summaryrefslogtreecommitdiffstats
path: root/src/cmd/compile/internal/ssa/decompose.go
diff options
context:
space:
mode:
Diffstat (limited to 'src/cmd/compile/internal/ssa/decompose.go')
-rw-r--r--src/cmd/compile/internal/ssa/decompose.go479
1 files changed, 479 insertions, 0 deletions
diff --git a/src/cmd/compile/internal/ssa/decompose.go b/src/cmd/compile/internal/ssa/decompose.go
new file mode 100644
index 0000000..753d69c
--- /dev/null
+++ b/src/cmd/compile/internal/ssa/decompose.go
@@ -0,0 +1,479 @@
+// Copyright 2015 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package ssa
+
+import (
+ "cmd/compile/internal/types"
+ "sort"
+)
+
+// decompose converts phi ops on compound builtin types into phi
+// ops on simple types, then invokes rewrite rules to decompose
+// other ops on those types.
+func decomposeBuiltIn(f *Func) {
+ // Decompose phis
+ for _, b := range f.Blocks {
+ for _, v := range b.Values {
+ if v.Op != OpPhi {
+ continue
+ }
+ decomposeBuiltInPhi(v)
+ }
+ }
+
+ // Decompose other values
+ // Note: Leave dead values because we need to keep the original
+ // values around so the name component resolution below can still work.
+ applyRewrite(f, rewriteBlockdec, rewriteValuedec, leaveDeadValues)
+ if f.Config.RegSize == 4 {
+ applyRewrite(f, rewriteBlockdec64, rewriteValuedec64, leaveDeadValues)
+ }
+
+ // Split up named values into their components.
+ // accumulate old names for aggregates (that are decomposed) in toDelete for efficient bulk deletion,
+ // accumulate new LocalSlots in newNames for addition after the iteration. This decomposition is for
+ // builtin types with leaf components, and thus there is no need to reprocess the newly create LocalSlots.
+ var toDelete []namedVal
+ var newNames []*LocalSlot
+ for i, name := range f.Names {
+ t := name.Type
+ switch {
+ case t.IsInteger() && t.Size() > f.Config.RegSize:
+ hiName, loName := f.SplitInt64(name)
+ newNames = maybeAppend2(f, newNames, hiName, loName)
+ for j, v := range f.NamedValues[*name] {
+ if v.Op != OpInt64Make {
+ continue
+ }
+ f.NamedValues[*hiName] = append(f.NamedValues[*hiName], v.Args[0])
+ f.NamedValues[*loName] = append(f.NamedValues[*loName], v.Args[1])
+ toDelete = append(toDelete, namedVal{i, j})
+ }
+ case t.IsComplex():
+ rName, iName := f.SplitComplex(name)
+ newNames = maybeAppend2(f, newNames, rName, iName)
+ for j, v := range f.NamedValues[*name] {
+ if v.Op != OpComplexMake {
+ continue
+ }
+ f.NamedValues[*rName] = append(f.NamedValues[*rName], v.Args[0])
+ f.NamedValues[*iName] = append(f.NamedValues[*iName], v.Args[1])
+ toDelete = append(toDelete, namedVal{i, j})
+ }
+ case t.IsString():
+ ptrName, lenName := f.SplitString(name)
+ newNames = maybeAppend2(f, newNames, ptrName, lenName)
+ for j, v := range f.NamedValues[*name] {
+ if v.Op != OpStringMake {
+ continue
