summaryrefslogtreecommitdiffstats
path: root/src/runtime/sema.go
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-28 13:16:40 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-28 13:16:40 +0000
commit47ab3d4a42e9ab51c465c4322d2ec233f6324e6b (patch)
treea61a0ffd83f4a3def4b36e5c8e99630c559aa723 /src/runtime/sema.go
parentInitial commit. (diff)
downloadgolang-1.18-47ab3d4a42e9ab51c465c4322d2ec233f6324e6b.tar.xz
golang-1.18-47ab3d4a42e9ab51c465c4322d2ec233f6324e6b.zip
Adding upstream version 1.18.10.upstream/1.18.10upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/runtime/sema.go')
-rw-r--r--src/runtime/sema.go617
1 files changed, 617 insertions, 0 deletions
diff --git a/src/runtime/sema.go b/src/runtime/sema.go
new file mode 100644
index 0000000..f94c1aa
--- /dev/null
+++ b/src/runtime/sema.go
@@ -0,0 +1,617 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// Semaphore implementation exposed to Go.
+// Intended use is provide a sleep and wakeup
+// primitive that can be used in the contended case
+// of other synchronization primitives.
+// Thus it targets the same goal as Linux's futex,
+// but it has much simpler semantics.
+//
+// That is, don't think of these as semaphores.
+// Think of them as a way to implement sleep and wakeup
+// such that every sleep is paired with a single wakeup,
+// even if, due to races, the wakeup happens before the sleep.
+//
+// See Mullender and Cox, ``Semaphores in Plan 9,''
+// https://swtch.com/semaphore.pdf
+
+package runtime
+
+import (
+ "internal/cpu"
+ "runtime/internal/atomic"
+ "unsafe"
+)
+
+// Asynchronous semaphore for sync.Mutex.
+
+// A semaRoot holds a balanced tree of sudog with distinct addresses (s.elem).
+// Each of those sudog may in turn point (through s.waitlink) to a list
+// of other sudogs waiting on the same address.
+// The operations on the inner lists of sudogs with the same address
+// are all O(1). The scanning of the top-level semaRoot list is O(log n),
+// where n is the number of distinct addresses with goroutines blocked
+// on them that hash to the given semaRoot.
+// See golang.org/issue/17953 for a program that worked badly
+// before we introduced the second level of list, and test/locklinear.go
+// for a test that exercises this.
+type semaRoot struct {
+ lock mutex
+ treap *sudog // root of balanced tree of unique waiters.
+ nwait uint32 // Number of waiters. Read w/o the lock.
+}
+
+// Prime to not correlate with any user patterns.
+const semTabSize = 251
+
+var semtable [semTabSize]struct {
+ root semaRoot
+ pad [cpu.CacheLinePadSize - unsafe.Sizeof(semaRoot{})]byte
+}
+
+//go:linkname sync_runtime_Semacquire sync.runtime_Semacquire
+func sync_runtime_Semacquire(addr *uint32) {
+ semacquire1(addr, false, semaBlockProfile, 0)
+}
+
+//go:linkname poll_runtime_Semacquire internal/poll.runtime_Semacquire
+func poll_runtime_Semacquire(addr *uint32) {
+ semacquire1(addr, false, semaBlockProfile, 0)
+}
+
+//go:linkname sync_runtime_Semrelease sync.runtime_Semrelease
+func sync_runtime_Semrelease(addr *uint32, handoff bool, skipframes int) {
+ semrelease1(addr, handoff, skipframes)
+}
+
+//go:linkname sync_runtime_SemacquireMutex sync.runtime_SemacquireMutex
+func sync_runtime_SemacquireMutex(addr *uint32, lifo bool, skipframes int) {
+ semacquire1(addr, lifo, semaBlockProfile|semaMutexProfile, skipframes)
+}
+
+//go:linkname poll_runtime_Semrelease internal/poll.runtime_Semrelease
+func poll_runtime_Semrelease(addr *uint32) {
+ semrelease(addr)
+}
+
+func readyWithTime(s *sudog, traceskip int) {
+ if s.releasetime != 0 {
+ s.releasetime = cputicks()
+ }
+ goready(s.g, traceskip)
+}
+
+type semaProfileFlags int
+
+const (
+ semaBlockProfile semaProfileFlags = 1 << iota
+ semaMutexProfile
+)
+
+// Called from runtime.
