summaryrefslogtreecommitdiffstats
path: root/src/cmd/compile/internal/ssagen/abi.go
diff options
context:
space:
mode:
Diffstat (limited to 'src/cmd/compile/internal/ssagen/abi.go')
-rw-r--r--src/cmd/compile/internal/ssagen/abi.go434
1 files changed, 434 insertions, 0 deletions
diff --git a/src/cmd/compile/internal/ssagen/abi.go b/src/cmd/compile/internal/ssagen/abi.go
new file mode 100644
index 0000000..3a653e4
--- /dev/null
+++ b/src/cmd/compile/internal/ssagen/abi.go
@@ -0,0 +1,434 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package ssagen
+
+import (
+ "fmt"
+ "internal/buildcfg"
+ "io/ioutil"
+ "log"
+ "os"
+ "strings"
+
+ "cmd/compile/internal/base"
+ "cmd/compile/internal/ir"
+ "cmd/compile/internal/staticdata"
+ "cmd/compile/internal/typecheck"
+ "cmd/compile/internal/types"
+ "cmd/internal/obj"
+ "cmd/internal/objabi"
+)
+
+// SymABIs records information provided by the assembler about symbol
+// definition ABIs and reference ABIs.
+type SymABIs struct {
+ defs map[string]obj.ABI
+ refs map[string]obj.ABISet
+
+ localPrefix string
+}
+
+func NewSymABIs(myimportpath string) *SymABIs {
+ var localPrefix string
+ if myimportpath != "" {
+ localPrefix = objabi.PathToPrefix(myimportpath) + "."
+ }
+
+ return &SymABIs{
+ defs: make(map[string]obj.ABI),
+ refs: make(map[string]obj.ABISet),
+ localPrefix: localPrefix,
+ }
+}
+
+// canonicalize returns the canonical name used for a linker symbol in
+// s's maps. Symbols in this package may be written either as "".X or
+// with the package's import path already in the symbol. This rewrites
+// both to `"".`, which matches compiler-generated linker symbol names.
+func (s *SymABIs) canonicalize(linksym string) string {
+ // If the symbol is already prefixed with localPrefix,
+ // rewrite it to start with "" so it matches the
+ // compiler's internal symbol names.
+ if s.localPrefix != "" && strings.HasPrefix(linksym, s.localPrefix) {
+ return `"".` + linksym[len(s.localPrefix):]
+ }
+ return linksym
+}
+
+// ReadSymABIs reads a symabis file that specifies definitions and
+// references of text symbols by ABI.
+//
+// The symabis format is a set of lines, where each line is a sequence
+// of whitespace-separated fields. The first field is a verb and is
+// either "def" for defining a symbol ABI or "ref" for referencing a
+// symbol using an ABI. For both "def" and "ref", the second field is
+// the symbol name and the third field is the ABI name, as one of the
+// named cmd/internal/obj.ABI constants.
+func (s *SymABIs) ReadSymABIs(file string) {
+ data, err := ioutil.ReadFile(file)
+ if err != nil {
+ log.Fatalf("-symabis: %v", err)
+ }
+
+ for lineNum, line := range strings.Split(string(data), "\n") {
+ lineNum++ // 1-based
+ line = strings.TrimSpace(line)
+ if line == "" || strings.HasPrefix(line, "#") {
+ continue
+ }
+
+ parts := strings.Fields(line)
+ switch parts[0] {
+ case "def", "ref":
+ // Parse line.
+ if len(parts) != 3 {
+ log.Fatalf(`%s:%d: invalid symabi: syntax is "%s sym abi"`, file, lineNum, parts[0])
+ }
+ sym, abistr := parts[1], parts[2]
+ abi, valid := obj.ParseABI(abistr)
+ if !valid {
+ log.Fatalf(`%s:%d: invalid symabi: unknown abi "%s"`, file, lineNum, abistr)
+ }
+
+ sym = s.canonicalize(sym)
+
+ // Record for later.
+ if parts[0] == "def" {
+ s.defs[sym] = abi
+ } else {
+ s.refs[sym] |= obj.ABISetOf(abi)
+ }
+ default:
+ log.Fatalf(`%s:%d: invalid symabi type "%s"`, file, lineNum, parts[0])
+ }
+ }
+}
+
+// GenABIWrappers applies ABI information to Funcs and generates ABI
+// wrapper functions where necessary.
