976e4b,
0x1fc4124a, 0xa8c244b, 0x1ce86762, 0xcd61c7e, 0x1831c8e0, 0x75774e1, 0x1d96a5a9, 0x843a649, 0xc3ab0fa,
0x6e2e7d5, 0x7673a2a, 0x178b65e8, 0x4003e9b, 0x1a1f11c2, 0x7816ea, 0xf643e11, 0x58c43df, 0xf423fc2,
0x19633ffa, 0x891f2b2, 0x123c231c, 0x46add8c, 0x54700dd, 0x59e2b17, 0x172db40f, 0x83e277d, 0xb0dd609,
0xfd1da12, 0x35c6e52, 0x19ede20c, 0xd19e0c0, 0x97d0f40, 0xb015b19, 0x449e3f5, 0xe10c9e, 0x33ab581,
0x56a67ab, 0x577734d, 0x1dddc062, 0xc57b10d, 0x149b39d, 0x26a9e7b, 0xc35df9f, 0x48764cd, 0x76dbcca,
0xca4b366, 0xe9303ab, 0x1a7480e7, 0x57e9e81, 0x1e13eb50, 0xf466cf3, 0x6f16b20, 0x4ba3173, 0xc168c33,
0x15cb5439, 0x6a38e11, 0x73658bd, 0xb29564f, 0x3f6dc5b, 0x53b97e, 0x1322c4c0, 0x65dd7ff, 0x3a1e4f6,
0x14e614aa, 0x9246317, 0x1bc83aca, 0xad97eed, 0xd38ce4a, 0xf82b006, 0x341f077, 0xa6add89, 0x4894acd,
0x9f162d5, 0xf8410ef, 0x1b266a56, 0xd7f223, 0x3e0cb92, 0xe39b672, 0x6a2901a, 0x69a8556, 0x7e7c0,
0x9b7d8d3, 0x309a80, 0x1ad05f7f, 0xc2fb5dd, 0xcbfd41d, 0x9ceb638, 0x1051825c, 0xda0cf5b, 0x812e881,
0x6f35669, 0x6a56f2c, 0x1df8d184, 0x345820, 0x1477d477, 0x1645db1, 0xbe80c51, 0xc22be3e, 0xe35e65a,
0x1aeb7aa0, 0xc375315, 0xf67bc99, 0x7fdd7b9, 0x191fc1be, 0x61235d, 0x2c184e9, 0x1c5a839, 0x47a1e26,
0xb7cb456, 0x93e225d, 0x14f3c6ed, 0xccc1ac9, 0x17fe37f3, 0x4988989, 0x1a90c502, 0x2f32042, 0xa17769b,
0xafd8c7c, 0x8191c6e, 0x1dcdb237, 0x16200c0, 0x107b32a1, 0x66c08db, 0x10d06a02, 0x3fc93, 0x5620023,
0x16722b27, 0x68b5c59, 0x270fcfc, 0xfad0ecc, 0xe5de1c2, 0xeab466b, 0x2fc513c, 0x407f75c, 0xbaab133,
0x9705fe9, 0xb88b8e7, 0x734c993, 0x1e1ff8f, 0x19156970, 0xabd0f00, 0x10469ea7, 0x3293ac0, 0xcdc98aa,
0x1d843fd, 0xe14bfe8, 0x15be825f, 0x8b5212, 0xeb3fb67, 0x81cbd29, 0xbc62f16, 0x2b6fcc7, 0xf5a4e29,
0x13560b66, 0xc0b6ac2, 0x51ae690, 0xd41e271, 0xf3e9bd4, 0x1d70aab, 0x1029f72, 0x73e1c35, 0xee70fbc,
0xad81baf, 0x9ecc49a, 0x86c741e, 0xfe6be30, 0x176752e7, 0x23d416, 0x1f83de85, 0x27de188, 0x66f70b8,
0x181cd51f, 0x96b6e4c, 0x188f2335, 0xa5df759, 0x17a77eb6, 0xfeb0e73, 0x154ae914, 0x2f3ec51, 0x3826b59,
0xb91f17d, 0x1c72949, 0x1362bf0a, 0xe23fddf, 0xa5614b0, 0xf7d8f, 0x79061, 0x823d9d2, 0x8213f39,
0x1128ae0b, 0xd095d05, 0xb85c0c2, 0x1ecb2ef, 0x24ddc84, 0xe35e901, 0x18411a4a, 0xf5ddc3d, 0x3786689,
0x52260e8, 0x5ae3564, 0x542b10d, 0x8d93a45, 0x19952aa4, 0x996cc41, 0x1051a729, 0x4be3499, 0x52b23aa,
0x109f307e, 0x6f5b6bb, 0x1f84e1e7, 0x77a0cfa, 0x10c4df3f, 0x25a02ea, 0xb048035, 0xe31de66, 0xc6ecaa3,
0x28ea335, 0x2886024, 0x1372f020, 0xf55d35, 0x15e4684c, 0xf2a9e17, 0x1a4a7529, 0xcb7beb1, 0xb2a78a1,
0x1ab21f1f, 0x6361ccf, 0x6c9179d, 0xb135627, 0x1267b974, 0x4408bad, 0x1cbff658, 0xe3d6511, 0xc7d76f,
0x1cc7a69, 0xe7ee31b, 0x54fab4f, 0x2b914f, 0x1ad27a30, 0xcd3579e, 0xc50124c, 0x50daa90, 0xb13f72,
0xb06aa75, 0x70f5cc6, 0x1649e5aa, 0x84a5312, 0x329043c, 0x41c4011, 0x13d32411, 0xb04a838, 0xd760d2d,
0x1713b532, 0xbaa0c03, 0x84022ab, 0x6bcf5c1, 0x2f45379, 0x18ae070, 0x18c9e11e, 0x20bca9a, 0x66f496b,
0x3eef294, 0x67500d2, 0xd7f613c, 0x2dbbeb, 0xb741038, 0xe04133f, 0x1582968d, 0xbe985f7, 0x1acbc1a,
0x1a6a939f, 0x33e50f6, 0xd665ed4, 0xb4b7bd6, 0x1e5a3799, 0x6b33847, 0x17fa56ff, 0x65ef930, 0x21dc4a,
0x2b37659, 0x450fe17, 0xb357b65, 0xdf5efac, 0x15397bef, 0x9d35a7f, 0x112ac15f, 0x624e62e, 0xa90ae2f,
0x107eecd2, 0x1f69bbe, 0x77d6bce, 0x5741394, 0x13c684fc, 0x950c910, 0x725522b, 0xdc78583, 0x40eeabb,
0x1fde328a, 0xbd61d96, 0xd28c387, 0x9e77d89, 0x12550c40, 0x759cb7d, 0x367ef34, 0xae2a960, 0x91b8bdc,
0x93462a9, 0xf469ef, 0xb2e9aef, 0xd2ca771, 0x54e1f42, 0x7aaa49, 0x6316abb, 0x2413c8e, 0x5425bf9,
0x1bed3e3a, 0xf272274, 0x1f5e7326, 0x6416517, 0xea27072, 0x9cedea7, 0x6e7633, 0x7c91952, 0xd806dce,
