summaryrefslogtreecommitdiffstats
path: root/src/crypto/ecdsa
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-28 13:16:40 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-28 13:16:40 +0000
commit47ab3d4a42e9ab51c465c4322d2ec233f6324e6b (patch)
treea61a0ffd83f4a3def4b36e5c8e99630c559aa723 /src/crypto/ecdsa
parentInitial commit. (diff)
downloadgolang-1.18-47ab3d4a42e9ab51c465c4322d2ec233f6324e6b.tar.xz
golang-1.18-47ab3d4a42e9ab51c465c4322d2ec233f6324e6b.zip
Adding upstream version 1.18.10.upstream/1.18.10upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/crypto/ecdsa')
-rw-r--r--src/crypto/ecdsa/ecdsa.go368
-rw-r--r--src/crypto/ecdsa/ecdsa_noasm.go21
-rw-r--r--src/crypto/ecdsa/ecdsa_s390x.go163
-rw-r--r--src/crypto/ecdsa/ecdsa_s390x.s28
-rw-r--r--src/crypto/ecdsa/ecdsa_s390x_test.go32
-rw-r--r--src/crypto/ecdsa/ecdsa_test.go401
-rw-r--r--src/crypto/ecdsa/equal_test.go75
-rw-r--r--src/crypto/ecdsa/example_test.go32
-rw-r--r--src/crypto/ecdsa/testdata/SigVer.rsp.bz2bin0 -> 95485 bytes
9 files changed, 1120 insertions, 0 deletions
diff --git a/src/crypto/ecdsa/ecdsa.go b/src/crypto/ecdsa/ecdsa.go
new file mode 100644
index 0000000..9f9a09a
--- /dev/null
+++ b/src/crypto/ecdsa/ecdsa.go
@@ -0,0 +1,368 @@
+// Copyright 2011 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// Package ecdsa implements the Elliptic Curve Digital Signature Algorithm, as
+// defined in FIPS 186-4 and SEC 1, Version 2.0.
+//
+// Signatures generated by this package are not deterministic, but entropy is
+// mixed with the private key and the message, achieving the same level of
+// security in case of randomness source failure.
+package ecdsa
+
+// [FIPS 186-4] references ANSI X9.62-2005 for the bulk of the ECDSA algorithm.
+// That standard is not freely available, which is a problem in an open source
+// implementation, because not only the implementer, but also any maintainer,
+// contributor, reviewer, auditor, and learner needs access to it. Instead, this
+// package references and follows the equivalent [SEC 1, Version 2.0].
+//
+// [FIPS 186-4]: https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
+// [SEC 1, Version 2.0]: https://www.secg.org/sec1-v2.pdf
+
+import (
+ "crypto"
+ "crypto/aes"
+ "crypto/cipher"
+ "crypto/elliptic"
+ "crypto/internal/randutil"
+ "crypto/sha512"
+ "errors"
+ "io"
+ "math/big"
+
+ "golang.org/x/crypto/cryptobyte"
+ "golang.org/x/crypto/cryptobyte/asn1"
+)
+
+// A invertible implements fast inverse in GF(N).
+type invertible interface {
+ // Inverse returns the inverse of k mod Params().N.
+ Inverse(k *big.Int) *big.Int
+}
+
+// A combinedMult implements fast combined multiplication for verification.
+type combinedMult interface {
+ // CombinedMult returns [s1]G + [s2]P where G is the generator.
+ CombinedMult(Px, Py *big.Int, s1, s2 []byte) (x, y *big.Int)
+}
+
+const (
+ aesIV = "IV for ECDSA CTR"
+)
+
+// PublicKey represents an ECDSA public key.
+type PublicKey struct {
+ elliptic.Curve
+ X, Y *big.Int
+}
+
+// Any methods implemented on PublicKey might need to also be implemented on
+// PrivateKey, as the latter embeds the former and will expose its methods.
+
+// Equal reports whether pub and x have the same value.
+//
+// Two keys are only considered to have the same value if they have the same Curve value.
+// Note that for example elliptic.P256() and elliptic.P256().Params() are different
+// values, as the latter is a generic not constant time implementation.
+func (pub *PublicKey) Equal(x crypto.PublicKey) bool {
+ xx, ok := x.(*PublicKey)
+ if !ok {
+ return false
+ }
+ return pub.X.Cmp(xx.X) == 0 && pub.Y.Cmp(xx.Y) == 0 &&
+ // Standard library Curve implementations are singletons, so this check
+ // will work for those. Other Curves might be equivalent even if not
+ // singletons, but there is no definitive way to check for that, and
+ // better to err on the side of safety.
+ pub.Curve == xx.Curve
+}
+
+// PrivateKey represents an ECDSA private key.
+type PrivateKey struct {
+ PublicKey
+ D *big.Int
+}
+
+// Public returns the public key corresponding to priv.
+func (priv *PrivateKey) Public() crypto.PublicKey {
+ return &priv.PublicKey
+}
+
+// Equal reports whether priv and x have the same value.
+//
+// See PublicKey.Equal for details on how Curve is compared.
