1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
|
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package time_test
import (
"errors"
"fmt"
"math/rand"
"runtime"
"strings"
"sync"
"sync/atomic"
"testing"
. "time"
)
// Go runtime uses different Windows timers for time.Now and sleeping.
// These can tick at different frequencies and can arrive out of sync.
// The effect can be seen, for example, as time.Sleep(100ms) is actually
// shorter then 100ms when measured as difference between time.Now before and
// after time.Sleep call. This was observed on Windows XP SP3 (windows/386).
// windowsInaccuracy is to ignore such errors.
const windowsInaccuracy = 17 * Millisecond
func TestSleep(t *testing.T) {
const delay = 100 * Millisecond
go func() {
Sleep(delay / 2)
Interrupt()
}()
start := Now()
Sleep(delay)
delayadj := delay
if runtime.GOOS == "windows" {
delayadj -= windowsInaccuracy
}
duration := Now().Sub(start)
if duration < delayadj {
t.Fatalf("Sleep(%s) slept for only %s", delay, duration)
}
}
// Test the basic function calling behavior. Correct queueing
// behavior is tested elsewhere, since After and AfterFunc share
// the same code.
func TestAfterFunc(t *testing.T) {
i := 10
c := make(chan bool)
var f func()
f = func() {
i--
if i >= 0 {
AfterFunc(0, f)
Sleep(1 * Second)
} else {
c <- true
}
}
AfterFunc(0, f)
<-c
}
func TestAfterStress(t *testing.T) {
stop := uint32(0)
go func() {
for atomic.LoadUint32(&stop) == 0 {
runtime.GC()
// Yield so that the OS can wake up the timer thread,
// so that it can generate channel sends for the main goroutine,
// which will eventually set stop = 1 for us.
Sleep(Nanosecond)
}
}()
ticker := NewTicker(1)
for i := 0; i < 100; i++ {
<-ticker.C
}
ticker.Stop()
atomic.StoreUint32(&stop, 1)
}
func benchmark(b *testing.B, bench func(n int)) {
// Create equal number of garbage timers on each P before starting
// the benchmark.
var wg sync.WaitGroup
garbageAll := make([][]*Timer, runtime.GOMAXPROCS(0))
for i := range garbageAll {
wg.Add(1)
go func(i int) {
defer wg.Done()
garbage := make([]*Timer, 1<<15)
for j := range garbage {
garbage[j] = AfterFunc(Hour, nil)
}
garbageAll[i] = garbage
}(i)
}
wg.Wait()
b.ResetTimer()
b.RunParallel(func(pb *testing.PB) {
for pb.Next() {
bench(1000)
}
})
b.StopTimer()
for _, garbage := range garbageAll {
for _, t := range garbage {
t.Stop()
}
}
}
func BenchmarkAfterFunc(b *testing.B) {
benchmark(b, func(n int) {
c := make(chan bool)
var f func()
f = func() {
n--
if n >= 0 {
AfterFunc(0, f)
} else {
c <- true
}
}
AfterFunc(0, f)
<-c
})
}
func BenchmarkAfter(b *testing.B) {
benchmark(b, func(n int) {
for i := 0; i < n; i++ {
<-After(1)
}
})
}
func BenchmarkStop(b *testing.B) {
benchmark(b, func(n int) {
for i := 0; i < n; i++ {
NewTimer(1 * Second).Stop()
}
})
}
func BenchmarkSimultaneousAfterFunc(b *testing.B) {
benchmark(b, func(n int) {
var wg sync.WaitGroup
wg.Add(n)
for i := 0; i < n; i++ {
AfterFunc(0, wg.Done)
}
wg.Wait()
})
}
func BenchmarkStartStop(b *testing.B) {
benchmark(b, func(n int) {
timers := make([]*Timer, n)
for i := 0; i < n; i++ {
timers[i] = AfterFunc(Hour, nil)
}
for i := 0; i < n; i++ {
timers[i].Stop()
}
})
}