+func (s *SymABIs) GenABIWrappers() {
+ // For cgo exported symbols, we tell the linker to export the
+ // definition ABI to C. That also means that we don't want to
+ // create ABI wrappers even if there's a linkname.
+ //
+ // TODO(austin): Maybe we want to create the ABI wrappers, but
+ // ensure the linker exports the right ABI definition under
+ // the unmangled name?
+ cgoExports := make(map[string][]*[]string)
+ for i, prag := range typecheck.Target.CgoPragmas {
+ switch prag[0] {
+ case "cgo_export_static", "cgo_export_dynamic":
+ symName := s.canonicalize(prag[1])
+ pprag := &typecheck.Target.CgoPragmas[i]
+ cgoExports[symName] = append(cgoExports[symName], pprag)
+ }
+ }
+
+ // Apply ABI defs and refs to Funcs and generate wrappers.
+ //
+ // This may generate new decls for the wrappers, but we
+ // specifically *don't* want to visit those, lest we create
+ // wrappers for wrappers.
+ for _, fn := range typecheck.Target.Decls {
+ if fn.Op() != ir.ODCLFUNC {
+ continue
+ }
+ fn := fn.(*ir.Func)
+ nam := fn.Nname
+ if ir.IsBlank(nam) {
+ continue
+ }
+ sym := nam.Sym()
+ var symName string
+ if sym.Linkname != "" {
+ symName = s.canonicalize(sym.Linkname)
+ } else {
+ // These names will already be canonical.
+ symName = sym.Pkg.Prefix + "." + sym.Name
+ }
+
+ // Apply definitions.
+ defABI, hasDefABI := s.defs[symName]
+ if hasDefABI {
+ if len(fn.Body) != 0 {
+ base.ErrorfAt(fn.Pos(), "%v defined in both Go and assembly", fn)
+ }
+ fn.ABI = defABI
+ }
+
+ if fn.Pragma&ir.CgoUnsafeArgs != 0 {
+ // CgoUnsafeArgs indicates the function (or its callee) uses
+ // offsets to dispatch arguments, which currently using ABI0
+ // frame layout. Pin it to ABI0.
+ fn.ABI = obj.ABI0
+ }
+
+ // If cgo-exported, add the definition ABI to the cgo
+ // pragmas.
+ cgoExport := cgoExports[symName]
+ for _, pprag := range cgoExport {
+ // The export pragmas have the form:
+ //
+ // cgo_export_* <local> [<remote>]
+ //
+ // If <remote> is omitted, it's the same as
+ // <local>.
+ //
+ // Expand to
+ //
+ // cgo_export_* <local> <remote> <ABI>
+ if len(*pprag) == 2 {
+ *pprag = append(*pprag, (*pprag)[1])
+ }
+ // Add the ABI argument.
+ *pprag = append(*pprag, fn.ABI.String())
+ }
+
+ // Apply references.
+ if abis, ok := s.refs[symName]; ok {
+ fn.ABIRefs |= abis
+ }
+ // Assume all functions are referenced at least as
+ // ABIInternal, since they may be referenced from
+ // other packages.
+ fn.ABIRefs.Set(obj.ABIInternal, true)
+
+ // If a symbol is defined in this package (either in
+ // Go or assembly) and given a linkname, it may be
+ // referenced from another package, so make it
+ // callable via any ABI. It's important that we know
+ // it's defined in this package since other packages
+ // may "pull" symbols using linkname and we don't want
+ // to create duplicate ABI wrappers.
+ //
+ // However, if it's given a linkname for exporting to
+ // C, then we don't make ABI wrappers because the cgo
+ // tool wants the original definition.
+ hasBody := len(fn.Body) != 0
+ if sym.Linkname != "" && (hasBody || hasDefABI) && len(cgoExport) == 0 {
+ fn.ABIRefs |= obj.ABISetCallable
+ }
+
+ // Double check that cgo-exported symbols don't get
+ // any wrappers.
+ if len(cgoExport) > 0 && fn.ABIRefs&^obj.ABISetOf(fn.ABI) != 0 {
+ base.Fatalf("cgo exported function %s cannot have ABI wrappers", fn)
+ }
+
+ if !buildcfg.Experiment.RegabiWrappers {
+ continue
+ }
+
+ forEachWrapperABI(fn, makeABIWrapper)
+ }
+}
+
+// InitLSym defines f's obj.LSym and initializes it based on the
+// properties of f. This includes setting the symbol flags and ABI and
+// creating and initializing related DWARF symbols.