+ }
+ f.NamedValues[*ptrName] = append(f.NamedValues[*ptrName], v.Args[0])
+ f.NamedValues[*lenName] = append(f.NamedValues[*lenName], v.Args[1])
+ toDelete = append(toDelete, namedVal{i, j})
+ }
+ case t.IsSlice():
+ ptrName, lenName, capName := f.SplitSlice(name)
+ newNames = maybeAppend2(f, newNames, ptrName, lenName)
+ newNames = maybeAppend(f, newNames, capName)
+ for j, v := range f.NamedValues[*name] {
+ if v.Op != OpSliceMake {
+ continue
+ }
+ f.NamedValues[*ptrName] = append(f.NamedValues[*ptrName], v.Args[0])
+ f.NamedValues[*lenName] = append(f.NamedValues[*lenName], v.Args[1])
+ f.NamedValues[*capName] = append(f.NamedValues[*capName], v.Args[2])
+ toDelete = append(toDelete, namedVal{i, j})
+ }
+ case t.IsInterface():
+ typeName, dataName := f.SplitInterface(name)
+ newNames = maybeAppend2(f, newNames, typeName, dataName)
+ for j, v := range f.NamedValues[*name] {
+ if v.Op != OpIMake {
+ continue
+ }
+ f.NamedValues[*typeName] = append(f.NamedValues[*typeName], v.Args[0])
+ f.NamedValues[*dataName] = append(f.NamedValues[*dataName], v.Args[1])
+ toDelete = append(toDelete, namedVal{i, j})
+ }
+ case t.IsFloat():
+ // floats are never decomposed, even ones bigger than RegSize
+ case t.Size() > f.Config.RegSize:
+ f.Fatalf("undecomposed named type %s %v", name, t)
+ }
+ }
+
+ deleteNamedVals(f, toDelete)
+ f.Names = append(f.Names, newNames...)
+}
+
+func maybeAppend(f *Func, ss []*LocalSlot, s *LocalSlot) []*LocalSlot {
+ if _, ok := f.NamedValues[*s]; !ok {
+ f.NamedValues[*s] = nil
+ return append(ss, s)
+ }
+ return ss
+}
+
+func maybeAppend2(f *Func, ss []*LocalSlot, s1, s2 *LocalSlot) []*LocalSlot {
+ return maybeAppend(f, maybeAppend(f, ss, s1), s2)
+}
+
+func decomposeBuiltInPhi(v *Value) {
+ switch {
+ case v.Type.IsInteger() && v.Type.Size() > v.Block.Func.Config.RegSize:
+ decomposeInt64Phi(v)
+ case v.Type.IsComplex():
+ decomposeComplexPhi(v)
+ case v.Type.IsString():
+ decomposeStringPhi(v)
+ case v.Type.IsSlice():
+ decomposeSlicePhi(v)
+ case v.Type.IsInterface():
+ decomposeInterfacePhi(v)
+ case v.Type.IsFloat():
+ // floats are never decomposed, even ones bigger than RegSize
+ case v.Type.Size() > v.Block.Func.Config.RegSize:
+ v.Fatalf("undecomposed type %s", v.Type)
+ }
+}
+
+func decomposeStringPhi(v *Value) {
+ types := &v.Block.Func.Config.Types
+ ptrType := types.BytePtr
+ lenType := types.Int
+
+ ptr := v.Block.NewValue0(v.Pos, OpPhi, ptrType)
+ len := v.Block.NewValue0(v.Pos, OpPhi, lenType)
+ for _, a := range v.Args {
+ ptr.AddArg(a.Block.NewValue1(v.Pos, OpStringPtr, ptrType, a))
+ len.AddArg(a.Block.NewValue1(v.Pos, OpStringLen, lenType, a))
+ }
+ v.reset(OpStringMake)
+ v.AddArg(ptr)
+ v.AddArg(len)
+}
+
+func decomposeSlicePhi(v *Value) {
+ types := &v.Block.Func.Config.Types
+ ptrType := v.Type.Elem().PtrTo()
+ lenType := types.Int