+func (priv *PrivateKey) Equal(x crypto.PrivateKey) bool {
+ xx, ok := x.(*PrivateKey)
+ if !ok {
+ return false
+ }
+ return priv.PublicKey.Equal(&xx.PublicKey) && priv.D.Cmp(xx.D) == 0
+}
+
+// Sign signs digest with priv, reading randomness from rand. The opts argument
+// is not currently used but, in keeping with the crypto.Signer interface,
+// should be the hash function used to digest the message.
+//
+// This method implements crypto.Signer, which is an interface to support keys
+// where the private part is kept in, for example, a hardware module. Common
+// uses can use the SignASN1 function in this package directly.
+func (priv *PrivateKey) Sign(rand io.Reader, digest []byte, opts crypto.SignerOpts) ([]byte, error) {
+ r, s, err := Sign(rand, priv, digest)
+ if err != nil {
+ return nil, err
+ }
+
+ var b cryptobyte.Builder
+ b.AddASN1(asn1.SEQUENCE, func(b *cryptobyte.Builder) {
+ b.AddASN1BigInt(r)
+ b.AddASN1BigInt(s)
+ })
+ return b.Bytes()
+}
+
+var one = new(big.Int).SetInt64(1)
+
+// randFieldElement returns a random element of the order of the given
+// curve using the procedure given in FIPS 186-4, Appendix B.5.1.
+func randFieldElement(c elliptic.Curve, rand io.Reader) (k *big.Int, err error) {
+ params := c.Params()
+ // Note that for P-521 this will actually be 63 bits more than the order, as
+ // division rounds down, but the extra bit is inconsequential.
+ b := make([]byte, params.BitSize/8+8) // TODO: use params.N.BitLen()
+ _, err = io.ReadFull(rand, b)
+ if err != nil {
+ return
+ }
+
+ k = new(big.Int).SetBytes(b)
+ n := new(big.Int).Sub(params.N, one)
+ k.Mod(k, n)
+ k.Add(k, one)
+ return
+}
+
+// GenerateKey generates a public and private key pair.
+func GenerateKey(c elliptic.Curve, rand io.Reader) (*PrivateKey, error) {
+ k, err := randFieldElement(c, rand)
+ if err != nil {
+ return nil, err
+ }
+
+ priv := new(PrivateKey)
+ priv.PublicKey.Curve = c
+ priv.D = k
+ priv.PublicKey.X, priv.PublicKey.Y = c.ScalarBaseMult(k.Bytes())
+ return priv, nil
+}
+
+// hashToInt converts a hash value to an integer. Per FIPS 186-4, Section 6.4,
+// we use the left-most bits of the hash to match the bit-length of the order of
+// the curve. This also performs Step 5 of SEC 1, Version 2.0, Section 4.1.3.
+func hashToInt(hash []byte, c elliptic.Curve) *big.Int {
+ orderBits := c.Params().N.BitLen()
+ orderBytes := (orderBits + 7) / 8
+ if len(hash) > orderBytes {
+ hash = hash[:orderBytes]
+ }
+
+ ret := new(big.Int).SetBytes(hash)
+ excess := len(hash)*8 - orderBits
+ if excess > 0 {
+ ret.Rsh(ret, uint(excess))
+ }
+ return ret
+}
+
+// fermatInverse calculates the inverse of k in GF(P) using Fermat's method
+// (exponentiation modulo P - 2, per Euler's theorem). This has better
+// constant-time properties than Euclid's method (implemented in
+// math/big.Int.ModInverse and FIPS 186-4, Appendix C.1) although math/big
+// itself isn't strictly constant-time so it's not perfect.
+func fermatInverse(k, N *big.Int) *big.Int {
+ two := big.NewInt(2)
+ nMinus2 := new(big.Int).Sub(N, two)
+ return new(big.Int).Exp(k, nMinus2, N)
+}
+
+var errZeroParam = errors.New("zero parameter")
+
+// Sign signs a hash (which should be the result of hashing a larger message)
+// using the private key, priv. If the hash is longer than the bit-length of the
+// private key's curve order, the hash will be truncated to that length. It
+// returns the signature as a pair of integers. Most applications should use
+// SignASN1 instead of dealing directly with r, s.
+func Sign(rand io.Reader, priv *PrivateKey, hash []byte) (r, s *big.Int, err error) {
+ randutil.MaybeReadByte(rand)
+
+ // This implementation derives the nonce from an AES-CTR CSPRNG keyed by:
+ //
+ // SHA2-512(priv.D || entropy || hash)[:32]
+ //
+ // The CSPRNG key is indifferentiable from a random oracle as shown in
+ // [Coron], the AES-CTR stream is indifferentiable from a random oracle
+ // under standard cryptographic assumptions (see [Larsson] for examples).
+ //
+ // [Coron]: https://cs.nyu.edu/~dodis/ps/merkle.pdf
+ // [Larsson]: https://web.archive.org/web/20040719170906/https://www.nada.kth.se/kurser/kth/2D1441/semteo03/lecturenotes/assump.pdf
+
+ // Get 256 bits of entropy from rand.
+ entropy := make([]byte, 32)
+ _, err = io.ReadFull(rand, entropy)
+ if err != nil {
+ return
+ }
+
+ // Initialize an SHA-512 hash context; digest...
+ md := sha512.New()
+ md.Write(priv.D.Bytes()) // the private key,
+ md.Write(entropy) // the entropy,
+ md.Write(hash) // and the input hash;
+ key := md.Sum(nil)[:32] // and compute ChopMD-256(SHA-512),
+ // which is an indifferentiable MAC.