func BenchmarkReset(b *testing.B) {
benchmark(b, func(n int) {
t := NewTimer(Hour)
for i := 0; i < n; i++ {
t.Reset(Hour)
}
t.Stop()
})
}
func BenchmarkSleep(b *testing.B) {
benchmark(b, func(n int) {
var wg sync.WaitGroup
wg.Add(n)
for i := 0; i < n; i++ {
go func() {
Sleep(Nanosecond)
wg.Done()
}()
}
wg.Wait()
})
}
func TestAfter(t *testing.T) {
const delay = 100 * Millisecond
start := Now()
end := <-After(delay)
delayadj := delay
if runtime.GOOS == "windows" {
delayadj -= windowsInaccuracy
}
if duration := Now().Sub(start); duration < delayadj {
t.Fatalf("After(%s) slept for only %d ns", delay, duration)
}
if min := start.Add(delayadj); end.Before(min) {
t.Fatalf("After(%s) expect >= %s, got %s", delay, min, end)
}
}
func TestAfterTick(t *testing.T) {
const Count = 10
Delta := 100 * Millisecond
if testing.Short() {
Delta = 10 * Millisecond
}
t0 := Now()
for i := 0; i < Count; i++ {
<-After(Delta)
}
t1 := Now()
d := t1.Sub(t0)
target := Delta * Count
if d < target*9/10 {
t.Fatalf("%d ticks of %s too fast: took %s, expected %s", Count, Delta, d, target)
}
if !testing.Short() && d > target*30/10 {
t.Fatalf("%d ticks of %s too slow: took %s, expected %s", Count, Delta, d, target)
}
}
func TestAfterStop(t *testing.T) {
// We want to test that we stop a timer before it runs.
// We also want to test that it didn't run after a longer timer.
// Since we don't want the test to run for too long, we don't
// want to use lengthy times. That makes the test inherently flaky.
// So only report an error if it fails five times in a row.
var errs []string
logErrs := func() {
for _, e := range errs {
t.Log(e)
}
}
for i := 0; i < 5; i++ {
AfterFunc(100*Millisecond, func() {})
t0 := NewTimer(50 * Millisecond)
c1 := make(chan bool, 1)
t1 := AfterFunc(150*Millisecond, func() { c1 <- true })
c2 := After(200 * Millisecond)
if !t0.Stop() {
errs = append(errs, "failed to stop event 0")
continue
}
if !t1.Stop() {
errs = append(errs, "failed to stop event 1")
continue
}
<-c2
select {
case <-t0.C:
errs = append(errs, "event 0 was not stopped")
continue
case <-c1:
errs = append(errs, "event 1 was not stopped")
continue
default:
}
if t1.Stop() {
errs = append(errs, "Stop returned true twice")
continue
}
// Test passed, so all done.
if len(errs) > 0 {
t.Logf("saw %d errors, ignoring to avoid flakiness", len(errs))
logErrs()
}
return
}
t.Errorf("saw %d errors", len(errs))
logErrs()
}
func TestAfterQueuing(t *testing.T) {
// This test flakes out on some systems,
// so we'll try it a few times before declaring it a failure.
const attempts = 5
err := errors.New("!=nil")
for i := 0; i < attempts && err != nil; i++ {
delta := Duration(20+i*50) * Millisecond
if err = testAfterQueuing(delta); err != nil {
t.Logf("attempt %v failed: %v", i, err)
}
}
if err != nil {
t.Fatal(err)
}
}
var slots = []int{5, 3, 6, 6, 6, 1, 1, 2, 7, 9, 4, 8, 0}
type afterResult struct {
slot int
t Time
}
func await(slot int, result chan<- afterResult, ac <-chan Time) {
result <- afterResult{slot, <-ac}
}
func testAfterQueuing(delta Duration) error {
// make the result channel buffered because we don't want
// to depend on channel queueing semantics that might
// possibly change in the future.
