summaryrefslogtreecommitdiffstats
path: root/src/cmd/compile/internal/ssa/lca.go
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-28 13:16:40 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-28 13:16:40 +0000
commit47ab3d4a42e9ab51c465c4322d2ec233f6324e6b (patch)
treea61a0ffd83f4a3def4b36e5c8e99630c559aa723 /src/cmd/compile/internal/ssa/lca.go
parentInitial commit. (diff)
downloadgolang-1.18-upstream.tar.xz
golang-1.18-upstream.zip
Adding upstream version 1.18.10.upstream/1.18.10upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/cmd/compile/internal/ssa/lca.go')
-rw-r--r--src/cmd/compile/internal/ssa/lca.go127
1 files changed, 127 insertions, 0 deletions
diff --git a/src/cmd/compile/internal/ssa/lca.go b/src/cmd/compile/internal/ssa/lca.go
new file mode 100644
index 0000000..90daebe
--- /dev/null
+++ b/src/cmd/compile/internal/ssa/lca.go
@@ -0,0 +1,127 @@
+// Copyright 2016 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package ssa
+
+import (
+ "math/bits"
+)
+
+// Code to compute lowest common ancestors in the dominator tree.
+// https://en.wikipedia.org/wiki/Lowest_common_ancestor
+// https://en.wikipedia.org/wiki/Range_minimum_query#Solution_using_constant_time_and_linearithmic_space
+
+// lcaRange is a data structure that can compute lowest common ancestor queries
+// in O(n lg n) precomputed space and O(1) time per query.
+type lcaRange struct {
+ // Additional information about each block (indexed by block ID).
+ blocks []lcaRangeBlock
+
+ // Data structure for range minimum queries.
+ // rangeMin[k][i] contains the ID of the minimum depth block
+ // in the Euler tour from positions i to i+1<<k-1, inclusive.
+ rangeMin [][]ID
+}
+
+type lcaRangeBlock struct {
+ b *Block
+ parent ID // parent in dominator tree. 0 = no parent (entry or unreachable)
+ firstChild ID // first child in dominator tree
+ sibling ID // next child of parent
+ pos int32 // an index in the Euler tour where this block appears (any one of its occurrences)
+ depth int32 // depth in dominator tree (root=0, its children=1, etc.)
+}
+
+func makeLCArange(f *Func) *lcaRange {
+ dom := f.Idom()
+
+ // Build tree
+ blocks := make([]lcaRangeBlock, f.NumBlocks())
+ for _, b := range f.Blocks {
+ blocks[b.ID].b = b
+ if dom[b.ID] == nil {
+ continue // entry or unreachable
+ }
+ parent := dom[b.ID].ID
+ blocks[b.ID].parent = parent
+ blocks[b.ID].sibling = blocks[parent].firstChild
+ blocks[parent].firstChild = b.ID
+ }
+
+ // Compute euler tour ordering.
+ // Each reachable block will appear #children+1 times in the tour.
+ tour := make([]ID, 0, f.NumBlocks()*2-1)
+ type queueEntry struct {
+ bid ID // block to work on
+ cid ID // child we're already working on (0 = haven't started yet)
+ }
+ q := []queueEntry{{f.Entry.ID, 0}}
+ for len(q) > 0 {
+ n := len(q) - 1
+ bid := q[n].bid
+ cid := q[n].cid
+ q = q[:n]
+
+ // Add block to tour.
+ blocks[bid].pos = int32(len(tour))
+ tour = append(tour, bid)
+
+ // Proceed down next child edge (if any).
+ if cid == 0 {
+ // This is our first visit to b. Set its depth.
+ blocks[bid].depth = blocks[blocks[bid].parent].depth + 1
+ // Then explore its first child.
+ cid = blocks[bid].firstChild
+ } else {
+ // We've seen b before. Explore the next child.
+ cid = blocks[cid].sibling
+ }
+ if cid != 0 {
+ q = append(q, queueEntry{bid, cid}, queueEntry{cid, 0})
+ }
+ }
+
+ // Compute fast range-minimum query data structure
+ rangeMin := make([][]ID, 0, bits.Len64(uint64(len(tour))))
+ rangeMin = append(rangeMin, tour) // 1-size windows are just the tour itself.
+ for logS, s := 1, 2; s < len(tour); logS, s = logS+1, s*2 {
+ r := make([]ID, len(tour)-s+1)
+ for i := 0; i < len(tour)-s+1; i++ {
+ bid := rangeMin[logS-1][i]
+ bid2 := rangeMin[logS-1][i+s/2]
+ if blocks[bid2].depth < blocks[bid].depth {
+ bid = bid2
+ }
+ r[i] = bid
+ }
+ rangeMin = append(rangeMin, r)
+ }
+
+ return &lcaRange{blocks: blocks, rangeMin: rangeMin}
+}
+
+// find returns the lowest common ancestor of a and b.
+func (lca *lcaRange) find(a, b *Block) *Block {
+ if a == b {
+ return a
+ }
+ // Find the positions of a and bin the Euler tour.
+ p1 := lca.blocks[a.ID].pos
+ p2 := lca.blocks[b.ID].pos
+ if p1 > p2 {
+ p1, p2 = p2, p1
+ }
+
+ // The lowest common ancestor is the minimum depth block
+ // on the tour from p1 to p2. We've precomputed minimum
+ // depth blocks for powers-of-two subsequences of the tour.
+ // Combine the right two precomputed values to get the answer.
+ logS := uint(log64(int64(p2 - p1)))
+ bid1 := lca.rangeMin[logS][p1]
+ bid2 := lca.rangeMin[logS][p2-1<<logS+1]
+ if lca.blocks[bid1].depth < lca.blocks[bid2].depth {
+ return lca.blocks[bid1].b
+ }
+ return lca.blocks[bid2].b
+}