+
+ // Create an AES-CTR instance to use as a CSPRNG.
+ block, err := aes.NewCipher(key)
+ if err != nil {
+ return nil, nil, err
+ }
+
+ // Create a CSPRNG that xors a stream of zeros with
+ // the output of the AES-CTR instance.
+ csprng := cipher.StreamReader{
+ R: zeroReader,
+ S: cipher.NewCTR(block, []byte(aesIV)),
+ }
+
+ c := priv.PublicKey.Curve
+ return sign(priv, &csprng, c, hash)
+}
+
+func signGeneric(priv *PrivateKey, csprng *cipher.StreamReader, c elliptic.Curve, hash []byte) (r, s *big.Int, err error) {
+ // SEC 1, Version 2.0, Section 4.1.3
+ N := c.Params().N
+ if N.Sign() == 0 {
+ return nil, nil, errZeroParam
+ }
+ var k, kInv *big.Int
+ for {
+ for {
+ k, err = randFieldElement(c, *csprng)
+ if err != nil {
+ r = nil
+ return
+ }
+
+ if in, ok := priv.Curve.(invertible); ok {
+ kInv = in.Inverse(k)
+ } else {
+ kInv = fermatInverse(k, N) // N != 0
+ }
+
+ r, _ = priv.Curve.ScalarBaseMult(k.Bytes())
+ r.Mod(r, N)
+ if r.Sign() != 0 {
+ break
+ }
+ }
+
+ e := hashToInt(hash, c)
+ s = new(big.Int).Mul(priv.D, r)
+ s.Add(s, e)
+ s.Mul(s, kInv)
+ s.Mod(s, N) // N != 0
+ if s.Sign() != 0 {
+ break
+ }
+ }
+
+ return
+}
+
+// SignASN1 signs a hash (which should be the result of hashing a larger message)
+// using the private key, priv. If the hash is longer than the bit-length of the
+// private key's curve order, the hash will be truncated to that length. It
+// returns the ASN.1 encoded signature.
+func SignASN1(rand io.Reader, priv *PrivateKey, hash []byte) ([]byte, error) {
+ return priv.Sign(rand, hash, nil)
+}
+
+// Verify verifies the signature in r, s of hash using the public key, pub. Its
+// return value records whether the signature is valid. Most applications should
+// use VerifyASN1 instead of dealing directly with r, s.
+func Verify(pub *PublicKey, hash []byte, r, s *big.Int) bool {
+ c := pub.Curve
+ N := c.Params().N
+
+ if r.Sign() <= 0 || s.Sign() <= 0 {
+ return false
+ }
+ if r.Cmp(N) >= 0 || s.Cmp(N) >= 0 {
+ return false
+ }
+ return verify(pub, c, hash, r, s)
+}
+
+func verifyGeneric(pub *PublicKey, c elliptic.Curve, hash []byte, r, s *big.Int) bool {
+ // SEC 1, Version 2.0, Section 4.1.4
+ e := hashToInt(hash, c)
+ var w *big.Int
+ N := c.Params().N
+ if in, ok := c.(invertible); ok {
+ w = in.Inverse(s)
+ } else {
+ w = new(big.Int).ModInverse(s, N)
+ }
+
+ u1 := e.Mul(e, w)
+ u1.Mod(u1, N)
+ u2 := w.Mul(r, w)
+ u2.Mod(u2, N)
+
+ // Check if implements S1*g + S2*p
+ var x, y *big.Int
+ if opt, ok := c.(combinedMult); ok {
+ x, y = opt.CombinedMult(pub.X, pub.Y, u1.Bytes(), u2.Bytes())
+ } else {
+ x1, y1 := c.ScalarBaseMult(u1.Bytes())
+ x2, y2 := c.ScalarMult(pub.X, pub.Y, u2.Bytes())
+ x, y = c.Add(x1, y1, x2, y2)
+ }
+
+ if x.Sign() == 0 && y.Sign() == 0 {
+ return false
+ }
+ x.Mod(x, N)
+ return x.Cmp(r) == 0
+}
+
+// VerifyASN1 verifies the ASN.1 encoded signature, sig, of hash using the
+// public key, pub. Its return value records whether the signature is valid.
+func VerifyASN1(pub *PublicKey, hash, sig []byte) bool {
+ var (
+ r, s = &big.Int{}, &big.Int{}
+ inner cryptobyte.String
+ )
+ input := cryptobyte.String(sig)
+ if !input.ReadASN1(&inner, asn1.SEQUENCE) ||
+ !input.Empty() ||
+ !inner.ReadASN1Integer(r) ||
+ !inner.ReadASN1Integer(s) ||
+ !inner.Empty() {
+ return false
+ }
+ return Verify(pub, hash, r, s)
+}
+
+type zr struct {
+ io.Reader
+}
+
+// Read replaces the contents of dst with zeros.