+
+ ptr := v.Block.NewValue0(v.Pos, OpPhi, ptrType)
+ len := v.Block.NewValue0(v.Pos, OpPhi, lenType)
+ cap := v.Block.NewValue0(v.Pos, OpPhi, lenType)
+ for _, a := range v.Args {
+ ptr.AddArg(a.Block.NewValue1(v.Pos, OpSlicePtr, ptrType, a))
+ len.AddArg(a.Block.NewValue1(v.Pos, OpSliceLen, lenType, a))
+ cap.AddArg(a.Block.NewValue1(v.Pos, OpSliceCap, lenType, a))
+ }
+ v.reset(OpSliceMake)
+ v.AddArg(ptr)
+ v.AddArg(len)
+ v.AddArg(cap)
+}
+
+func decomposeInt64Phi(v *Value) {
+ cfgtypes := &v.Block.Func.Config.Types
+ var partType *types.Type
+ if v.Type.IsSigned() {
+ partType = cfgtypes.Int32
+ } else {
+ partType = cfgtypes.UInt32
+ }
+
+ hi := v.Block.NewValue0(v.Pos, OpPhi, partType)
+ lo := v.Block.NewValue0(v.Pos, OpPhi, cfgtypes.UInt32)
+ for _, a := range v.Args {
+ hi.AddArg(a.Block.NewValue1(v.Pos, OpInt64Hi, partType, a))
+ lo.AddArg(a.Block.NewValue1(v.Pos, OpInt64Lo, cfgtypes.UInt32, a))
+ }
+ v.reset(OpInt64Make)
+ v.AddArg(hi)
+ v.AddArg(lo)
+}
+
+func decomposeComplexPhi(v *Value) {
+ cfgtypes := &v.Block.Func.Config.Types
+ var partType *types.Type
+ switch z := v.Type.Size(); z {
+ case 8:
+ partType = cfgtypes.Float32
+ case 16:
+ partType = cfgtypes.Float64
+ default:
+ v.Fatalf("decomposeComplexPhi: bad complex size %d", z)
+ }
+
+ real := v.Block.NewValue0(v.Pos, OpPhi, partType)
+ imag := v.Block.NewValue0(v.Pos, OpPhi, partType)
+ for _, a := range v.Args {
+ real.AddArg(a.Block.NewValue1(v.Pos, OpComplexReal, partType, a))
+ imag.AddArg(a.Block.NewValue1(v.Pos, OpComplexImag, partType, a))
+ }
+ v.reset(OpComplexMake)
+ v.AddArg(real)
+ v.AddArg(imag)
+}
+
+func decomposeInterfacePhi(v *Value) {
+ uintptrType := v.Block.Func.Config.Types.Uintptr
+ ptrType := v.Block.Func.Config.Types.BytePtr
+
+ itab := v.Block.NewValue0(v.Pos, OpPhi, uintptrType)
+ data := v.Block.NewValue0(v.Pos, OpPhi, ptrType)
+ for _, a := range v.Args {
+ itab.AddArg(a.Block.NewValue1(v.Pos, OpITab, uintptrType, a))
+ data.AddArg(a.Block.NewValue1(v.Pos, OpIData, ptrType, a))
+ }
+ v.reset(OpIMake)
+ v.AddArg(itab)
+ v.AddArg(data)
+}
+
+func decomposeUser(f *Func) {
+ for _, b := range f.Blocks {
+ for _, v := range b.Values {
+ if v.Op != OpPhi {
+ continue
+ }
+ decomposeUserPhi(v)
+ }
+ }
+ // Split up named values into their components.
+ i := 0
+ var newNames []*LocalSlot
+ for _, name := range f.Names {
+ t := name.Type
+ switch {
+ case t.IsStruct():
+ newNames = decomposeUserStructInto(f, name, newNames)
+ case t.IsArray():
+ newNames = decomposeUserArrayInto(f, name, newNames)
+ default:
+ f.Names[i] = name
+ i++
+ }
+ }
+ f.Names = f.Names[:i]
+ f.Names = append(f.Names, newNames...)
+}
+
+// decomposeUserArrayInto creates names for the element(s) of arrays referenced
+// by name where possible, and appends those new names to slots, which is then
+// returned.
