summaryrefslogtreecommitdiffstats
path: root/src/crypto/md5/md5.go
blob: 011578404751aca16699dfe73949247798564723 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

//go:generate go run gen.go -output md5block.go

// Package md5 implements the MD5 hash algorithm as defined in RFC 1321.
//
// MD5 is cryptographically broken and should not be used for secure
// applications.
package md5

import (
	"crypto"
	"encoding/binary"
	"errors"
	"hash"
)

func init() {
	crypto.RegisterHash(crypto.MD5, New)
}

// The size of an MD5 checksum in bytes.
const Size = 16

// The blocksize of MD5 in bytes.
const BlockSize = 64

const (
	init0 = 0x67452301
	init1 = 0xEFCDAB89
	init2 = 0x98BADCFE
	init3 = 0x10325476
)

// digest represents the partial evaluation of a checksum.
type digest struct {
	s   [4]uint32
	x   [BlockSize]byte
	nx  int
	len uint64
}

func (d *digest) Reset() {
	d.s[0] = init0
	d.s[1] = init1
	d.s[2] = init2
	d.s[3] = init3
	d.nx = 0
	d.len = 0
}

const (
	magic         = "md5\x01"
	marshaledSize = len(magic) + 4*4 + BlockSize + 8
)

func (d *digest) MarshalBinary() ([]byte, error) {
	b := make([]byte, 0, marshaledSize)
	b = append(b, magic...)
	b = appendUint32(b, d.s[0])
	b = appendUint32(b, d.s[1])
	b = appendUint32(b, d.s[2])
	b = appendUint32(b, d.s[3])
	b = append(b, d.x[:d.nx]...)
	b = b[:len(b)+len(d.x)-d.nx] // already zero
	b = appendUint64(b, d.len)
	return b, nil
}

func (d *digest) UnmarshalBinary(b []byte) error {
	if len(b) < len(magic) || string(b[:len(magic)]) != magic {
		return errors.New("crypto/md5: invalid hash state identifier")
	}
	if len(b) != marshaledSize {
		return errors.New("crypto/md5: invalid hash state size")
	}
	b = b[len(magic):]
	b, d.s[0] = consumeUint32(b)
	b, d.s[1] = consumeUint32(b)
	b, d.s[2] = consumeUint32(b)
	b, d.s[3] = consumeUint32(b)
	b = b[copy(d.x[:], b):]
	b, d.len = consumeUint64(b)
	d.nx = int(d.len % BlockSize)
	return nil
}

func appendUint64(b []byte, x uint64) []byte {
	var a [8]byte
	binary.BigEndian.PutUint64(a[:], x)
	return append(b, a[:]...)
}

func appendUint32(b []byte, x uint32) []byte {
	var a [4]byte
	binary.BigEndian.PutUint32(a[:], x)
	return append(b, a[:]...)
}

func consumeUint64(b []byte) ([]byte, uint64) {
	return b[8:], binary.BigEndian.Uint64(b[0:8])
}

func consumeUint32(b []byte) ([]byte, uint32) {
	return b[4:], binary.BigEndian.Uint32(b[0:4])
}

// New returns a new hash.Hash computing the MD5 checksum. The Hash also
// implements encoding.BinaryMarshaler and encoding.BinaryUnmarshaler to
// marshal and unmarshal the internal state of the hash.
func New() hash.Hash {
	d := new(digest)
	d.Reset()
	return d
}

func (d *digest) Size() int { return Size }

func (d *digest) BlockSize() int { return BlockSize }

func (d *digest) Write(p []byte) (nn int, err error) {
	// Note that we currently call block or blockGeneric
	// directly (guarded using haveAsm) because this allows
	// escape analysis to see that p and d don't escape.
	nn = len(p)
	d.len += uint64(nn)
	if d.nx > 0 {
		n := copy(d.x[d.nx:], p)
		d.nx += n
		if d.nx == BlockSize {
			if haveAsm {
				block(d, d.x[:])
			} else {
				blockGeneric(d, d.x[:])
			}
			d.nx = 0
		}
		p = p[n:]
	}
	if len(p) >= BlockSize {
		n := len(p) &^ (BlockSize - 1)
		if haveAsm {
			block(d, p[:n])
		} else {
			blockGeneric(d, p[:n])
		}
		p = p[n:]
	}
	if len(p) > 0 {
		d.nx = copy(d.x[:], p)
	}
	return
}

func (d *digest) Sum(in []byte) []byte {
	// Make a copy of d so that caller can keep writing and summing.
	d0 := *d
	hash := d0.checkSum()
	return append(in, hash[:]...)
}

func (d *digest) checkSum() [Size]byte {
	// Append 0x80 to the end of the message and then append zeros
	// until the length is a multiple of 56 bytes. Finally append
	// 8 bytes representing the message length in bits.
	//
	// 1 byte end marker :: 0-63 padding bytes :: 8 byte length
	tmp := [1 + 63 + 8]byte{0x80}
	pad := (55 - d.len) % 64                             // calculate number of padding bytes
	binary.LittleEndian.PutUint64(tmp[1+pad:], d.len<<3) // append length in bits
	d.Write(tmp[:1+pad+8])

	// The previous write ensures that a whole number of
	// blocks (i.e. a multiple of 64 bytes) have been hashed.
	if d.nx != 0 {
		panic("d.nx != 0")
	}

	var digest [Size]byte
	binary.LittleEndian.PutUint32(digest[0:], d.s[0])
	binary.LittleEndian.PutUint32(digest[4:], d.s[1])
	binary.LittleEndian.PutUint32(digest[8:], d.s[2])
	binary.LittleEndian.PutUint32(digest[12:], d.s[3])
	return digest
}

// Sum returns the MD5 checksum of the data.
func Sum(data []byte) [Size]byte {
	var d digest
	d.Reset()
	d.Write(data)
	return d.checkSum()
}