+func semacquire(addr *uint32) {
+ semacquire1(addr, false, 0, 0)
+}
+
+func semacquire1(addr *uint32, lifo bool, profile semaProfileFlags, skipframes int) {
+ gp := getg()
+ if gp != gp.m.curg {
+ throw("semacquire not on the G stack")
+ }
+
+ // Easy case.
+ if cansemacquire(addr) {
+ return
+ }
+
+ // Harder case:
+ // increment waiter count
+ // try cansemacquire one more time, return if succeeded
+ // enqueue itself as a waiter
+ // sleep
+ // (waiter descriptor is dequeued by signaler)
+ s := acquireSudog()
+ root := semroot(addr)
+ t0 := int64(0)
+ s.releasetime = 0
+ s.acquiretime = 0
+ s.ticket = 0
+ if profile&semaBlockProfile != 0 && blockprofilerate > 0 {
+ t0 = cputicks()
+ s.releasetime = -1
+ }
+ if profile&semaMutexProfile != 0 && mutexprofilerate > 0 {
+ if t0 == 0 {
+ t0 = cputicks()
+ }
+ s.acquiretime = t0
+ }
+ for {
+ lockWithRank(&root.lock, lockRankRoot)
+ // Add ourselves to nwait to disable "easy case" in semrelease.
+ atomic.Xadd(&root.nwait, 1)
+ // Check cansemacquire to avoid missed wakeup.
+ if cansemacquire(addr) {
+ atomic.Xadd(&root.nwait, -1)
+ unlock(&root.lock)
+ break
+ }
+ // Any semrelease after the cansemacquire knows we're waiting
+ // (we set nwait above), so go to sleep.
+ root.queue(addr, s, lifo)
+ goparkunlock(&root.lock, waitReasonSemacquire, traceEvGoBlockSync, 4+skipframes)
+ if s.ticket != 0 || cansemacquire(addr) {
+ break
+ }
+ }
+ if s.releasetime > 0 {
+ blockevent(s.releasetime-t0, 3+skipframes)
+ }
+ releaseSudog(s)
+}
+
+func semrelease(addr *uint32) {
+ semrelease1(addr, false, 0)
+}
+
+func semrelease1(addr *uint32, handoff bool, skipframes int) {
+ root := semroot(addr)
+ atomic.Xadd(addr, 1)
+
+ // Easy case: no waiters?
+ // This check must happen after the xadd, to avoid a missed wakeup
+ // (see loop in semacquire).
+ if atomic.Load(&root.nwait) == 0 {
+ return
+ }
+
+ // Harder case: search for a waiter and wake it.
+ lockWithRank(&root.lock, lockRankRoot)
+ if atomic.Load(&root.nwait) == 0 {
+ // The count is already consumed by another goroutine,
+ // so no need to wake up another goroutine.
+ unlock(&root.lock)
+ return
+ }
+ s, t0 := root.dequeue(addr)
+ if s != nil {
+ atomic.Xadd(&root.nwait, -1)
+ }
+ unlock(&root.lock)
+ if s != nil { // May be slow or even yield, so unlock first
+ acquiretime := s.acquiretime
+ if acquiretime != 0 {
+ mutexevent(t0-acquiretime, 3+skipframes)
+ }
+ if s.ticket != 0 {
+ throw("corrupted semaphore ticket")
+ }
+ if handoff && cansemacquire(addr) {
+ s.ticket = 1
+ }
+ readyWithTime(s, 5+skipframes)
+ if s.ticket == 1 && getg().m.locks == 0 {
+ // Direct G handoff
+ // readyWithTime has added the waiter G as runnext in the
+ // current P; we now call the scheduler so that we start running
+ // the waiter G immediately.
+ // Note that waiter inherits our time slice: this is desirable
+ // to avoid having a highly contended semaphore hog the P
+ // indefinitely. goyield is like Gosched, but it emits a
+ // "preempted" trace event instead and, more importantly, puts
+ // the current G on the local runq instead of the global one.
+ // We only do this in the starving regime (handoff=true), as in
+ // the non-starving case it is possible for a different waiter
+ // to acquire the semaphore while we are yielding/scheduling,
+ // and this would be wasteful. We wait instead to enter starving
+ // regime, and then we start to do direct handoffs of ticket and
+ // P.