+//
+// InitLSym must be called exactly once per function and must be
+// called for both functions with bodies and functions without bodies.
+// For body-less functions, we only create the LSym; for functions
+// with bodies call a helper to setup up / populate the LSym.
+func InitLSym(f *ir.Func, hasBody bool) {
+ if f.LSym != nil {
+ base.FatalfAt(f.Pos(), "InitLSym called twice on %v", f)
+ }
+
+ if nam := f.Nname; !ir.IsBlank(nam) {
+ f.LSym = nam.LinksymABI(f.ABI)
+ if f.Pragma&ir.Systemstack != 0 {
+ f.LSym.Set(obj.AttrCFunc, true)
+ }
+ if f.ABI == obj.ABIInternal || !buildcfg.Experiment.RegabiWrappers {
+ // Function values can only point to
+ // ABIInternal entry points. This will create
+ // the funcsym for either the defining
+ // function or its wrapper as appropriate.
+ //
+ // If we're not using ABI wrappers, we only
+ // InitLSym for the defining ABI of a function,
+ // so we make the funcsym when we see that.
+ staticdata.NeedFuncSym(f)
+ }
+ }
+ if hasBody {
+ setupTextLSym(f, 0)
+ }
+}
+
+func forEachWrapperABI(fn *ir.Func, cb func(fn *ir.Func, wrapperABI obj.ABI)) {
+ need := fn.ABIRefs &^ obj.ABISetOf(fn.ABI)
+ if need == 0 {
+ return
+ }
+
+ for wrapperABI := obj.ABI(0); wrapperABI < obj.ABICount; wrapperABI++ {
+ if !need.Get(wrapperABI) {
+ continue
+ }
+ cb(fn, wrapperABI)
+ }
+}
+
+// makeABIWrapper creates a new function that will be called with
+// wrapperABI and calls "f" using f.ABI.
+func makeABIWrapper(f *ir.Func, wrapperABI obj.ABI) {
+ if base.Debug.ABIWrap != 0 {
+ fmt.Fprintf(os.Stderr, "=-= %v to %v wrapper for %v\n", wrapperABI, f.ABI, f)
+ }
+
+ // Q: is this needed?
+ savepos := base.Pos
+ savedclcontext := typecheck.DeclContext
+ savedcurfn := ir.CurFunc
+
+ base.Pos = base.AutogeneratedPos
+ typecheck.DeclContext = ir.PEXTERN
+
+ // At the moment we don't support wrapping a method, we'd need machinery
+ // below to handle the receiver. Panic if we see this scenario.
+ ft := f.Nname.Type()
+ if ft.NumRecvs() != 0 {
+ panic("makeABIWrapper support for wrapping methods not implemented")
+ }
+
+ // Manufacture a new func type to use for the wrapper.
+ var noReceiver *ir.Field
+ tfn := ir.NewFuncType(base.Pos,
+ noReceiver,
+ typecheck.NewFuncParams(ft.Params(), true),
+ typecheck.NewFuncParams(ft.Results(), false))
+
+ // Reuse f's types.Sym to create a new ODCLFUNC/function.
+ fn := typecheck.DeclFunc(f.Nname.Sym(), tfn)
+ fn.ABI = wrapperABI
+
+ fn.SetABIWrapper(true)
+ fn.SetDupok(true)
+
+ // ABI0-to-ABIInternal wrappers will be mainly loading params from
+ // stack into registers (and/or storing stack locations back to
+ // registers after the wrapped call); in most cases they won't
+ // need to allocate stack space, so it should be OK to mark them
+ // as NOSPLIT in these cases. In addition, my assumption is that
+ // functions written in assembly are NOSPLIT in most (but not all)
+ // cases. In the case of an ABIInternal target that has too many
+ // parameters to fit into registers, the wrapper would need to
+ // allocate stack space, but this seems like an unlikely scenario.
+ // Hence: mark these wrappers NOSPLIT.
+ //
+ // ABIInternal-to-ABI0 wrappers on the other hand will be taking
+ // things in registers and pushing them onto the stack prior to
+ // the ABI0 call, meaning that they will always need to allocate
+ // stack space. If the compiler marks them as NOSPLIT this seems
+ // as though it could lead to situations where the linker's
+ // nosplit-overflow analysis would trigger a link failure. On the
+ // other hand if they not tagged NOSPLIT then this could cause
+ // problems when building the runtime (since there may be calls to
+ // asm routine in cases where it's not safe to grow the stack). In
+ // most cases the wrapper would be (in effect) inlined, but are
+ // there (perhaps) indirect calls from the runtime that could run
+ // into trouble here.