0x8e2a7e1, 0xe421e1a, 0x418c9e1, 0x1dbc890, 0x1b395c36, 0xa1dc175, 0x1dc4ef73, 0x8956f34, 0xe4b5cf2,
0x1b0d3a18, 0x3194a36, 0x6c2641f, 0xe44124c, 0xa2f4eaa, 0xa8c25ba, 0xf927ed7, 0x627b614, 0x7371cca,
0xba16694, 0x417bc03, 0x7c0a7e3, 0x9c35c19, 0x1168a205, 0x8b6b00d, 0x10e3edc9, 0x9c19bf2, 0x5882229,
0x1b2b4162, 0xa5cef1a, 0x1543622b, 0x9bd433e, 0x364e04d, 0x7480792, 0x5c9b5b3, 0xe85ff25, 0x408ef57,
0x1814cfa4, 0x121b41b, 0xd248a0f, 0x3b05222, 0x39bb16a, 0xc75966d, 0xa038113, 0xa4a1769, 0x11fbc6c,
0x917e50e, 0xeec3da8, 0x169d6eac, 0x10c1699, 0xa416153, 0xf724912, 0x15cd60b7, 0x4acbad9, 0x5efc5fa,
0xf150ed7, 0x122b51, 0x1104b40a, 0xcb7f442, 0xfbb28ff, 0x6ac53ca, 0x196142cc, 0x7bf0fa9, 0x957651,
0x4e0f215, 0xed439f8, 0x3f46bd5, 0x5ace82f, 0x110916b6, 0x6db078, 0xffd7d57, 0xf2ecaac, 0xca86dec,
0x15d6b2da, 0x965ecc9, 0x1c92b4c2, 0x1f3811, 0x1cb080f5, 0x2d8b804, 0x19d1c12d, 0xf20bd46, 0x1951fa7,
0xa3656c3, 0x523a425, 0xfcd0692, 0xd44ddc8, 0x131f0f5b, 0xaf80e4a, 0xcd9fc74, 0x99bb618, 0x2db944c,
0xa673090, 0x1c210e1, 0x178c8d23, 0x1474383, 0x10b8743d, 0x985a55b, 0x2e74779, 0x576138, 0x9587927,
0x133130fa, 0xbe05516, 0x9f4d619, 0xbb62570, 0x99ec591, 0xd9468fe, 0x1d07782d, 0xfc72e0b, 0x701b298,
0x1863863b, 0x85954b8, 0x121a0c36, 0x9e7fedf, 0xf64b429, 0x9b9d71e, 0x14e2f5d8, 0xf858d3a, 0x942eea8,
0xda5b765, 0x6edafff, 0xa9d18cc, 0xc65e4ba, 0x1c747e86, 0xe4ea915, 0x1981d7a1, 0x8395659, 0x52ed4e2,
0x87d43b7, 0x37ab11b, 0x19d292ce, 0xf8d4692, 0x18c3053f, 0x8863e13, 0x4c146c0, 0x6bdf55a, 0x4e4457d,
0x16152289, 0xac78ec2, 0x1a59c5a2, 0x2028b97, 0x71c2d01, 0x295851f, 0x404747b, 0x878558d, 0x7d29aa4,
0x13d8341f, 0x8daefd7, 0x139c972d, 0x6b7ea75, 0xd4a9dde, 0xff163d8, 0x81d55d7, 0xa5bef68, 0xb7b30d8,
0xbe73d6f, 0xaa88141, 0xd976c81, 0x7e7a9cc, 0x18beb771, 0xd773cbd, 0x13f51951, 0x9d0c177, 0x1c49a78,
}
// Field element operations:
// nonZeroToAllOnes returns:
// 0xffffffff for 0 < x <= 2**31
// 0 for x == 0 or x > 2**31.
func nonZeroToAllOnes(x uint32) uint32 {
return ((x - 1) >> 31) - 1
}
// p256ReduceCarry adds a multiple of p in order to cancel |carry|,
// which is a term at 2**257.
//
// On entry: carry < 2**3, inout[0,2,...] < 2**29, inout[1,3,...] < 2**28.
// On exit: inout[0,2,..] < 2**30, inout[1,3,...] < 2**29.
func p256ReduceCarry(inout *[p256Limbs]uint32, carry uint32) {
carry_mask := nonZeroToAllOnes(carry)
inout[0] += carry << 1
inout[3] += 0x10000000 & carry_mask
// carry < 2**3 thus (carry << 11) < 2**14 and we added 2**28 in the
// previous line therefore this doesn't underflow.
inout[3] -= carry << 11
inout[4] += (0x20000000 - 1) & carry_mask
inout[5] += (0x10000000 - 1) & carry_mask
inout[6] += (0x20000000 - 1) & carry_mask
inout[6] -= carry << 22
// This may underflow if carry is non-zero but, if so, we'll fix it in the
// next line.
inout[7] -= 1 & carry_mask
inout[7] += carry << 25
}
// p256Sum sets out = in+in2.
//
// On entry, in[i]+in2[i] must not overflow a 32-bit word.
// On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29
func p256Sum(out, in, in2 *[p256Limbs]uint32) {
carry := uint32(0)
for i := 0; ; i++ {
out[i] = in[i] + in2[i]
out[i] += carry
carry = out[i] >> 29
out[i] &= bottom29Bits
i++
if i == p256Limbs {
break
}
out[i] = in[i] + in2[i]
out[i] += carry
carry = out[i] >> 28
out[i] &= bottom28Bits
}
p256ReduceCarry(out, carry)
}
const (
two30m2 = 1<<30 - 1<<2
two30p13m2 = 1<<30 + 1<<13 - 1<<2
two31m2 = 1<<31 - 1<<2
two31p24m2 = 1<<31 + 1<<24 - 1<<2
two30m27m2 = 1<<30 - 1<<27 - 1<<2
)
// p256Zero31 is 0 mod p.
var p256Zero31 = [p256Limbs]uint32{two31m3, two30m2, two31m2, two30p13m2, two31m2, two30m2, two31p24m2, two30m27m2, two31m2}
// p256Diff sets out = in-in2.