result := make(chan afterResult, len(slots))
t0 := Now()
for _, slot := range slots {
go await(slot, result, After(Duration(slot)*delta))
}
var order []int
var times []Time
for range slots {
r := <-result
order = append(order, r.slot)
times = append(times, r.t)
}
for i := range order {
if i > 0 && order[i] < order[i-1] {
return fmt.Errorf("After calls returned out of order: %v", order)
}
}
for i, t := range times {
dt := t.Sub(t0)
target := Duration(order[i]) * delta
if dt < target-delta/2 || dt > target+delta*10 {
return fmt.Errorf("After(%s) arrived at %s, expected [%s,%s]", target, dt, target-delta/2, target+delta*10)
}
}
return nil
}
func TestTimerStopStress(t *testing.T) {
if testing.Short() {
return
}
for i := 0; i < 100; i++ {
go func(i int) {
timer := AfterFunc(2*Second, func() {
t.Errorf("timer %d was not stopped", i)
})
Sleep(1 * Second)
timer.Stop()
}(i)
}
Sleep(3 * Second)
}
func TestSleepZeroDeadlock(t *testing.T) {
// Sleep(0) used to hang, the sequence of events was as follows.
// Sleep(0) sets G's status to Gwaiting, but then immediately returns leaving the status.
// Then the goroutine calls e.g. new and falls down into the scheduler due to pending GC.
// After the GC nobody wakes up the goroutine from Gwaiting status.
defer runtime.GOMAXPROCS(runtime.GOMAXPROCS(4))
c := make(chan bool)
go func() {
for i := 0; i < 100; i++ {
runtime.GC()
}
c <- true
}()
for i := 0; i < 100; i++ {
Sleep(0)
tmp := make(chan bool, 1)
tmp <- true
<-tmp
}
<-c
}
func testReset(d Duration) error {
t0 := NewTimer(2 * d)
Sleep(d)
if !t0.Reset(3 * d) {
return errors.New("resetting unfired timer returned false")
}
Sleep(2 * d)
select {
case <-t0.C:
return errors.New("timer fired early")
default:
}
Sleep(2 * d)
select {
case <-t0.C:
default:
return errors.New("reset timer did not fire")
}
if t0.Reset(50 * Millisecond) {
return errors.New("resetting expired timer returned true")
}
return nil
}
func TestReset(t *testing.T) {
// We try to run this test with increasingly larger multiples
// until one works so slow, loaded hardware isn't as flaky,
// but without slowing down fast machines unnecessarily.
const unit = 25 * Millisecond
tries := []Duration{
1 * unit,
3 * unit,
7 * unit,
15 * unit,
}
var err error
for _, d := range tries {
err = testReset(d)
if err == nil {
t.Logf("passed using duration %v", d)
return
}
}
t.Error(err)
}
// Test that sleeping (via Sleep or Timer) for an interval so large it
// overflows does not result in a short sleep duration. Nor does it interfere
// with execution of other timers. If it does, timers in this or subsequent
// tests may not fire.
func TestOverflowSleep(t *testing.T) {
const big = Duration(int64(1<<63 - 1))
go func() {
Sleep(big)
// On failure, this may return after the test has completed, so
// we need to panic instead.
panic("big sleep returned")
}()
select {
case <-After(big):
t.Fatalf("big timeout fired")
case <-After(25 * Millisecond):
// OK
}
const neg = Duration(-1 << 63)
Sleep(neg) // Returns immediately.
select {
case <-After(neg):
// OK
case <-After(1 * Second):
t.Fatalf("negative timeout didn't fire")
}
}
// Test that a panic while deleting a timer does not leave
// the timers mutex held, deadlocking a ticker.Stop in a defer.
func TestIssue5745(t *testing.T) {
ticker := NewTicker(Hour)
defer func() {
// would deadlock here before the fix due to
// lock taken before the segfault.
ticker.Stop()
if r := recover(); r == nil {
t.Error("Expected panic, but none happened.")
}
}()
// cause a panic due to a segfault
var timer *Timer
timer.Stop()
t.Error("Should be unreachable.")
}
func TestOverflowPeriodRuntimeTimer(t *testing.T) {
// This may hang forever if timers are broken. See comment near
// the end of CheckRuntimeTimerOverflow in internal_test.go.