+func decomposeUserArrayInto(f *Func, name *LocalSlot, slots []*LocalSlot) []*LocalSlot {
+ t := name.Type
+ if t.NumElem() == 0 {
+ // TODO(khr): Not sure what to do here. Probably nothing.
+ // Names for empty arrays aren't important.
+ return slots
+ }
+ if t.NumElem() != 1 {
+ // shouldn't get here due to CanSSA
+ f.Fatalf("array not of size 1")
+ }
+ elemName := f.SplitArray(name)
+ var keep []*Value
+ for _, v := range f.NamedValues[*name] {
+ if v.Op != OpArrayMake1 {
+ keep = append(keep, v)
+ continue
+ }
+ f.NamedValues[*elemName] = append(f.NamedValues[*elemName], v.Args[0])
+ }
+ if len(keep) == 0 {
+ // delete the name for the array as a whole
+ delete(f.NamedValues, *name)
+ } else {
+ f.NamedValues[*name] = keep
+ }
+
+ if t.Elem().IsArray() {
+ return decomposeUserArrayInto(f, elemName, slots)
+ } else if t.Elem().IsStruct() {
+ return decomposeUserStructInto(f, elemName, slots)
+ }
+
+ return append(slots, elemName)
+}
+
+// decomposeUserStructInto creates names for the fields(s) of structs referenced
+// by name where possible, and appends those new names to slots, which is then
+// returned.
+func decomposeUserStructInto(f *Func, name *LocalSlot, slots []*LocalSlot) []*LocalSlot {
+ fnames := []*LocalSlot{} // slots for struct in name
+ t := name.Type
+ n := t.NumFields()
+
+ for i := 0; i < n; i++ {
+ fs := f.SplitStruct(name, i)
+ fnames = append(fnames, fs)
+ // arrays and structs will be decomposed further, so
+ // there's no need to record a name
+ if !fs.Type.IsArray() && !fs.Type.IsStruct() {
+ slots = maybeAppend(f, slots, fs)
+ }
+ }
+
+ makeOp := StructMakeOp(n)
+ var keep []*Value
+ // create named values for each struct field
+ for _, v := range f.NamedValues[*name] {
+ if v.Op != makeOp {
+ keep = append(keep, v)
+ continue
+ }
+ for i := 0; i < len(fnames); i++ {
+ f.NamedValues[*fnames[i]] = append(f.NamedValues[*fnames[i]], v.Args[i])
+ }
+ }
+ if len(keep) == 0 {
+ // delete the name for the struct as a whole
+ delete(f.NamedValues, *name)
+ } else {
+ f.NamedValues[*name] = keep
+ }
+
+ // now that this f.NamedValues contains values for the struct
+ // fields, recurse into nested structs
+ for i := 0; i < n; i++ {
+ if name.Type.FieldType(i).IsStruct() {
+ slots = decomposeUserStructInto(f, fnames[i], slots)
+ delete(f.NamedValues, *fnames[i])
+ } else if name.Type.FieldType(i).IsArray() {
+ slots = decomposeUserArrayInto(f, fnames[i], slots)
+ delete(f.NamedValues, *fnames[i])
+ }
+ }
+ return slots
+}
+func decomposeUserPhi(v *Value) {
+ switch {
+ case v.Type.IsStruct():
+ decomposeStructPhi(v)
+ case v.Type.IsArray():
+ decomposeArrayPhi(v)
+ }
+}
+
+// decomposeStructPhi replaces phi-of-struct with structmake(phi-for-each-field),
+// and then recursively decomposes the phis for each field.