+func (z *zr) Read(dst []byte) (n int, err error) {
+ for i := range dst {
+ dst[i] = 0
+ }
+ return len(dst), nil
+}
+
+var zeroReader = &zr{}
diff --git a/src/crypto/ecdsa/ecdsa_noasm.go b/src/crypto/ecdsa/ecdsa_noasm.go
new file mode 100644
index 0000000..7fbca10
--- /dev/null
+++ b/src/crypto/ecdsa/ecdsa_noasm.go
@@ -0,0 +1,21 @@
+// Copyright 2020 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+//go:build !s390x
+
+package ecdsa
+
+import (
+ "crypto/cipher"
+ "crypto/elliptic"
+ "math/big"
+)
+
+func sign(priv *PrivateKey, csprng *cipher.StreamReader, c elliptic.Curve, hash []byte) (r, s *big.Int, err error) {
+ return signGeneric(priv, csprng, c, hash)
+}
+
+func verify(pub *PublicKey, c elliptic.Curve, hash []byte, r, s *big.Int) bool {
+ return verifyGeneric(pub, c, hash, r, s)
+}
diff --git a/src/crypto/ecdsa/ecdsa_s390x.go b/src/crypto/ecdsa/ecdsa_s390x.go
new file mode 100644
index 0000000..1480d1b
--- /dev/null
+++ b/src/crypto/ecdsa/ecdsa_s390x.go
@@ -0,0 +1,163 @@
+// Copyright 2020 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package ecdsa
+
+import (
+ "crypto/cipher"
+ "crypto/elliptic"
+ "internal/cpu"
+ "math/big"
+)
+
+// kdsa invokes the "compute digital signature authentication"
+// instruction with the given function code and 4096 byte
+// parameter block.
+//
+// The return value corresponds to the condition code set by the
+// instruction. Interrupted invocations are handled by the
+// function.
+//go:noescape
+func kdsa(fc uint64, params *[4096]byte) (errn uint64)
+
+// testingDisableKDSA forces the generic fallback path. It must only be set in tests.
+var testingDisableKDSA bool
+
+// canUseKDSA checks if KDSA instruction is available, and if it is, it checks
+// the name of the curve to see if it matches the curves supported(P-256, P-384, P-521).
+// Then, based on the curve name, a function code and a block size will be assigned.
+// If KDSA instruction is not available or if the curve is not supported, canUseKDSA
+// will set ok to false.
+func canUseKDSA(c elliptic.Curve) (functionCode uint64, blockSize int, ok bool) {
+ if testingDisableKDSA {
+ return 0, 0, false
+ }
+ if !cpu.S390X.HasECDSA {
+ return 0, 0, false
+ }
+ switch c.Params().Name {
+ case "P-256":
+ return 1, 32, true
+ case "P-384":
+ return 2, 48, true
+ case "P-521":
+ return 3, 80, true
+ }
+ return 0, 0, false // A mismatch
+}
+
+func hashToBytes(dst, hash []byte, c elliptic.Curve) {
+ l := len(dst)
+ if n := c.Params().N.BitLen(); n == l*8 {
+ // allocation free path for curves with a length that is a whole number of bytes
+ if len(hash) >= l {
+ // truncate hash
+ copy(dst, hash[:l])
+ return
+ }
+ // pad hash with leading zeros
+ p := l - len(hash)
+ for i := 0; i < p; i++ {
+ dst[i] = 0
+ }
+ copy(dst[p:], hash)
+ return
+ }
+ // TODO(mundaym): avoid hashToInt call here
+ hashToInt(hash, c).FillBytes(dst)
+}
+
+func sign(priv *PrivateKey, csprng *cipher.StreamReader, c elliptic.Curve, hash []byte) (r, s *big.Int, err error) {
+ if functionCode, blockSize, ok := canUseKDSA(c); ok {
+ for {
+ var k *big.Int
+ k, err = randFieldElement(c, *csprng)
+ if err != nil {
+ return nil, nil, err
+ }
+
+ // The parameter block looks like the following for sign.
+ // +---------------------+
+ // | Signature(R) |
+ // +---------------------+
+ // | Signature(S) |
+ // +---------------------+
+ // | Hashed Message |
+ // +---------------------+
+ // | Private Key |
+ // +---------------------+
+ // | Random Number |
+ // +---------------------+
+ // | |
+ // | ... |
+ // | |
+ // +---------------------+
+ // The common components(signatureR, signatureS, hashedMessage, privateKey and
+ // random number) each takes block size of bytes. The block size is different for
+ // different curves and is set by canUseKDSA function.
+ var params [4096]byte
+
+ // Copy content into the parameter block. In the sign case,
+ // we copy hashed message, private key and random number into
+ // the parameter block.
+ hashToBytes(params[2*blockSize:3*blockSize], hash, c)
+ priv.D.FillBytes(params[3*blockSize : 4*blockSize])
+ k.FillBytes(params[4*blockSize : 5*blockSize])
+ // Convert verify function code into a sign function code by adding 8.
+ // We also need to set the 'deterministic' bit in the function code, by
+ // adding 128, in order to stop the instruction using its own random number
+ // generator in addition to the random number we supply.