CheckRuntimeTimerPeriodOverflow()
}
func checkZeroPanicString(t *testing.T) {
e := recover()
s, _ := e.(string)
if want := "called on uninitialized Timer"; !strings.Contains(s, want) {
t.Errorf("panic = %v; want substring %q", e, want)
}
}
func TestZeroTimerResetPanics(t *testing.T) {
defer checkZeroPanicString(t)
var tr Timer
tr.Reset(1)
}
func TestZeroTimerStopPanics(t *testing.T) {
defer checkZeroPanicString(t)
var tr Timer
tr.Stop()
}
// Test that zero duration timers aren't missed by the scheduler. Regression test for issue 44868.
func TestZeroTimer(t *testing.T) {
if testing.Short() {
t.Skip("-short")
}
for i := 0; i < 1000000; i++ {
s := Now()
ti := NewTimer(0)
<-ti.C
if diff := Since(s); diff > 2*Second {
t.Errorf("Expected time to get value from Timer channel in less than 2 sec, took %v", diff)
}
}
}
// Test that rapidly moving a timer earlier doesn't cause it to get dropped.
// Issue 47329.
func TestTimerModifiedEarlier(t *testing.T) {
past := Until(Unix(0, 0))
count := 1000
fail := 0
for i := 0; i < count; i++ {
timer := NewTimer(Hour)
for j := 0; j < 10; j++ {
if !timer.Stop() {
<-timer.C
}
timer.Reset(past)
}
deadline := NewTimer(10 * Second)
defer deadline.Stop()
now := Now()
select {
case <-timer.C:
if since := Since(now); since > 8*Second {
t.Errorf("timer took too long (%v)", since)
fail++
}
case <-deadline.C:
t.Error("deadline expired")
}
}
if fail > 0 {
t.Errorf("%d failures", fail)
}
}
// Test that rapidly moving timers earlier and later doesn't cause
// some of the sleep times to be lost.
// Issue 47762
func TestAdjustTimers(t *testing.T) {
var rnd = rand.New(rand.NewSource(Now().UnixNano()))
timers := make([]*Timer, 100)
states := make([]int, len(timers))
indices := rnd.Perm(len(timers))
for len(indices) != 0 {
var ii = rnd.Intn(len(indices))
var i = indices[ii]
var timer = timers[i]
var state = states[i]
states[i]++
switch state {
case 0:
timers[i] = NewTimer(0)
case 1:
<-timer.C // Timer is now idle.
// Reset to various long durations, which we'll cancel.
case 2:
if timer.Reset(1 * Minute) {
panic("shouldn't be active (1)")
}
case 4:
if timer.Reset(3 * Minute) {
panic("shouldn't be active (3)")
}
case 6:
if timer.Reset(2 * Minute) {
panic("shouldn't be active (2)")
}
// Stop and drain a long-duration timer.
case 3, 5, 7:
if !timer.Stop() {
t.Logf("timer %d state %d Stop returned false", i, state)
<-timer.C
}
// Start a short-duration timer we expect to select without blocking.
case 8:
if timer.Reset(0) {
t.Fatal("timer.Reset returned true")
}
case 9:
now := Now()
<-timer.C
dur := Since(now)
if dur > 750*Millisecond {
t.Errorf("timer %d took %v to complete", i, dur)
}
// Timer is done. Swap with tail and remove.
case 10:
indices[ii] = indices[len(indices)-1]
indices = indices[:len(indices)-1]
}
}
}
// Benchmark timer latency when the thread that creates the timer is busy with
// other work and the timers must be serviced by other threads.
// https://golang.org/issue/38860
func BenchmarkParallelTimerLatency(b *testing.B) {
gmp := runtime.GOMAXPROCS(0)
if gmp < 2 || runtime.NumCPU() < gmp {
b.Skip("skipping with GOMAXPROCS < 2 or NumCPU < GOMAXPROCS")
}
// allocate memory now to avoid GC interference later.
timerCount := gmp - 1
stats := make([]struct {
sum float64
max Duration
count int64
_ [5]int64 // cache line padding
}, timerCount)
// Ensure the time to start new threads to service timers will not pollute
// the results.
warmupScheduler(gmp)
// Note that other than the AfterFunc calls this benchmark is measuring it
// avoids using any other timers. In particular, the main goroutine uses
// doWork to spin for some durations because up through Go 1.15 if all
// threads are idle sysmon could leave deep sleep when we wake.