//
// On entry: in[0,2,...] < 2**30, in[1,3,...] < 2**29 and
// in2[0,2,...] < 2**30, in2[1,3,...] < 2**29.
// On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29.
func p256Diff(out, in, in2 *[p256Limbs]uint32) {
var carry uint32
for i := 0; ; i++ {
out[i] = in[i] - in2[i]
out[i] += p256Zero31[i]
out[i] += carry
carry = out[i] >> 29
out[i] &= bottom29Bits
i++
if i == p256Limbs {
break
}
out[i] = in[i] - in2[i]
out[i] += p256Zero31[i]
out[i] += carry
carry = out[i] >> 28
out[i] &= bottom28Bits
}
p256ReduceCarry(out, carry)
}
// p256ReduceDegree sets out = tmp/R mod p where tmp contains 64-bit words with
// the same 29,28,... bit positions as a field element.
//
// The values in field elements are in Montgomery form: x*R mod p where R =
// 2**257. Since we just multiplied two Montgomery values together, the result
// is x*y*R*R mod p. We wish to divide by R in order for the result also to be
// in Montgomery form.
//
// On entry: tmp[i] < 2**64
// On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29
func p256ReduceDegree(out *[p256Limbs]uint32, tmp [17]uint64) {
// The following table may be helpful when reading this code:
//
// Limb number: 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10...
// Width (bits): 29| 28| 29| 28| 29| 28| 29| 28| 29| 28| 29
// Start bit: 0 | 29| 57| 86|114|143|171|200|228|257|285
// (odd phase): 0 | 28| 57| 85|114|142|171|199|228|256|285
var tmp2 [18]uint32
var carry, x, xMask uint32
// tmp contains 64-bit words with the same 29,28,29-bit positions as a
// field element. So the top of an element of tmp might overlap with
// another element two positions down. The following loop eliminates
// this overlap.
tmp2[0] = uint32(tmp[0]) & bottom29Bits
tmp2[1] = uint32(tmp[0]) >> 29
tmp2[1] |= (uint32(tmp[0]>>32) << 3) & bottom28Bits
tmp2[1] += uint32(tmp[1]) & bottom28Bits
carry = tmp2[1] >> 28
tmp2[1] &= bottom28Bits
for i := 2; i < 17; i++ {
tmp2[i] = (uint32(tmp[i-2] >> 32)) >> 25
tmp2[i] += (uint32(tmp[i-1])) >> 28
tmp2[i] += (uint32(tmp[i-1]>>32) << 4) & bottom29Bits
tmp2[i] += uint32(tmp[i]) & bottom29Bits
tmp2[i] += carry
carry = tmp2[i] >> 29
tmp2[i] &= bottom29Bits
i++
if i == 17 {
break
}
tmp2[i] = uint32(tmp[i-2]>>32) >> 25
tmp2[i] += uint32(tmp[i-1]) >> 29
tmp2[i] += ((uint32(tmp[i-1] >> 32)) << 3) & bottom28Bits
tmp2[i] += uint32(tmp[i]) & bottom28Bits
tmp2[i] += carry
carry = tmp2[i] >> 28
tmp2[i] &= bottom28Bits
}
tmp2[17] = uint32(tmp[15]>>32) >> 25
tmp2[17] += uint32(tmp[16]) >> 29
tmp2[17] += uint32(tmp[16]>>32) << 3
tmp2[17] += carry
// Montgomery elimination of terms:
//
// Since R is 2**257, we can divide by R with a bitwise shift if we can
// ensure that the right-most 257 bits are all zero. We can make that true
// by adding multiplies of p without affecting the value.
//
// So we eliminate limbs from right to left. Since the bottom 29 bits of p
// are all ones, then by adding tmp2[0]*p to tmp2 we'll make tmp2[0] == 0.
// We can do that for 8 further limbs and then right shift to eliminate the
// extra factor of R.
for i := 0; ; i += 2 {
tmp2[i+1] += tmp2[i] >> 29
x = tmp2[i] & bottom29Bits
xMask = nonZeroToAllOnes(x)
tmp2[i] = 0
// The bounds calculations for this loop are tricky. Each iteration of
// the loop eliminates two words by adding values to words to their
// right.
//
// The following table contains the amounts added to each word (as an
// offset from the value of i at the top of the loop). The amounts are
// accounted for from the first and second half of the loop separately
// and are written as, for example, 28 to mean a value <2**28.
//
// Word: 3 4 5 6 7 8 9 10
// Added in top half: 28 11 29 21 29 28
// 28 29
// 29
// Added in bottom half: 29 10 28 21 28 28
// 29
//
// The value that is currently offset 7 will be offset 5 for the next
// iteration and then offset 3 for the iteration after that. Therefore
// the total value added will be the values added at 7, 5 and 3.
//
// The following table accumulates these values. The sums at the bottom
// are written as, for example, 29+28, to mean a value < 2**29+2**28.
//
// Word: 3 4 5 6 7 8 9 10 11 12 13
// 28 11 10 29 21 29 28 28 28 28 28
// 29 28 11 28 29 28 29 28 29 28
// 29 28 21 21 29 21 29 21
// 10 29 28 21 28 21 28
// 28 29 28 29 28 29 28
// 11 10 29 10 29 10
// 29 28 11 28 11
// 29 29
// --------------------------------------------
// 30+ 31+ 30+ 31+ 30+
// 28+ 29+ 28+ 29+ 21+
// 21+ 28+ 21+ 28+ 10
// 10 21+ 10 21+
// 11 11
//
// So the greatest amount is added to tmp2[10] and tmp2[12]. If
// tmp2[10/12] has an initial value of <2**29, then the maximum value
// will be < 2**31 + 2**30 + 2**28 + 2**21 + 2**11, which is < 2**32,
// as required.
