1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
|
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build amd64 || arm64
// +build amd64 arm64
package elliptic
import (
"reflect"
"testing"
)
func TestP256PrecomputedTable(t *testing.T) {
basePoint := []uint64{
0x79e730d418a9143c, 0x75ba95fc5fedb601, 0x79fb732b77622510, 0x18905f76a53755c6,
0xddf25357ce95560a, 0x8b4ab8e4ba19e45c, 0xd2e88688dd21f325, 0x8571ff1825885d85,
0x0000000000000001, 0xffffffff00000000, 0xffffffffffffffff, 0x00000000fffffffe,
}
t1 := make([]uint64, 12)
t2 := make([]uint64, 12)
copy(t2, basePoint)
zInv := make([]uint64, 4)
zInvSq := make([]uint64, 4)
for j := 0; j < 32; j++ {
copy(t1, t2)
for i := 0; i < 43; i++ {
// The window size is 6 so we need to double 6 times.
if i != 0 {
for k := 0; k < 6; k++ {
p256PointDoubleAsm(t1, t1)
}
}
// Convert the point to affine form. (Its values are
// still in Montgomery form however.)
p256Inverse(zInv, t1[8:12])
p256Sqr(zInvSq, zInv, 1)
p256Mul(zInv, zInv, zInvSq)
p256Mul(t1[:4], t1[:4], zInvSq)
p256Mul(t1[4:8], t1[4:8], zInv)
copy(t1[8:12], basePoint[8:12])
if got, want := p256Precomputed[i][j*8:(j*8)+8], t1[:8]; !reflect.DeepEqual(got, want) {
t.Fatalf("Unexpected table entry at [%d][%d:%d]: got %v, want %v", i, j*8, (j*8)+8, got, want)
}
}
if j == 0 {
p256PointDoubleAsm(t2, basePoint)
} else {
p256PointAddAsm(t2, t2, basePoint)
}
}
}
|