+ // See issue 33747 for discussion.
+ goyield()
+ }
+ }
+}
+
+func semroot(addr *uint32) *semaRoot {
+ return &semtable[(uintptr(unsafe.Pointer(addr))>>3)%semTabSize].root
+}
+
+func cansemacquire(addr *uint32) bool {
+ for {
+ v := atomic.Load(addr)
+ if v == 0 {
+ return false
+ }
+ if atomic.Cas(addr, v, v-1) {
+ return true
+ }
+ }
+}
+
+// queue adds s to the blocked goroutines in semaRoot.
+func (root *semaRoot) queue(addr *uint32, s *sudog, lifo bool) {
+ s.g = getg()
+ s.elem = unsafe.Pointer(addr)
+ s.next = nil
+ s.prev = nil
+
+ var last *sudog
+ pt := &root.treap
+ for t := *pt; t != nil; t = *pt {
+ if t.elem == unsafe.Pointer(addr) {
+ // Already have addr in list.
+ if lifo {
+ // Substitute s in t's place in treap.
+ *pt = s
+ s.ticket = t.ticket
+ s.acquiretime = t.acquiretime
+ s.parent = t.parent
+ s.prev = t.prev
+ s.next = t.next
+ if s.prev != nil {
+ s.prev.parent = s
+ }
+ if s.next != nil {
+ s.next.parent = s
+ }
+ // Add t first in s's wait list.
+ s.waitlink = t
+ s.waittail = t.waittail
+ if s.waittail == nil {
+ s.waittail = t
+ }
+ t.parent = nil
+ t.prev = nil
+ t.next = nil
+ t.waittail = nil
+ } else {
+ // Add s to end of t's wait list.
+ if t.waittail == nil {
+ t.waitlink = s
+ } else {
+ t.waittail.waitlink = s
+ }
+ t.waittail = s
+ s.waitlink = nil
+ }
+ return
+ }
+ last = t
+ if uintptr(unsafe.Pointer(addr)) < uintptr(t.elem) {
+ pt = &t.prev
+ } else {
+ pt = &t.next
+ }
+ }
+
+ // Add s as new leaf in tree of unique addrs.
+ // The balanced tree is a treap using ticket as the random heap priority.
+ // That is, it is a binary tree ordered according to the elem addresses,
+ // but then among the space of possible binary trees respecting those
+ // addresses, it is kept balanced on average by maintaining a heap ordering
+ // on the ticket: s.ticket <= both s.prev.ticket and s.next.ticket.
+ // https://en.wikipedia.org/wiki/Treap
+ // https://faculty.washington.edu/aragon/pubs/rst89.pdf
+ //
+ // s.ticket compared with zero in couple of places, therefore set lowest bit.
+ // It will not affect treap's quality noticeably.
+ s.ticket = fastrand() | 1
+ s.parent = last
+ *pt = s
+
+ // Rotate up into tree according to ticket (priority).
+ for s.parent != nil && s.parent.ticket > s.ticket {
+ if s.parent.prev == s {
+ root.rotateRight(s.parent)
+ } else {
+ if s.parent.next != s {
+ panic("semaRoot queue")
+ }
+ root.rotateLeft(s.parent)
+ }
+ }
+}
+
+// dequeue searches for and finds the first goroutine
+// in semaRoot blocked on addr.
+// If the sudog was being profiled, dequeue returns the time
+// at which it was woken up as now. Otherwise now is 0.
+func (root *semaRoot) dequeue(addr *uint32) (found *sudog, now int64) {
+ ps := &root.treap
+ s := *ps
+ for ; s != nil; s = *ps {
+ if s.elem == unsafe.Pointer(addr) {
+ goto Found
+ }
+ if uintptr(unsafe.Pointer(addr)) < uintptr(s.elem) {
+ ps = &s.prev
+ } else {
+ ps = &s.next
+ }
+ }
+ return nil, 0
+
+Found:
+ now = int64(0)
+ if s.acquiretime != 0 {
+ now = cputicks()
+ }
+ if t := s.waitlink; t != nil {
+ // Substitute t, also waiting on addr, for s in root tree of unique addrs.