tmp2[i+3] += (x << 10) & bottom28Bits
tmp2[i+4] += (x >> 18)
tmp2[i+6] += (x << 21) & bottom29Bits
tmp2[i+7] += x >> 8
// At position 200, which is the starting bit position for word 7, we
// have a factor of 0xf000000 = 2**28 - 2**24.
tmp2[i+7] += 0x10000000 & xMask
tmp2[i+8] += (x - 1) & xMask
tmp2[i+7] -= (x << 24) & bottom28Bits
tmp2[i+8] -= x >> 4
tmp2[i+8] += 0x20000000 & xMask
tmp2[i+8] -= x
tmp2[i+8] += (x << 28) & bottom29Bits
tmp2[i+9] += ((x >> 1) - 1) & xMask
if i+1 == p256Limbs {
break
}
tmp2[i+2] += tmp2[i+1] >> 28
x = tmp2[i+1] & bottom28Bits
xMask = nonZeroToAllOnes(x)
tmp2[i+1] = 0
tmp2[i+4] += (x << 11) & bottom29Bits
tmp2[i+5] += (x >> 18)
tmp2[i+7] += (x << 21) & bottom28Bits
tmp2[i+8] += x >> 7
// At position 199, which is the starting bit of the 8th word when
// dealing with a context starting on an odd word, we have a factor of
// 0x1e000000 = 2**29 - 2**25. Since we have not updated i, the 8th
// word from i+1 is i+8.
tmp2[i+8] += 0x20000000 & xMask
tmp2[i+9] += (x - 1) & xMask
tmp2[i+8] -= (x << 25) & bottom29Bits
tmp2[i+9] -= x >> 4
tmp2[i+9] += 0x10000000 & xMask
tmp2[i+9] -= x
tmp2[i+10] += (x - 1) & xMask
}
// We merge the right shift with a carry chain. The words above 2**257 have
// widths of 28,29,... which we need to correct when copying them down.
carry = 0
for i := 0; i < 8; i++ {
// The maximum value of tmp2[i + 9] occurs on the first iteration and
// is < 2**30+2**29+2**28. Adding 2**29 (from tmp2[i + 10]) is
// therefore safe.
out[i] = tmp2[i+9]
out[i] += carry
out[i] += (tmp2[i+10] << 28) & bottom29Bits
carry = out[i] >> 29
out[i] &= bottom29Bits
i++
out[i] = tmp2[i+9] >> 1
out[i] += carry
carry = out[i] >> 28
out[i] &= bottom28Bits
}
out[8] = tmp2[17]
out[8] += carry
carry = out[8] >> 29
out[8] &= bottom29Bits
p256ReduceCarry(out, carry)
}
// p256Square sets out=in*in.
//
// On entry: in[0,2,...] < 2**30, in[1,3,...] < 2**29.
// On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29.
func p256Square(out, in *[p256Limbs]uint32) {
var tmp [17]uint64
tmp[0] = uint64(in[0]) * uint64(in[0])
tmp[1] = uint64(in[0]) * (uint64(in[1]) << 1)
tmp[2] = uint64(in[0])*(uint64(in[2])<<1) +
uint64(in[1])*(uint64(in[1])<<1)
tmp[3] = uint64(in[0])*(uint64(in[3])<<1) +
uint64(in[1])*(uint64(in[2])<<1)
tmp[4] = uint64(in[0])*(uint64(in[4])<<1) +
uint64(in[1])*(uint64(in[3])<<2) +
uint64(in[2])*uint64(in[2])
tmp[5] = uint64(in[0])*(uint64(in[5])<<1) +
uint64(in[1])*(uint64(in[4])<<1) +
uint64(in[2])*(uint64(in[3])<<1)
tmp[6] = uint64(in[0])*(uint64(in[6])<<1) +
uint64(in[1])*(uint64(in[5])<<2) +
uint64(in[2])*(uint64(in[4])<<1) +
uint64(in[3])*(uint64(in[3])<<1)
tmp[7] = uint64(in[0])*(uint64(in[7])<<1) +
uint64(in[1])*(uint64(in[6])<<1) +
uint64(in[2])*(uint64(in[5])<<1) +
uint64(in[3])*(uint64(in[4])<<1)
// tmp[8] has the greatest value of 2**61 + 2**60 + 2**61 + 2**60 + 2**60,
// which is < 2**64 as required.
tmp[8] = uint64(in[0])*(uint64(in[8])<<1) +
uint64(in[1])*(uint64(in[7])<<2) +
uint64(in[2])*(uint64(in[6])<<1) +
uint64(in[3])*(uint64(in[5])<<2) +
uint64(in[4])*uint64(in[4])
tmp[9] = uint64(in[1])*(uint64(in[8])<<1) +
uint64(in[2])*(uint64(in[7])<<1) +
uint64(in[3])*(uint64(in[6])<<1) +
uint64(in[4])*(uint64(in[5])<<1)
tmp[10] = uint64(in[2])*(uint64(in[8])<<1) +
uint64(in[3])*(uint64(in[7])<<2) +
uint64(in[4])*(uint64(in[6])<<1) +
uint64(in[5])*(uint64(in[5])<<1)
tmp[11] = uint64(in[3])*(uint64(in[8])<<1) +
uint64(in[4])*(uint64(in[7])<<1) +
uint64(in[5])*(uint64(in[6])<<1)
tmp[12] = uint64(in[4])*(uint64(in[8])<<1) +
uint64(in[5])*(uint64(in[7])<<2) +
uint64(in[6])*uint64(in[6])
tmp[13] = uint64(in[5])*(uint64(in[8])<<1) +
uint64(in[6])*(uint64(in[7])<<1)
tmp[14] = uint64(in[6])*(uint64(in[8])<<1) +
uint64(in[7])*(uint64(in[7])<<1)
tmp[15] = uint64(in[7]) * (uint64(in[8]) << 1)
tmp[16] = uint64(in[8]) * uint64(in[8])
p256ReduceDegree(out, tmp)
}
// p256Mul sets out=in*in2.
//
// On entry: in[0,2,...] < 2**30, in[1,3,...] < 2**29 and
// in2[0,2,...] < 2**30, in2[1,3,...] < 2**29.