+ switch kdsa(functionCode+136, &params) {
+ case 0: // success
+ r = new(big.Int)
+ r.SetBytes(params[:blockSize])
+ s = new(big.Int)
+ s.SetBytes(params[blockSize : 2*blockSize])
+ return
+ case 1: // error
+ return nil, nil, errZeroParam
+ case 2: // retry
+ continue
+ }
+ panic("unreachable")
+ }
+ }
+ return signGeneric(priv, csprng, c, hash)
+}
+
+func verify(pub *PublicKey, c elliptic.Curve, hash []byte, r, s *big.Int) bool {
+ if functionCode, blockSize, ok := canUseKDSA(c); ok {
+ // The parameter block looks like the following for verify:
+ // +---------------------+
+ // | Signature(R) |
+ // +---------------------+
+ // | Signature(S) |
+ // +---------------------+
+ // | Hashed Message |
+ // +---------------------+
+ // | Public Key X |
+ // +---------------------+
+ // | Public Key Y |
+ // +---------------------+
+ // | |
+ // | ... |
+ // | |
+ // +---------------------+
+ // The common components(signatureR, signatureS, hashed message, public key X,
+ // and public key Y) each takes block size of bytes. The block size is different for
+ // different curves and is set by canUseKDSA function.
+ var params [4096]byte
+
+ // Copy content into the parameter block. In the verify case,
+ // we copy signature (r), signature(s), hashed message, public key x component,
+ // and public key y component into the parameter block.
+ r.FillBytes(params[0*blockSize : 1*blockSize])
+ s.FillBytes(params[1*blockSize : 2*blockSize])
+ hashToBytes(params[2*blockSize:3*blockSize], hash, c)
+ pub.X.FillBytes(params[3*blockSize : 4*blockSize])
+ pub.Y.FillBytes(params[4*blockSize : 5*blockSize])
+ return kdsa(functionCode, &params) == 0
+ }
+ return verifyGeneric(pub, c, hash, r, s)
+}
diff --git a/src/crypto/ecdsa/ecdsa_s390x.s b/src/crypto/ecdsa/ecdsa_s390x.s
new file mode 100644
index 0000000..ba5b3bf
--- /dev/null
+++ b/src/crypto/ecdsa/ecdsa_s390x.s
@@ -0,0 +1,28 @@
+// Copyright 2020 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+#include "textflag.h"
+
+// func kdsa(fc uint64, params *[4096]byte) (errn uint64)
+TEXT ·kdsa(SB), NOSPLIT|NOFRAME, $0-24
+ MOVD fc+0(FP), R0 // function code
+ MOVD params+8(FP), R1 // address parameter block
+
+loop:
+ WORD $0xB93A0008 // compute digital signature authentication
+ BVS loop // branch back if interrupted
+ BGT retry // signing unsuccessful, but retry with new CSPRN
+ BLT error // condition code of 1 indicates a failure
+
+success:
+ MOVD $0, errn+16(FP) // return 0 - sign/verify was successful
+ RET
+
+error:
+ MOVD $1, errn+16(FP) // return 1 - sign/verify failed
+ RET
+
+retry:
+ MOVD $2, errn+16(FP) // return 2 - sign/verify was unsuccessful -- if sign, retry with new RN
+ RET
diff --git a/src/crypto/ecdsa/ecdsa_s390x_test.go b/src/crypto/ecdsa/ecdsa_s390x_test.go
new file mode 100644
index 0000000..fd1dc7c
--- /dev/null
+++ b/src/crypto/ecdsa/ecdsa_s390x_test.go
@@ -0,0 +1,32 @@
+// Copyright 2020 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+//go:build s390x
+
+package ecdsa
+
+import (
+ "crypto/elliptic"
+ "testing"
+)
+
+func TestNoAsm(t *testing.T) {
+ testingDisableKDSA = true
+ defer func() { testingDisableKDSA = false }()
+
+ curves := [...]elliptic.Curve{
+ elliptic.P256(),
+ elliptic.P384(),
+ elliptic.P521(),
+ }
+
+ for _, curve := range curves {
+ name := curve.Params().Name
+ t.Run(name, func(t *testing.T) { testKeyGeneration(t, curve) })
+ t.Run(name, func(t *testing.T) { testSignAndVerify(t, curve) })
+ t.Run(name, func(t *testing.T) { testNonceSafety(t, curve) })
+ t.Run(name, func(t *testing.T) { testINDCCA(t, curve) })
+ t.Run(name, func(t *testing.T) { testNegativeInputs(t, curve) })
+ }
+}
diff --git a/src/crypto/ecdsa/ecdsa_test.go b/src/crypto/ecdsa/ecdsa_test.go
new file mode 100644
index 0000000..c8390b2
--- /dev/null
+++ b/src/crypto/ecdsa/ecdsa_test.go
@@ -0,0 +1,401 @@
+// Copyright 2011 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package ecdsa
+
+import (
+ "bufio"
+ "compress/bzip2"
+ "crypto/elliptic"
+ "crypto/rand"
+ "crypto/sha1"
+ "crypto/sha256"
+ "crypto/sha512"
+ "encoding/hex"
+ "hash"
+ "io"
+ "math/big"
+ "os"
+ "strings"
+ "testing"
+)
+
+func testAllCurves(t *testing.T, f func(*testing.T, elliptic.Curve)) {
+ tests := []struct {
+ name string
+ curve elliptic.Curve
+ }{
+ {"P256", elliptic.P256()},
+ {"P224", elliptic.P224()},
+ {"P384", elliptic.P384()},
+ {"P521", elliptic.P521()},
+ }
+ if testing.Short() {
+ tests = tests[:1]
+ }
+ for _, test := range tests {
+ curve := test.curve
+ t.Run(test.name, func(t *testing.T) {
+ t.Parallel()
+ f(t, curve)
+ })
+ }
+}
+
+func TestKeyGeneration(t *testing.T) {
+ testAllCurves(t, testKeyGeneration)
+}
+
+func testKeyGeneration(t *testing.T, c elliptic.Curve) {
+ priv, err := GenerateKey(c, rand.Reader)
+ if err != nil {
+ t.Fatal(err)
+ }
+ if !c.IsOnCurve(priv.PublicKey.X, priv.PublicKey.Y) {
+ t.Errorf("public key invalid: %s", err)
+ }
+}
+
+func TestSignAndVerify(t *testing.T) {
+ testAllCurves(t, testSignAndVerify)
+}
+
+func testSignAndVerify(t *testing.T, c elliptic.Curve) {
+ priv, _ := GenerateKey(c, rand.Reader)
+
+ hashed := []byte("testing")
+ r, s, err := Sign(rand.Reader, priv, hashed)
+ if err != nil {
+ t.Errorf("error signing: %s", err)
+ return
+ }
+
+ if !Verify(&priv.PublicKey, hashed, r, s) {
+ t.Errorf("Verify failed")
+ }
+
+ hashed[0] ^= 0xff
+ if Verify(&priv.PublicKey, hashed, r, s) {
+ t.Errorf("Verify always works!")