+func decomposeStructPhi(v *Value) {
+ t := v.Type
+ n := t.NumFields()
+ var fields [MaxStruct]*Value
+ for i := 0; i < n; i++ {
+ fields[i] = v.Block.NewValue0(v.Pos, OpPhi, t.FieldType(i))
+ }
+ for _, a := range v.Args {
+ for i := 0; i < n; i++ {
+ fields[i].AddArg(a.Block.NewValue1I(v.Pos, OpStructSelect, t.FieldType(i), int64(i), a))
+ }
+ }
+ v.reset(StructMakeOp(n))
+ v.AddArgs(fields[:n]...)
+
+ // Recursively decompose phis for each field.
+ for _, f := range fields[:n] {
+ decomposeUserPhi(f)
+ }
+}
+
+// decomposeArrayPhi replaces phi-of-array with arraymake(phi-of-array-element),
+// and then recursively decomposes the element phi.
+func decomposeArrayPhi(v *Value) {
+ t := v.Type
+ if t.NumElem() == 0 {
+ v.reset(OpArrayMake0)
+ return
+ }
+ if t.NumElem() != 1 {
+ v.Fatalf("SSAable array must have no more than 1 element")
+ }
+ elem := v.Block.NewValue0(v.Pos, OpPhi, t.Elem())
+ for _, a := range v.Args {
+ elem.AddArg(a.Block.NewValue1I(v.Pos, OpArraySelect, t.Elem(), 0, a))
+ }
+ v.reset(OpArrayMake1)
+ v.AddArg(elem)
+
+ // Recursively decompose elem phi.
+ decomposeUserPhi(elem)
+}
+
+// MaxStruct is the maximum number of fields a struct
+// can have and still be SSAable.
+const MaxStruct = 4
+
+// StructMakeOp returns the opcode to construct a struct with the
+// given number of fields.
+func StructMakeOp(nf int) Op {
+ switch nf {
+ case 0:
+ return OpStructMake0
+ case 1:
+ return OpStructMake1
+ case 2:
+ return OpStructMake2
+ case 3:
+ return OpStructMake3
+ case 4:
+ return OpStructMake4
+ }
+ panic("too many fields in an SSAable struct")
+}
+
+type namedVal struct {
+ locIndex, valIndex int // f.NamedValues[f.Names[locIndex]][valIndex] = key
+}
+
+// deleteNamedVals removes particular values with debugger names from f's naming data structures,
+// removes all values with OpInvalid, and re-sorts the list of Names.
+func deleteNamedVals(f *Func, toDelete []namedVal) {
+ // Arrange to delete from larger indices to smaller, to ensure swap-with-end deletion does not invalidate pending indices.
+ sort.Slice(toDelete, func(i, j int) bool {
+ if toDelete[i].locIndex != toDelete[j].locIndex {
+ return toDelete[i].locIndex > toDelete[j].locIndex
+ }
+ return toDelete[i].valIndex > toDelete[j].valIndex
+
+ })
+
+ // Get rid of obsolete names
+ for _, d := range toDelete {
+ loc := f.Names[d.locIndex]
+ vals := f.NamedValues[*loc]
+ l := len(vals) - 1
+ if l > 0 {
+ vals[d.valIndex] = vals[l]
+ }
+ vals[l] = nil
+ f.NamedValues[*loc] = vals[:l]
+ }
+ // Delete locations with no values attached.
+ end := len(f.Names)
+ for i := len(f.Names) - 1; i >= 0; i-- {
+ loc := f.Names[i]
+ vals := f.NamedValues[*loc]
+ last := len(vals)
+ for j := len(vals) - 1; j >= 0; j-- {
+ if vals[j].Op == OpInvalid {
+ last--
+ vals[j] = vals[last]
+ vals[last] = nil
+ }
+ }
+ if last < len(vals) {
+ f.NamedValues[*loc] = vals[:last]
+ }
+ if len(vals) == 0 {
+ delete(f.NamedValues, *loc)
+ end--
+ f.Names[i] = f.Names[end]
+ f.Names[end] = nil
+ }
+ }
+ f.Names = f.Names[:end]
+}