// On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29.
func p256Mul(out, in, in2 *[p256Limbs]uint32) {
var tmp [17]uint64
tmp[0] = uint64(in[0]) * uint64(in2[0])
tmp[1] = uint64(in[0])*(uint64(in2[1])<<0) +
uint64(in[1])*(uint64(in2[0])<<0)
tmp[2] = uint64(in[0])*(uint64(in2[2])<<0) +
uint64(in[1])*(uint64(in2[1])<<1) +
uint64(in[2])*(uint64(in2[0])<<0)
tmp[3] = uint64(in[0])*(uint64(in2[3])<<0) +
uint64(in[1])*(uint64(in2[2])<<0) +
uint64(in[2])*(uint64(in2[1])<<0) +
uint64(in[3])*(uint64(in2[0])<<0)
tmp[4] = uint64(in[0])*(uint64(in2[4])<<0) +
uint64(in[1])*(uint64(in2[3])<<1) +
uint64(in[2])*(uint64(in2[2])<<0) +
uint64(in[3])*(uint64(in2[1])<<1) +
uint64(in[4])*(uint64(in2[0])<<0)
tmp[5] = uint64(in[0])*(uint64(in2[5])<<0) +
uint64(in[1])*(uint64(in2[4])<<0) +
uint64(in[2])*(uint64(in2[3])<<0) +
uint64(in[3])*(uint64(in2[2])<<0) +
uint64(in[4])*(uint64(in2[1])<<0) +
uint64(in[5])*(uint64(in2[0])<<0)
tmp[6] = uint64(in[0])*(uint64(in2[6])<<0) +
uint64(in[1])*(uint64(in2[5])<<1) +
uint64(in[2])*(uint64(in2[4])<<0) +
uint64(in[3])*(uint64(in2[3])<<1) +
uint64(in[4])*(uint64(in2[2])<<0) +
uint64(in[5])*(uint64(in2[1])<<1) +
uint64(in[6])*(uint64(in2[0])<<0)
tmp[7] = uint64(in[0])*(uint64(in2[7])<<0) +
uint64(in[1])*(uint64(in2[6])<<0) +
uint64(in[2])*(uint64(in2[5])<<0) +
uint64(in[3])*(uint64(in2[4])<<0) +
uint64(in[4])*(uint64(in2[3])<<0) +
uint64(in[5])*(uint64(in2[2])<<0) +
uint64(in[6])*(uint64(in2[1])<<0) +
uint64(in[7])*(uint64(in2[0])<<0)
// tmp[8] has the greatest value but doesn't overflow. See logic in
// p256Square.
tmp[8] = uint64(in[0])*(uint64(in2[8])<<0) +
uint64(in[1])*(uint64(in2[7])<<1) +
uint64(in[2])*(uint64(in2[6])<<0) +
uint64(in[3])*(uint64(in2[5])<<1) +
uint64(in[4])*(uint64(in2[4])<<0) +
uint64(in[5])*(uint64(in2[3])<<1) +
uint64(in[6])*(uint64(in2[2])<<0) +
uint64(in[7])*(uint64(in2[1])<<1) +
uint64(in[8])*(uint64(in2[0])<<0)
tmp[9] = uint64(in[1])*(uint64(in2[8])<<0) +
uint64(in[2])*(uint64(in2[7])<<0) +
uint64(in[3])*(uint64(in2[6])<<0) +
uint64(in[4])*(uint64(in2[5])<<0) +
uint64(in[5])*(uint64(in2[4])<<0) +
uint64(in[6])*(uint64(in2[3])<<0) +
uint64(in[7])*(uint64(in2[2])<<0) +
uint64(in[8])*(uint64(in2[1])<<0)
tmp[10] = uint64(in[2])*(uint64(in2[8])<<0) +
uint64(in[3])*(uint64(in2[7])<<1) +
uint64(in[4])*(uint64(in2[6])<<0) +
uint64(in[5])*(uint64(in2[5])<<1) +
uint64(in[6])*(uint64(in2[4])<<0) +
uint64(in[7])*(uint64(in2[3])<<1) +
uint64(in[8])*(uint64(in2[2])<<0)
tmp[11] = uint64(in[3])*(uint64(in2[8])<<0) +
uint64(in[4])*(uint64(in2[7])<<0) +
uint64(in[5])*(uint64(in2[6])<<0) +
uint64(in[6])*(uint64(in2[5])<<0) +
uint64(in[7])*(uint64(in2[4])<<0) +
uint64(in[8])*(uint64(in2[3])<<0)
tmp[12] = uint64(in[4])*(uint64(in2[8])<<0) +
uint64(in[5])*(uint64(in2[7])<<1) +
uint64(in[6])*(uint64(in2[6])<<0) +
uint64(in[7])*(uint64(in2[5])<<1) +
uint64(in[8])*(uint64(in2[4])<<0)
tmp[13] = uint64(in[5])*(uint64(in2[8])<<0) +
uint64(in[6])*(uint64(in2[7])<<0) +
uint64(in[7])*(uint64(in2[6])<<0) +
uint64(in[8])*(uint64(in2[5])<<0)
tmp[14] = uint64(in[6])*(uint64(in2[8])<<0) +
uint64(in[7])*(uint64(in2[7])<<1) +
uint64(in[8])*(uint64(in2[6])<<0)
tmp[15] = uint64(in[7])*(uint64(in2[8])<<0) +
uint64(in[8])*(uint64(in2[7])<<0)
tmp[16] = uint64(in[8]) * (uint64(in2[8]) << 0)
p256ReduceDegree(out, tmp)
}
func p256Assign(out, in *[p256Limbs]uint32) {
*out = *in
}
// p256Invert calculates |out| = |in|^{-1}
//
// Based on Fermat's Little Theorem:
// a^p = a (mod p)
// a^{p-1} = 1 (mod p)
// a^{p-2} = a^{-1} (mod p)
func p256Invert(out, in *[p256Limbs]uint32) {
var ftmp, ftmp2 [p256Limbs]uint32
// each e_I will hold |in|^{2^I - 1}
var e2, e4, e8, e16, e32, e64 [p256Limbs]uint32
p256Square(&ftmp, in) // 2^1
p256Mul(&ftmp, in, &ftmp) // 2^2 - 2^0
p256Assign(&e2, &ftmp)
p256Square(&ftmp, &ftmp) // 2^3 - 2^1
p256Square(&ftmp, &ftmp) // 2^4 - 2^2
p256Mul(&ftmp, &ftmp, &e2) // 2^4 - 2^0
p256Assign(&e4, &ftmp)
p256Square(&ftmp, &ftmp) // 2^5 - 2^1
p256Square(&ftmp, &ftmp) // 2^6 - 2^2