+ }
+}
+
+func TestSignAndVerifyASN1(t *testing.T) {
+ testAllCurves(t, testSignAndVerifyASN1)
+}
+
+func testSignAndVerifyASN1(t *testing.T, c elliptic.Curve) {
+ priv, _ := GenerateKey(c, rand.Reader)
+
+ hashed := []byte("testing")
+ sig, err := SignASN1(rand.Reader, priv, hashed)
+ if err != nil {
+ t.Errorf("error signing: %s", err)
+ return
+ }
+
+ if !VerifyASN1(&priv.PublicKey, hashed, sig) {
+ t.Errorf("VerifyASN1 failed")
+ }
+
+ hashed[0] ^= 0xff
+ if VerifyASN1(&priv.PublicKey, hashed, sig) {
+ t.Errorf("VerifyASN1 always works!")
+ }
+}
+
+func TestNonceSafety(t *testing.T) {
+ testAllCurves(t, testNonceSafety)
+}
+
+func testNonceSafety(t *testing.T, c elliptic.Curve) {
+ priv, _ := GenerateKey(c, rand.Reader)
+
+ hashed := []byte("testing")
+ r0, s0, err := Sign(zeroReader, priv, hashed)
+ if err != nil {
+ t.Errorf("error signing: %s", err)
+ return
+ }
+
+ hashed = []byte("testing...")
+ r1, s1, err := Sign(zeroReader, priv, hashed)
+ if err != nil {
+ t.Errorf("error signing: %s", err)
+ return
+ }
+
+ if s0.Cmp(s1) == 0 {
+ // This should never happen.
+ t.Errorf("the signatures on two different messages were the same")
+ }
+
+ if r0.Cmp(r1) == 0 {
+ t.Errorf("the nonce used for two different messages was the same")
+ }
+}
+
+func TestINDCCA(t *testing.T) {
+ testAllCurves(t, testINDCCA)
+}
+
+func testINDCCA(t *testing.T, c elliptic.Curve) {
+ priv, _ := GenerateKey(c, rand.Reader)
+
+ hashed := []byte("testing")
+ r0, s0, err := Sign(rand.Reader, priv, hashed)
+ if err != nil {
+ t.Errorf("error signing: %s", err)
+ return
+ }
+
+ r1, s1, err := Sign(rand.Reader, priv, hashed)
+ if err != nil {
+ t.Errorf("error signing: %s", err)
+ return
+ }
+
+ if s0.Cmp(s1) == 0 {
+ t.Errorf("two signatures of the same message produced the same result")
+ }
+
+ if r0.Cmp(r1) == 0 {
+ t.Errorf("two signatures of the same message produced the same nonce")
+ }
+}
+
+func fromHex(s string) *big.Int {
+ r, ok := new(big.Int).SetString(s, 16)
+ if !ok {
+ panic("bad hex")
+ }
+ return r
+}
+
+func TestVectors(t *testing.T) {
+ // This test runs the full set of NIST test vectors from
+ // https://csrc.nist.gov/groups/STM/cavp/documents/dss/186-3ecdsatestvectors.zip
+ //
+ // The SigVer.rsp file has been edited to remove test vectors for
+ // unsupported algorithms and has been compressed.
+
+ if testing.Short() {
+ return
+ }
+
+ f, err := os.Open("testdata/SigVer.rsp.bz2")
+ if err != nil {
+ t.Fatal(err)
+ }
+
+ buf := bufio.NewReader(bzip2.NewReader(f))
+
+ lineNo := 1
+ var h hash.Hash
+ var msg []byte
+ var hashed []byte
+ var r, s *big.Int
+ pub := new(PublicKey)
+
+ for {
+ line, err := buf.ReadString('\n')
+ if len(line) == 0 {
+ if err == io.EOF {
+ break
+ }
+ t.Fatalf("error reading from input: %s", err)
+ }
+ lineNo++
+ // Need to remove \r\n from the end of the line.