+ // FIXME: at the moment all.bash does not pass when I leave out
+ // NOSPLIT for these wrappers, so all are currently tagged with NOSPLIT.
+ fn.Pragma |= ir.Nosplit
+
+ // Generate call. Use tail call if no params and no returns,
+ // but a regular call otherwise.
+ //
+ // Note: ideally we would be using a tail call in cases where
+ // there are params but no returns for ABI0->ABIInternal wrappers,
+ // provided that all params fit into registers (e.g. we don't have
+ // to allocate any stack space). Doing this will require some
+ // extra work in typecheck/walk/ssa, might want to add a new node
+ // OTAILCALL or something to this effect.
+ tailcall := tfn.Type().NumResults() == 0 && tfn.Type().NumParams() == 0 && tfn.Type().NumRecvs() == 0
+ if base.Ctxt.Arch.Name == "ppc64le" && base.Ctxt.Flag_dynlink {
+ // cannot tailcall on PPC64 with dynamic linking, as we need
+ // to restore R2 after call.
+ tailcall = false
+ }
+ if base.Ctxt.Arch.Name == "amd64" && wrapperABI == obj.ABIInternal {
+ // cannot tailcall from ABIInternal to ABI0 on AMD64, as we need
+ // to special registers (X15) when returning to ABIInternal.
+ tailcall = false
+ }
+
+ var tail ir.Node
+ call := ir.NewCallExpr(base.Pos, ir.OCALL, f.Nname, nil)
+ call.Args = ir.ParamNames(tfn.Type())
+ call.IsDDD = tfn.Type().IsVariadic()
+ tail = call
+ if tailcall {
+ tail = ir.NewTailCallStmt(base.Pos, call)
+ } else if tfn.Type().NumResults() > 0 {
+ n := ir.NewReturnStmt(base.Pos, nil)
+ n.Results = []ir.Node{call}
+ tail = n
+ }
+ fn.Body.Append(tail)
+
+ typecheck.FinishFuncBody()
+ if base.Debug.DclStack != 0 {
+ types.CheckDclstack()
+ }
+
+ typecheck.Func(fn)
+ ir.CurFunc = fn
+ typecheck.Stmts(fn.Body)
+
+ typecheck.Target.Decls = append(typecheck.Target.Decls, fn)
+
+ // Restore previous context.
+ base.Pos = savepos
+ typecheck.DeclContext = savedclcontext
+ ir.CurFunc = savedcurfn
+}
+
+// setupTextLsym initializes the LSym for a with-body text symbol.
+func setupTextLSym(f *ir.Func, flag int) {
+ if f.Dupok() {
+ flag |= obj.DUPOK
+ }
+ if f.Wrapper() {
+ flag |= obj.WRAPPER
+ }
+ if f.ABIWrapper() {
+ flag |= obj.ABIWRAPPER
+ }
+ if f.Needctxt() {
+ flag |= obj.NEEDCTXT
+ }
+ if f.Pragma&ir.Nosplit != 0 {
+ flag |= obj.NOSPLIT
+ }
+ if f.ReflectMethod() {
+ flag |= obj.REFLECTMETHOD
+ }
+
+ // Clumsy but important.
+ // For functions that could be on the path of invoking a deferred
+ // function that can recover (runtime.reflectcall, reflect.callReflect,
+ // and reflect.callMethod), we want the panic+recover special handling.
+ // See test/recover.go for test cases and src/reflect/value.go
+ // for the actual functions being considered.
+ //
+ // runtime.reflectcall is an assembly function which tailcalls
+ // WRAPPER functions (runtime.callNN). Its ABI wrapper needs WRAPPER
+ // flag as well.
+ fnname := f.Sym().Name
+ if base.Ctxt.Pkgpath == "runtime" && fnname == "reflectcall" {
+ flag |= obj.WRAPPER
+ } else if base.Ctxt.Pkgpath == "reflect" {
+ switch fnname {
+ case "callReflect", "callMethod":
+ flag |= obj.WRAPPER
+ }
+ }
+
+ base.Ctxt.InitTextSym(f.LSym, flag)
+}