p256Square(&ftmp, &ftmp) // 2^7 - 2^3
p256Square(&ftmp, &ftmp) // 2^8 - 2^4
p256Mul(&ftmp, &ftmp, &e4) // 2^8 - 2^0
p256Assign(&e8, &ftmp)
for i := 0; i < 8; i++ {
p256Square(&ftmp, &ftmp)
} // 2^16 - 2^8
p256Mul(&ftmp, &ftmp, &e8) // 2^16 - 2^0
p256Assign(&e16, &ftmp)
for i := 0; i < 16; i++ {
p256Square(&ftmp, &ftmp)
} // 2^32 - 2^16
p256Mul(&ftmp, &ftmp, &e16) // 2^32 - 2^0
p256Assign(&e32, &ftmp)
for i := 0; i < 32; i++ {
p256Square(&ftmp, &ftmp)
} // 2^64 - 2^32
p256Assign(&e64, &ftmp)
p256Mul(&ftmp, &ftmp, in) // 2^64 - 2^32 + 2^0
for i := 0; i < 192; i++ {
p256Square(&ftmp, &ftmp)
} // 2^256 - 2^224 + 2^192
p256Mul(&ftmp2, &e64, &e32) // 2^64 - 2^0
for i := 0; i < 16; i++ {
p256Square(&ftmp2, &ftmp2)
} // 2^80 - 2^16
p256Mul(&ftmp2, &ftmp2, &e16) // 2^80 - 2^0
for i := 0; i < 8; i++ {
p256Square(&ftmp2, &ftmp2)
} // 2^88 - 2^8
p256Mul(&ftmp2, &ftmp2, &e8) // 2^88 - 2^0
for i := 0; i < 4; i++ {
p256Square(&ftmp2, &ftmp2)
} // 2^92 - 2^4
p256Mul(&ftmp2, &ftmp2, &e4) // 2^92 - 2^0
p256Square(&ftmp2, &ftmp2) // 2^93 - 2^1
p256Square(&ftmp2, &ftmp2) // 2^94 - 2^2
p256Mul(&ftmp2, &ftmp2, &e2) // 2^94 - 2^0
p256Square(&ftmp2, &ftmp2) // 2^95 - 2^1
p256Square(&ftmp2, &ftmp2) // 2^96 - 2^2
p256Mul(&ftmp2, &ftmp2, in) // 2^96 - 3
p256Mul(out, &ftmp2, &ftmp) // 2^256 - 2^224 + 2^192 + 2^96 - 3
}
// p256Scalar3 sets out=3*out.
//
// On entry: out[0,2,...] < 2**30, out[1,3,...] < 2**29.
// On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29.
func p256Scalar3(out *[p256Limbs]uint32) {
var carry uint32
for i := 0; ; i++ {
out[i] *= 3
out[i] += carry
carry = out[i] >> 29
out[i] &= bottom29Bits
i++
if i == p256Limbs {
break
}
out[i] *= 3
out[i] += carry
carry = out[i] >> 28
out[i] &= bottom28Bits
}
p256ReduceCarry(out, carry)
}
// p256Scalar4 sets out=4*out.
//
// On entry: out[0,2,...] < 2**30, out[1,3,...] < 2**29.
// On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29.
func p256Scalar4(out *[p256Limbs]uint32) {
var carry, nextCarry uint32
for i := 0; ; i++ {
nextCarry = out[i] >> 27
out[i] <<= 2
out[i] &= bottom29Bits
out[i] += carry
carry = nextCarry + (out[i] >> 29)
out[i] &= bottom29Bits
i++
if i == p256Limbs {
break
}
nextCarry = out[i] >> 26
out[i] <<= 2
out[i] &= bottom28Bits
out[i] += carry
carry = nextCarry + (out[i] >> 28)
out[i] &= bottom28Bits
}
p256ReduceCarry(out, carry)
}
// p256Scalar8 sets out=8*out.
//
// On entry: out[0,2,...] < 2**30, out[1,3,...] < 2**29.
// On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29.
func p256Scalar8(out *[p256Limbs]uint32) {
var carry, nextCarry uint32
for i := 0; ; i++ {
nextCarry = out[i] >> 26
out[i] <<= 3
out[i] &= bottom29Bits
out[i] += carry
carry = nextCarry + (out[i] >> 29)
out[i] &= bottom29Bits
i++
if i == p256Limbs {
break
}
nextCarry = out[i] >> 25
out[i] <<= 3
out[i] &= bottom28Bits
out[i] += carry
carry = nextCarry + (out[i] >> 28)
out[i] &= bottom28Bits
}
p256ReduceCarry(out, carry)
}
// Group operations:
//
// Elements of the elliptic curve group are represented in Jacobian
// coordinates: (x, y, z). An affine point (x', y') is x'=x/z**2, y'=y/z**3 in
// Jacobian form.
// p256PointDouble sets {xOut,yOut,zOut} = 2*{x,y,z}.
//
// See https://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-dbl-2009-l
func p256PointDouble(xOut, yOut, zOut, x, y, z *[p256Limbs]uint32) {
var delta, gamma, alpha, beta, tmp, tmp2 [p256Limbs]uint32
p256Square(&delta, z)
p256Square(&gamma, y)
p256Mul(&beta, x, &gamma)
p256Sum(&tmp, x, &delta)
p256Diff(&tmp2, x, &delta)
p256Mul(&alpha, &tmp, &tmp2)
p256Scalar3(&alpha)
p256Sum(&tmp, y, z)
p256Square(&tmp, &tmp)
p256Diff(&tmp, &tmp, &gamma)
p256Diff(zOut, &tmp, &delta)
p256Scalar4(&beta)
p256Square(xOut, &alpha)
p256Diff(xOut, xOut, &beta)
p256Diff(xOut, xOut, &beta)
p256Diff(&tmp, &beta, xOut)
p256Mul(&tmp, &alpha, &tmp)
p256Square(&tmp2, &gamma)
p256Scalar8(&tmp2)
p256Diff(yOut, &tmp, &tmp2)
}
// p256PointAddMixed sets {xOut,yOut,zOut} = {x1,y1,z1} + {x2,y2,1}.
// (i.e. the second point is affine.)