+ if !strings.HasSuffix(line, "\r\n") {
+ t.Fatalf("bad line ending (expected \\r\\n) on line %d", lineNo)
+ }
+ line = line[:len(line)-2]
+
+ if len(line) == 0 || line[0] == '#' {
+ continue
+ }
+
+ if line[0] == '[' {
+ line = line[1 : len(line)-1]
+ curve, hash, _ := strings.Cut(line, ",")
+
+ switch curve {
+ case "P-224":
+ pub.Curve = elliptic.P224()
+ case "P-256":
+ pub.Curve = elliptic.P256()
+ case "P-384":
+ pub.Curve = elliptic.P384()
+ case "P-521":
+ pub.Curve = elliptic.P521()
+ default:
+ pub.Curve = nil
+ }
+
+ switch hash {
+ case "SHA-1":
+ h = sha1.New()
+ case "SHA-224":
+ h = sha256.New224()
+ case "SHA-256":
+ h = sha256.New()
+ case "SHA-384":
+ h = sha512.New384()
+ case "SHA-512":
+ h = sha512.New()
+ default:
+ h = nil
+ }
+
+ continue
+ }
+
+ if h == nil || pub.Curve == nil {
+ continue
+ }
+
+ switch {
+ case strings.HasPrefix(line, "Msg = "):
+ if msg, err = hex.DecodeString(line[6:]); err != nil {
+ t.Fatalf("failed to decode message on line %d: %s", lineNo, err)
+ }
+ case strings.HasPrefix(line, "Qx = "):
+ pub.X = fromHex(line[5:])
+ case strings.HasPrefix(line, "Qy = "):
+ pub.Y = fromHex(line[5:])
+ case strings.HasPrefix(line, "R = "):
+ r = fromHex(line[4:])
+ case strings.HasPrefix(line, "S = "):
+ s = fromHex(line[4:])
+ case strings.HasPrefix(line, "Result = "):
+ expected := line[9] == 'P'
+ h.Reset()
+ h.Write(msg)
+ hashed := h.Sum(hashed[:0])
+ if Verify(pub, hashed, r, s) != expected {
+ t.Fatalf("incorrect result on line %d", lineNo)
+ }
+ default:
+ t.Fatalf("unknown variable on line %d: %s", lineNo, line)
+ }
+ }
+}
+
+func TestNegativeInputs(t *testing.T) {
+ testAllCurves(t, testNegativeInputs)
+}
+
+func testNegativeInputs(t *testing.T, curve elliptic.Curve) {
+ key, err := GenerateKey(curve, rand.Reader)
+ if err != nil {
+ t.Errorf("failed to generate key")
+ }
+
+ var hash [32]byte
+ r := new(big.Int).SetInt64(1)
+ r.Lsh(r, 550 /* larger than any supported curve */)
+ r.Neg(r)
+
+ if Verify(&key.PublicKey, hash[:], r, r) {
+ t.Errorf("bogus signature accepted")
+ }
+}
+
+func TestZeroHashSignature(t *testing.T) {
+ testAllCurves(t, testZeroHashSignature)
+}
+
+func testZeroHashSignature(t *testing.T, curve elliptic.Curve) {
+ zeroHash := make([]byte, 64)
+
+ privKey, err := GenerateKey(curve, rand.Reader)
+ if err != nil {
+ panic(err)
+ }
+
+ // Sign a hash consisting of all zeros.
+ r, s, err := Sign(rand.Reader, privKey, zeroHash)
+ if err != nil {
+ panic(err)
+ }
+
+ // Confirm that it can be verified.
+ if !Verify(&privKey.PublicKey, zeroHash, r, s) {
+ t.Errorf("zero hash signature verify failed for %T", curve)
+ }
+}
+
+func benchmarkAllCurves(t *testing.B, f func(*testing.B, elliptic.Curve)) {
+ tests := []struct {
+ name string
+ curve elliptic.Curve
+ }{
+ {"P256", elliptic.P256()},
+ {"P224", elliptic.P224()},
+ {"P384", elliptic.P384()},
+ {"P521", elliptic.P521()},
+ }
+ for _, test := range tests {
+ curve := test.curve
+ t.Run(test.name, func(t *testing.B) {
+ f(t, curve)
+ })
+ }
+}
+
+func BenchmarkSign(b *testing.B) {
+ benchmarkAllCurves(b, func(b *testing.B, curve elliptic.Curve) {
+ priv, err := GenerateKey(curve, rand.Reader)
+ if err != nil {
+ b.Fatal(err)
+ }
+ hashed := []byte("testing")
+
+ b.ReportAllocs()
+ b.ResetTimer()
+ for i := 0; i < b.N; i++ {
+ sig, err := SignASN1(rand.Reader, priv, hashed)
+ if err != nil {
+ b.Fatal(err)
+ }
+ // Prevent the compiler from optimizing out the operation.