// Ensure sysmon is in deep sleep.
doWork(30 * Millisecond)
b.ResetTimer()
const delay = Millisecond
var wg sync.WaitGroup
var count int32
for i := 0; i < b.N; i++ {
wg.Add(timerCount)
atomic.StoreInt32(&count, 0)
for j := 0; j < timerCount; j++ {
j := j
expectedWakeup := Now().Add(delay)
AfterFunc(delay, func() {
late := Since(expectedWakeup)
if late < 0 {
late = 0
}
stats[j].count++
stats[j].sum += float64(late.Nanoseconds())
if late > stats[j].max {
stats[j].max = late
}
atomic.AddInt32(&count, 1)
for atomic.LoadInt32(&count) < int32(timerCount) {
// spin until all timers fired
}
wg.Done()
})
}
for atomic.LoadInt32(&count) < int32(timerCount) {
// spin until all timers fired
}
wg.Wait()
// Spin for a bit to let the other scheduler threads go idle before the
// next round.
doWork(Millisecond)
}
var total float64
var samples float64
max := Duration(0)
for _, s := range stats {
if s.max > max {
max = s.max
}
total += s.sum
samples += float64(s.count)
}
b.ReportMetric(0, "ns/op")
b.ReportMetric(total/samples, "avg-late-ns")
b.ReportMetric(float64(max.Nanoseconds()), "max-late-ns")
}
// Benchmark timer latency with staggered wakeup times and varying CPU bound
// workloads. https://golang.org/issue/38860
func BenchmarkStaggeredTickerLatency(b *testing.B) {
gmp := runtime.GOMAXPROCS(0)
if gmp < 2 || runtime.NumCPU() < gmp {
b.Skip("skipping with GOMAXPROCS < 2 or NumCPU < GOMAXPROCS")
}
const delay = 3 * Millisecond
for _, dur := range []Duration{300 * Microsecond, 2 * Millisecond} {
b.Run(fmt.Sprintf("work-dur=%s", dur), func(b *testing.B) {
for tickersPerP := 1; tickersPerP < int(delay/dur)+1; tickersPerP++ {
tickerCount := gmp * tickersPerP
b.Run(fmt.Sprintf("tickers-per-P=%d", tickersPerP), func(b *testing.B) {
// allocate memory now to avoid GC interference later.
stats := make([]struct {
sum float64
max Duration
count int64
_ [5]int64 // cache line padding
}, tickerCount)
// Ensure the time to start new threads to service timers
// will not pollute the results.
warmupScheduler(gmp)
b.ResetTimer()
var wg sync.WaitGroup
wg.Add(tickerCount)
for j := 0; j < tickerCount; j++ {
j := j
doWork(delay / Duration(gmp))
expectedWakeup := Now().Add(delay)
ticker := NewTicker(delay)
go func(c int, ticker *Ticker, firstWake Time) {
defer ticker.Stop()
for ; c > 0; c-- {
<-ticker.C
late := Since(expectedWakeup)
if late < 0 {
late = 0
}
stats[j].count++
stats[j].sum += float64(late.Nanoseconds())
if late > stats[j].max {
stats[j].max = late
}
expectedWakeup = expectedWakeup.Add(delay)
doWork(dur)
}
wg.Done()
}(b.N, ticker, expectedWakeup)
}
wg.Wait()
var total float64
var samples float64
max := Duration(0)
for _, s := range stats {
if s.max > max {
max = s.max
}
total += s.sum
samples += float64(s.count)
}
b.ReportMetric(0, "ns/op")
b.ReportMetric(total/samples, "avg-late-ns")
b.ReportMetric(float64(max.Nanoseconds()), "max-late-ns")
})
}
})
}
}
// warmupScheduler ensures the scheduler has at least targetThreadCount threads
// in its thread pool.
func warmupScheduler(targetThreadCount int) {
var wg sync.WaitGroup
var count int32
for i := 0; i < targetThreadCount; i++ {
wg.Add(1)
go func() {
atomic.AddInt32(&count, 1)
for atomic.LoadInt32(&count) < int32(targetThreadCount) {
// spin until all threads started
}
// spin a bit more to ensure they are all running on separate CPUs.
doWork(Millisecond)
wg.Done()
}()
}
wg.Wait()
}
func doWork(dur Duration) {
start := Now()
for Since(start) < dur {
}
}
|