//
// See https://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl
//
// Note that this function does not handle P+P, infinity+P nor P+infinity
// correctly.
func p256PointAddMixed(xOut, yOut, zOut, x1, y1, z1, x2, y2 *[p256Limbs]uint32) {
var z1z1, z1z1z1, s2, u2, h, i, j, r, rr, v, tmp [p256Limbs]uint32
p256Square(&z1z1, z1)
p256Sum(&tmp, z1, z1)
p256Mul(&u2, x2, &z1z1)
p256Mul(&z1z1z1, z1, &z1z1)
p256Mul(&s2, y2, &z1z1z1)
p256Diff(&h, &u2, x1)
p256Sum(&i, &h, &h)
p256Square(&i, &i)
p256Mul(&j, &h, &i)
p256Diff(&r, &s2, y1)
p256Sum(&r, &r, &r)
p256Mul(&v, x1, &i)
p256Mul(zOut, &tmp, &h)
p256Square(&rr, &r)
p256Diff(xOut, &rr, &j)
p256Diff(xOut, xOut, &v)
p256Diff(xOut, xOut, &v)
p256Diff(&tmp, &v, xOut)
p256Mul(yOut, &tmp, &r)
p256Mul(&tmp, y1, &j)
p256Diff(yOut, yOut, &tmp)
p256Diff(yOut, yOut, &tmp)
}
// p256PointAdd sets {xOut,yOut,zOut} = {x1,y1,z1} + {x2,y2,z2}.
//
// See https://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl
//
// Note that this function does not handle P+P, infinity+P nor P+infinity
// correctly.
func p256PointAdd(xOut, yOut, zOut, x1, y1, z1, x2, y2, z2 *[p256Limbs]uint32) {
var z1z1, z1z1z1, z2z2, z2z2z2, s1, s2, u1, u2, h, i, j, r, rr, v, tmp [p256Limbs]uint32
p256Square(&z1z1, z1)
p256Square(&z2z2, z2)
p256Mul(&u1, x1, &z2z2)
p256Sum(&tmp, z1, z2)
p256Square(&tmp, &tmp)
p256Diff(&tmp, &tmp, &z1z1)
p256Diff(&tmp, &tmp, &z2z2)
p256Mul(&z2z2z2, z2, &z2z2)
p256Mul(&s1, y1, &z2z2z2)
p256Mul(&u2, x2, &z1z1)
p256Mul(&z1z1z1, z1, &z1z1)
p256Mul(&s2, y2, &z1z1z1)
p256Diff(&h, &u2, &u1)
p256Sum(&i, &h, &h)
p256Square(&i, &i)
p256Mul(&j, &h, &i)
p256Diff(&r, &s2, &s1)
p256Sum(&r, &r, &r)
p256Mul(&v, &u1, &i)
p256Mul(zOut, &tmp, &h)
p256Square(&rr, &r)
p256Diff(xOut, &rr, &j)
p256Diff(xOut, xOut, &v)
p256Diff(xOut, xOut, &v)
p256Diff(&tmp, &v, xOut)
p256Mul(yOut, &tmp, &r)
p256Mul(&tmp, &s1, &j)
p256Diff(yOut, yOut, &tmp)
p256Diff(yOut, yOut, &tmp)
}
// p256CopyConditional sets out=in if mask = 0xffffffff in constant time.
//
// On entry: mask is either 0 or 0xffffffff.
func p256CopyConditional(out, in *[p256Limbs]uint32, mask uint32) {
for i := 0; i < p256Limbs; i++ {
tmp := mask & (in[i] ^ out[i])
out[i] ^= tmp
}
}
// p256SelectAffinePoint sets {out_x,out_y} to the index'th entry of table.
// On entry: index < 16, table[0] must be zero.
func p256SelectAffinePoint(xOut, yOut *[p256Limbs]uint32, table []uint32, index uint32) {
for i := range xOut {
xOut[i] = 0
}
for i := range yOut {
yOut[i] = 0
}
for i := uint32(1); i < 16; i++ {
mask := i ^ index
mask |= mask >> 2
mask |= mask >> 1
mask &= 1
mask--
for j := range xOut {
xOut[j] |= table[0] & mask
table = table[1:]
}
for j := range yOut {
yOut[j] |= table[0] & mask
table = table[1:]
}
}
}
// p256SelectJacobianPoint sets {out_x,out_y,out_z} to the index'th entry of
// table.
// On entry: index < 16, table[0] must be zero.
func p256SelectJacobianPoint(xOut, yOut, zOut *[p256Limbs]uint32, table *[16][3][p256Limbs]uint32, index uint32) {
for i := range xOut {
xOut[i] = 0
}
for i := range yOut {
yOut[i] = 0
}
for i := range zOut {
zOut[i] = 0
}
// The implicit value at index 0 is all zero. We don't need to perform that
// iteration of the loop because we already set out_* to zero.
for i := uint32(1); i < 16; i++ {
mask := i ^ index
mask |= mask >> 2
mask |= mask >> 1
mask &= 1
mask--
for j := range xOut {
xOut[j] |= table[i][0][j] & mask
}
for j := range yOut {
yOut[j] |= table[i][1][j] & mask
}
for j := range zOut {
zOut[j] |= table[i][2][j] & mask
}
}
}
// p256GetBit returns the bit'th bit of scalar.
func p256GetBit(scalar *[32]uint8, bit uint) uint32 {
return uint32(((scalar[bit>>3]) >> (bit & 7)) & 1)
}
// p256ScalarBaseMult sets {xOut,yOut,zOut} = scalar*G where scalar is a
// little-endian number. Note that the value of scalar must be less than the
// order of the group.
func p256ScalarBaseMult(xOut, yOut, zOut *[p256Limbs]uint32, scalar *[32]uint8) {
nIsInfinityMask := ^uint32(0)
var pIsNoninfiniteMask, mask, tableOffset uint32
var px, py, tx, ty, tz [p256Limbs]uint32
for i := range xOut {
xOut[i] = 0
}
for i := range yOut {
yOut[i] = 0
}
for i := range zOut {
zOut[i] = 0
}
// The loop adds bits at positions 0, 64, 128 and 192, followed by
// positions 32,96,160 and 224 and does this 32 times.