+ hashed[0] = sig[0]
+ }
+ })
+}
+
+func BenchmarkVerify(b *testing.B) {
+ benchmarkAllCurves(b, func(b *testing.B, curve elliptic.Curve) {
+ priv, err := GenerateKey(curve, rand.Reader)
+ if err != nil {
+ b.Fatal(err)
+ }
+ hashed := []byte("testing")
+ r, s, err := Sign(rand.Reader, priv, hashed)
+ if err != nil {
+ b.Fatal(err)
+ }
+
+ b.ReportAllocs()
+ b.ResetTimer()
+ for i := 0; i < b.N; i++ {
+ if !Verify(&priv.PublicKey, hashed, r, s) {
+ b.Fatal("verify failed")
+ }
+ }
+ })
+}
+
+func BenchmarkGenerateKey(b *testing.B) {
+ benchmarkAllCurves(b, func(b *testing.B, curve elliptic.Curve) {
+ b.ReportAllocs()
+ b.ResetTimer()
+ for i := 0; i < b.N; i++ {
+ if _, err := GenerateKey(curve, rand.Reader); err != nil {
+ b.Fatal(err)
+ }
+ }
+ })
+}
diff --git a/src/crypto/ecdsa/equal_test.go b/src/crypto/ecdsa/equal_test.go
new file mode 100644
index 0000000..53ac850
--- /dev/null
+++ b/src/crypto/ecdsa/equal_test.go
@@ -0,0 +1,75 @@
+// Copyright 2020 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package ecdsa_test
+
+import (
+ "crypto"
+ "crypto/ecdsa"
+ "crypto/elliptic"
+ "crypto/rand"
+ "crypto/x509"
+ "testing"
+)
+
+func testEqual(t *testing.T, c elliptic.Curve) {
+ private, _ := ecdsa.GenerateKey(c, rand.Reader)
+ public := &private.PublicKey
+
+ if !public.Equal(public) {
+ t.Errorf("public key is not equal to itself: %v", public)
+ }
+ if !public.Equal(crypto.Signer(private).Public().(*ecdsa.PublicKey)) {
+ t.Errorf("private.Public() is not Equal to public: %q", public)
+ }
+ if !private.Equal(private) {
+ t.Errorf("private key is not equal to itself: %v", private)
+ }
+
+ enc, err := x509.MarshalPKCS8PrivateKey(private)
+ if err != nil {
+ t.Fatal(err)
+ }
+ decoded, err := x509.ParsePKCS8PrivateKey(enc)
+ if err != nil {
+ t.Fatal(err)
+ }
+ if !public.Equal(decoded.(crypto.Signer).Public()) {
+ t.Errorf("public key is not equal to itself after decoding: %v", public)
+ }
+ if !private.Equal(decoded) {
+ t.Errorf("private key is not equal to itself after decoding: %v", private)
+ }
+
+ other, _ := ecdsa.GenerateKey(c, rand.Reader)
+ if public.Equal(other.Public()) {
+ t.Errorf("different public keys are Equal")
+ }
+ if private.Equal(other) {
+ t.Errorf("different private keys are Equal")
+ }
+
+ // Ensure that keys with the same coordinates but on different curves
+ // aren't considered Equal.
+ differentCurve := &ecdsa.PublicKey{}
+ *differentCurve = *public // make a copy of the public key
+ if differentCurve.Curve == elliptic.P256() {
+ differentCurve.Curve = elliptic.P224()
+ } else {
+ differentCurve.Curve = elliptic.P256()
+ }
+ if public.Equal(differentCurve) {
+ t.Errorf("public keys with different curves are Equal")
+ }
+}
+
+func TestEqual(t *testing.T) {
+ t.Run("P224", func(t *testing.T) { testEqual(t, elliptic.P224()) })
+ if testing.Short() {
+ return
+ }
+ t.Run("P256", func(t *testing.T) { testEqual(t, elliptic.P256()) })
+ t.Run("P384", func(t *testing.T) { testEqual(t, elliptic.P384()) })
+ t.Run("P521", func(t *testing.T) { testEqual(t, elliptic.P521()) })
+}
diff --git a/src/crypto/ecdsa/example_test.go b/src/crypto/ecdsa/example_test.go
new file mode 100644
index 0000000..652c165
--- /dev/null
+++ b/src/crypto/ecdsa/example_test.go
@@ -0,0 +1,32 @@
+// Copyright 2018 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package ecdsa_test
+
+import (
+ "crypto/ecdsa"
+ "crypto/elliptic"
+ "crypto/rand"
+ "crypto/sha256"
+ "fmt"
+)
+
+func Example() {
+ privateKey, err := ecdsa.GenerateKey(elliptic.P256(), rand.Reader)
+ if err != nil {
+ panic(err)
+ }
+
+ msg := "hello, world"
+ hash := sha256.Sum256([]byte(msg))
+
+ sig, err := ecdsa.SignASN1(rand.Reader, privateKey, hash[:])
+ if err != nil {
+ panic(err)
+ }
+ fmt.Printf("signature: %x\n", sig)
+
+ valid := ecdsa.VerifyASN1(&privateKey.PublicKey, hash[:], sig)
+ fmt.Println("signature verified:", valid)
+}
diff --git a/src/crypto/ecdsa/testdata/SigVer.rsp.bz2 b/src/crypto/ecdsa/testdata/SigVer.rsp.bz2
new file mode 100644
index 0000000..09fe2b4
--- /dev/null
+++ b/src/crypto/ecdsa/testdata/SigVer.rsp.bz2
Binary files differ