+ *ps = t
+ t.ticket = s.ticket
+ t.parent = s.parent
+ t.prev = s.prev
+ if t.prev != nil {
+ t.prev.parent = t
+ }
+ t.next = s.next
+ if t.next != nil {
+ t.next.parent = t
+ }
+ if t.waitlink != nil {
+ t.waittail = s.waittail
+ } else {
+ t.waittail = nil
+ }
+ t.acquiretime = now
+ s.waitlink = nil
+ s.waittail = nil
+ } else {
+ // Rotate s down to be leaf of tree for removal, respecting priorities.
+ for s.next != nil || s.prev != nil {
+ if s.next == nil || s.prev != nil && s.prev.ticket < s.next.ticket {
+ root.rotateRight(s)
+ } else {
+ root.rotateLeft(s)
+ }
+ }
+ // Remove s, now a leaf.
+ if s.parent != nil {
+ if s.parent.prev == s {
+ s.parent.prev = nil
+ } else {
+ s.parent.next = nil
+ }
+ } else {
+ root.treap = nil
+ }
+ }
+ s.parent = nil
+ s.elem = nil
+ s.next = nil
+ s.prev = nil
+ s.ticket = 0
+ return s, now
+}
+
+// rotateLeft rotates the tree rooted at node x.
+// turning (x a (y b c)) into (y (x a b) c).
+func (root *semaRoot) rotateLeft(x *sudog) {
+ // p -> (x a (y b c))
+ p := x.parent
+ y := x.next
+ b := y.prev
+
+ y.prev = x
+ x.parent = y
+ x.next = b
+ if b != nil {
+ b.parent = x
+ }
+
+ y.parent = p
+ if p == nil {
+ root.treap = y
+ } else if p.prev == x {
+ p.prev = y
+ } else {
+ if p.next != x {
+ throw("semaRoot rotateLeft")
+ }
+ p.next = y
+ }
+}
+
+// rotateRight rotates the tree rooted at node y.
+// turning (y (x a b) c) into (x a (y b c)).
+func (root *semaRoot) rotateRight(y *sudog) {
+ // p -> (y (x a b) c)
+ p := y.parent
+ x := y.prev
+ b := x.next
+
+ x.next = y
+ y.parent = x
+ y.prev = b
+ if b != nil {
+ b.parent = y
+ }
+
+ x.parent = p
+ if p == nil {
+ root.treap = x
+ } else if p.prev == y {
+ p.prev = x
+ } else {
+ if p.next != y {
+ throw("semaRoot rotateRight")
+ }
+ p.next = x
+ }
+}
+
+// notifyList is a ticket-based notification list used to implement sync.Cond.
+//
+// It must be kept in sync with the sync package.
+type notifyList struct {
+ // wait is the ticket number of the next waiter. It is atomically
+ // incremented outside the lock.
+ wait uint32
+
+ // notify is the ticket number of the next waiter to be notified. It can
+ // be read outside the lock, but is only written to with lock held.
+ //
+ // Both wait & notify can wrap around, and such cases will be correctly
+ // handled as long as their "unwrapped" difference is bounded by 2^31.
+ // For this not to be the case, we'd need to have 2^31+ goroutines
+ // blocked on the same condvar, which is currently not possible.
+ notify uint32
+
+ // List of parked waiters.
+ lock mutex
+ head *sudog
+ tail *sudog
+}
+
+// less checks if a < b, considering a & b running counts that may overflow the
+// 32-bit range, and that their "unwrapped" difference is always less than 2^31.
+func less(a, b uint32) bool {
+ return int32(a-b) < 0
+}
+
+// notifyListAdd adds the caller to a notify list such that it can receive
+// notifications. The caller must eventually call notifyListWait to wait for
+// such a notification, passing the returned ticket number.
+//go:linkname notifyListAdd sync.runtime_notifyListAdd
+func notifyListAdd(l *notifyList) uint32 {
+ // This may be called concurrently, for example, when called from
+ // sync.Cond.Wait while holding a RWMutex in read mode.
+ return atomic.Xadd(&l.wait, 1) - 1
+}
+
+// notifyListWait waits for a notification. If one has been sent since
+// notifyListAdd was called, it returns immediately. Otherwise, it blocks.
+//go:linkname notifyListWait sync.runtime_notifyListWait
+func notifyListWait(l *notifyList, t uint32) {
+ lockWithRank(&l.lock, lockRankNotifyList)
+
+ // Return right away if this ticket has already been notified.