for i := uint(0); i < 32; i++ {
if i != 0 {
p256PointDouble(xOut, yOut, zOut, xOut, yOut, zOut)
}
tableOffset = 0
for j := uint(0); j <= 32; j += 32 {
bit0 := p256GetBit(scalar, 31-i+j)
bit1 := p256GetBit(scalar, 95-i+j)
bit2 := p256GetBit(scalar, 159-i+j)
bit3 := p256GetBit(scalar, 223-i+j)
index := bit0 | (bit1 << 1) | (bit2 << 2) | (bit3 << 3)
p256SelectAffinePoint(&px, &py, p256Precomputed[tableOffset:], index)
tableOffset += 30 * p256Limbs
// Since scalar is less than the order of the group, we know that
// {xOut,yOut,zOut} != {px,py,1}, unless both are zero, which we handle
// below.
p256PointAddMixed(&tx, &ty, &tz, xOut, yOut, zOut, &px, &py)
// The result of pointAddMixed is incorrect if {xOut,yOut,zOut} is zero
// (a.k.a. the point at infinity). We handle that situation by
// copying the point from the table.
p256CopyConditional(xOut, &px, nIsInfinityMask)
p256CopyConditional(yOut, &py, nIsInfinityMask)
p256CopyConditional(zOut, &p256One, nIsInfinityMask)
// Equally, the result is also wrong if the point from the table is
// zero, which happens when the index is zero. We handle that by
// only copying from {tx,ty,tz} to {xOut,yOut,zOut} if index != 0.
pIsNoninfiniteMask = nonZeroToAllOnes(index)
mask = pIsNoninfiniteMask & ^nIsInfinityMask
p256CopyConditional(xOut, &tx, mask)
p256CopyConditional(yOut, &ty, mask)
p256CopyConditional(zOut, &tz, mask)
// If p was not zero, then n is now non-zero.
nIsInfinityMask &^= pIsNoninfiniteMask
}
}
}
// p256PointToAffine converts a Jacobian point to an affine point. If the input
// is the point at infinity then it returns (0, 0) in constant time.
func p256PointToAffine(xOut, yOut, x, y, z *[p256Limbs]uint32) {
var zInv, zInvSq [p256Limbs]uint32
p256Invert(&zInv, z)
p256Square(&zInvSq, &zInv)
p256Mul(xOut, x, &zInvSq)
p256Mul(&zInv, &zInv, &zInvSq)
p256Mul(yOut, y, &zInv)
}
// p256ToAffine returns a pair of *big.Int containing the affine representation
// of {x,y,z}.
func p256ToAffine(x, y, z *[p256Limbs]uint32) (xOut, yOut *big.Int) {
var xx, yy [p256Limbs]uint32
p256PointToAffine(&xx, &yy, x, y, z)
return p256ToBig(&xx), p256ToBig(&yy)
}
// p256ScalarMult sets {xOut,yOut,zOut} = scalar*{x,y}.
func p256ScalarMult(xOut, yOut, zOut, x, y *[p256Limbs]uint32, scalar *[32]uint8) {
var px, py, pz, tx, ty, tz [p256Limbs]uint32
var precomp [16][3][p256Limbs]uint32
var nIsInfinityMask, index, pIsNoninfiniteMask, mask uint32
// We precompute 0,1,2,... times {x,y}.
precomp[1][0] = *x
precomp[1][1] = *y
precomp[1][2] = p256One
for i := 2; i < 16; i += 2 {
p256PointDouble(&precomp[i][0], &precomp[i][1], &precomp[i][2], &precomp[i/2][0], &precomp[i/2][1], &precomp[i/2][2])
p256PointAddMixed(&precomp[i+1][0], &precomp[i+1][1], &precomp[i+1][2], &precomp[i][0], &precomp[i][1], &precomp[i][2], x, y)
}
for i := range xOut {
xOut[i] = 0
}
for i := range yOut {
yOut[i] = 0
}
for i := range zOut {
zOut[i] = 0
}
nIsInfinityMask = ^uint32(0)
// We add in a window of four bits each iteration and do this 64 times.
for i := 0; i < 64; i++ {
if i != 0 {
p256PointDouble(xOut, yOut, zOut, xOut, yOut, zOut)
p256PointDouble(xOut, yOut, zOut, xOut, yOut, zOut)
p256PointDouble(xOut, yOut, zOut, xOut, yOut, zOut)
p256PointDouble(xOut, yOut, zOut, xOut, yOut, zOut)
}
index = uint32(scalar[31-i/2])
if (i & 1) == 1 {
index &= 15
} else {
index >>= 4
}
// See the comments in scalarBaseMult about handling infinities.
p256SelectJacobianPoint(&px, &py, &pz, &precomp, index)
p256PointAdd(&tx, &ty, &tz, xOut, yOut, zOut, &px, &py, &pz)
p256CopyConditional(xOut, &px, nIsInfinityMask)
p256CopyConditional(yOut, &py, nIsInfinityMask)
p256CopyConditional(zOut, &pz, nIsInfinityMask)
pIsNoninfiniteMask = nonZeroToAllOnes(index)
mask = pIsNoninfiniteMask & ^nIsInfinityMask
p256CopyConditional(xOut, &tx, mask)
p256CopyConditional(yOut, &ty, mask)
p256CopyConditional(zOut, &tz, mask)
nIsInfinityMask &^= pIsNoninfiniteMask
}
}
// p256FromBig sets out = R*in.
func p256FromBig(out *[p256Limbs]uint32, in *big.Int) {
tmp := new(big.Int).Lsh(in, 257)
tmp.Mod(tmp, p256Params.P)
for i := 0; i < p256Limbs; i++ {
if bits := tmp.Bits(); len(bits) > 0 {
out[i] = uint32(bits[0]) & bottom29Bits
} else {
out[i] = 0
}
tmp.Rsh(tmp, 29)
i++
if i == p256Limbs {
break
}
if bits := tmp.Bits(); len(bits) > 0 {
out[i] = uint32(bits[0]) & bottom28Bits
} else {
out[i] = 0
}
tmp.Rsh(tmp, 28)
}
}
// p256ToBig returns a *big.Int containing the value of in.
func p256ToBig(in *[p256Limbs]uint32) *big.Int {
result, tmp := new(big.Int), new(big.Int)
result.SetInt64(int64(in[p256Limbs-1]))
for i := p256Limbs - 2; i >= 0; i-- {
if (i & 1) == 0 {
result.Lsh(result, 29)
} else {
result.Lsh(result, 28)
}
tmp.SetInt64(int64(in[i]))
result.Add(result, tmp)
}
result.Mul(result, p256RInverse)
result.Mod(result, p256Params.P)
return result
}
|