+ if less(t, l.notify) {
+ unlock(&l.lock)
+ return
+ }
+
+ // Enqueue itself.
+ s := acquireSudog()
+ s.g = getg()
+ s.ticket = t
+ s.releasetime = 0
+ t0 := int64(0)
+ if blockprofilerate > 0 {
+ t0 = cputicks()
+ s.releasetime = -1
+ }
+ if l.tail == nil {
+ l.head = s
+ } else {
+ l.tail.next = s
+ }
+ l.tail = s
+ goparkunlock(&l.lock, waitReasonSyncCondWait, traceEvGoBlockCond, 3)
+ if t0 != 0 {
+ blockevent(s.releasetime-t0, 2)
+ }
+ releaseSudog(s)
+}
+
+// notifyListNotifyAll notifies all entries in the list.
+//go:linkname notifyListNotifyAll sync.runtime_notifyListNotifyAll
+func notifyListNotifyAll(l *notifyList) {
+ // Fast-path: if there are no new waiters since the last notification
+ // we don't need to acquire the lock.
+ if atomic.Load(&l.wait) == atomic.Load(&l.notify) {
+ return
+ }
+
+ // Pull the list out into a local variable, waiters will be readied
+ // outside the lock.
+ lockWithRank(&l.lock, lockRankNotifyList)
+ s := l.head
+ l.head = nil
+ l.tail = nil
+
+ // Update the next ticket to be notified. We can set it to the current
+ // value of wait because any previous waiters are already in the list
+ // or will notice that they have already been notified when trying to
+ // add themselves to the list.
+ atomic.Store(&l.notify, atomic.Load(&l.wait))
+ unlock(&l.lock)
+
+ // Go through the local list and ready all waiters.
+ for s != nil {
+ next := s.next
+ s.next = nil
+ readyWithTime(s, 4)
+ s = next
+ }
+}
+
+// notifyListNotifyOne notifies one entry in the list.
+//go:linkname notifyListNotifyOne sync.runtime_notifyListNotifyOne
+func notifyListNotifyOne(l *notifyList) {
+ // Fast-path: if there are no new waiters since the last notification
+ // we don't need to acquire the lock at all.
+ if atomic.Load(&l.wait) == atomic.Load(&l.notify) {
+ return
+ }
+
+ lockWithRank(&l.lock, lockRankNotifyList)
+
+ // Re-check under the lock if we need to do anything.
+ t := l.notify
+ if t == atomic.Load(&l.wait) {
+ unlock(&l.lock)
+ return
+ }
+
+ // Update the next notify ticket number.
+ atomic.Store(&l.notify, t+1)
+
+ // Try to find the g that needs to be notified.
+ // If it hasn't made it to the list yet we won't find it,
+ // but it won't park itself once it sees the new notify number.
+ //
+ // This scan looks linear but essentially always stops quickly.
+ // Because g's queue separately from taking numbers,
+ // there may be minor reorderings in the list, but we
+ // expect the g we're looking for to be near the front.
+ // The g has others in front of it on the list only to the
+ // extent that it lost the race, so the iteration will not
+ // be too long. This applies even when the g is missing:
+ // it hasn't yet gotten to sleep and has lost the race to
+ // the (few) other g's that we find on the list.
+ for p, s := (*sudog)(nil), l.head; s != nil; p, s = s, s.next {
+ if s.ticket == t {
+ n := s.next
+ if p != nil {
+ p.next = n
+ } else {
+ l.head = n
+ }
+ if n == nil {
+ l.tail = p
+ }
+ unlock(&l.lock)
+ s.next = nil
+ readyWithTime(s, 4)
+ return
+ }
+ }
+ unlock(&l.lock)
+}
+
+//go:linkname notifyListCheck sync.runtime_notifyListCheck
+func notifyListCheck(sz uintptr) {
+ if sz != unsafe.Sizeof(notifyList{}) {
+ print("runtime: bad notifyList size - sync=", sz, " runtime=", unsafe.Sizeof(notifyList{}), "\n")
+ throw("bad notifyList size")
+ }
+}
+
+//go:linkname sync_nanotime sync.runtime_nanotime
+func sync_nanotime() int64 {
+ return nanotime()
+}