diff options
Diffstat (limited to 'src/cmd/compile/internal/walk/range.go')
-rw-r--r-- | src/cmd/compile/internal/walk/range.go | 475 |
1 files changed, 475 insertions, 0 deletions
diff --git a/src/cmd/compile/internal/walk/range.go b/src/cmd/compile/internal/walk/range.go new file mode 100644 index 0000000..aa8c548 --- /dev/null +++ b/src/cmd/compile/internal/walk/range.go @@ -0,0 +1,475 @@ +// Copyright 2009 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package walk + +import ( + "unicode/utf8" + + "cmd/compile/internal/base" + "cmd/compile/internal/ir" + "cmd/compile/internal/reflectdata" + "cmd/compile/internal/ssagen" + "cmd/compile/internal/typecheck" + "cmd/compile/internal/types" + "cmd/internal/sys" +) + +func cheapComputableIndex(width int64) bool { + switch ssagen.Arch.LinkArch.Family { + // MIPS does not have R+R addressing + // Arm64 may lack ability to generate this code in our assembler, + // but the architecture supports it. + case sys.PPC64, sys.S390X: + return width == 1 + case sys.AMD64, sys.I386, sys.ARM64, sys.ARM: + switch width { + case 1, 2, 4, 8: + return true + } + } + return false +} + +// walkRange transforms various forms of ORANGE into +// simpler forms. The result must be assigned back to n. +// Node n may also be modified in place, and may also be +// the returned node. +func walkRange(nrange *ir.RangeStmt) ir.Node { + if isMapClear(nrange) { + m := nrange.X + lno := ir.SetPos(m) + n := mapClear(m) + base.Pos = lno + return n + } + + nfor := ir.NewForStmt(nrange.Pos(), nil, nil, nil, nil) + nfor.SetInit(nrange.Init()) + nfor.Label = nrange.Label + + // variable name conventions: + // ohv1, hv1, hv2: hidden (old) val 1, 2 + // ha, hit: hidden aggregate, iterator + // hn, hp: hidden len, pointer + // hb: hidden bool + // a, v1, v2: not hidden aggregate, val 1, 2 + + a := nrange.X + t := typecheck.RangeExprType(a.Type()) + lno := ir.SetPos(a) + + v1, v2 := nrange.Key, nrange.Value + + if ir.IsBlank(v2) { + v2 = nil + } + + if ir.IsBlank(v1) && v2 == nil { + v1 = nil + } + + if v1 == nil && v2 != nil { + base.Fatalf("walkRange: v2 != nil while v1 == nil") + } + + var ifGuard *ir.IfStmt + + var body []ir.Node + var init []ir.Node + switch t.Kind() { + default: + base.Fatalf("walkRange") + + case types.TARRAY, types.TSLICE: + if nn := arrayClear(nrange, v1, v2, a); nn != nil { + base.Pos = lno + return nn + } + + // order.stmt arranged for a copy of the array/slice variable if needed. + ha := a + + hv1 := typecheck.Temp(types.Types[types.TINT]) + hn := typecheck.Temp(types.Types[types.TINT]) + + init = append(init, ir.NewAssignStmt(base.Pos, hv1, nil)) + init = append(init, ir.NewAssignStmt(base.Pos, hn, ir.NewUnaryExpr(base.Pos, ir.OLEN, ha))) + + nfor.Cond = ir.NewBinaryExpr(base.Pos, ir.OLT, hv1, hn) + nfor.Post = ir.NewAssignStmt(base.Pos, hv1, ir.NewBinaryExpr(base.Pos, ir.OADD, hv1, ir.NewInt(1))) + + // for range ha { body } + if v1 == nil { + break + } + + // for v1 := range ha { body } + if v2 == nil { + body = []ir.Node{ir.NewAssignStmt(base.Pos, v1, hv1)} + break + } + + // for v1, v2 := range ha { body } + if cheapComputableIndex(t.Elem().Size()) { + // v1, v2 = hv1, ha[hv1] + tmp := ir.NewIndexExpr(base.Pos, ha, hv1) + tmp.SetBounded(true) + // Use OAS2 to correctly handle assignments + // of the form "v1, a[v1] := range". + a := ir.NewAssignListStmt(base.Pos, ir.OAS2, []ir.Node{v1, v2}, []ir.Node{hv1, tmp}) + body = []ir.Node{a} + break + } + + // TODO(austin): OFORUNTIL is a strange beast, but is + // necessary for expressing the control flow we need + // while also making "break" and "continue" work. It + // would be nice to just lower ORANGE during SSA, but + // racewalk needs to see many of the operations + // involved in ORANGE's implementation. If racewalk + // moves into SSA, consider moving ORANGE into SSA and + // eliminating OFORUNTIL. + + // TODO(austin): OFORUNTIL inhibits bounds-check + // elimination on the index variable (see #20711). + // Enhance the prove pass to understand this. + ifGuard = ir.NewIfStmt(base.Pos, nil, nil, nil) + ifGuard.Cond = ir.NewBinaryExpr(base.Pos, ir.OLT, hv1, hn) + nfor.SetOp(ir.OFORUNTIL) + + hp := typecheck.Temp(types.NewPtr(t.Elem())) + tmp := ir.NewIndexExpr(base.Pos, ha, ir.NewInt(0)) + tmp.SetBounded(true) + init = append(init, ir.NewAssignStmt(base.Pos, hp, typecheck.NodAddr(tmp))) + + // Use OAS2 to correctly handle assignments + // of the form "v1, a[v1] := range". + a := ir.NewAssignListStmt(base.Pos, ir.OAS2, []ir.Node{v1, v2}, []ir.Node{hv1, ir.NewStarExpr(base.Pos, hp)}) + body = append(body, a) + + // Advance pointer as part of the late increment. + // + // This runs *after* the condition check, so we know + // advancing the pointer is safe and won't go past the + // end of the allocation. + as := ir.NewAssignStmt(base.Pos, hp, addptr(hp, t.Elem().Size())) + nfor.Late = []ir.Node{typecheck.Stmt(as)} + + case types.TMAP: + // order.stmt allocated the iterator for us. + // we only use a once, so no copy needed. + ha := a + + hit := nrange.Prealloc + th := hit.Type() + // depends on layout of iterator struct. + // See cmd/compile/internal/reflectdata/reflect.go:MapIterType + keysym := th.Field(0).Sym + elemsym := th.Field(1).Sym // ditto + + fn := typecheck.LookupRuntime("mapiterinit") + + fn = typecheck.SubstArgTypes(fn, t.Key(), t.Elem(), th) + init = append(init, mkcallstmt1(fn, reflectdata.TypePtr(t), ha, typecheck.NodAddr(hit))) + nfor.Cond = ir.NewBinaryExpr(base.Pos, ir.ONE, ir.NewSelectorExpr(base.Pos, ir.ODOT, hit, keysym), typecheck.NodNil()) + + fn = typecheck.LookupRuntime("mapiternext") + fn = typecheck.SubstArgTypes(fn, th) + nfor.Post = mkcallstmt1(fn, typecheck.NodAddr(hit)) + + key := ir.NewStarExpr(base.Pos, ir.NewSelectorExpr(base.Pos, ir.ODOT, hit, keysym)) + if v1 == nil { + body = nil + } else if v2 == nil { + body = []ir.Node{ir.NewAssignStmt(base.Pos, v1, key)} + } else { + elem := ir.NewStarExpr(base.Pos, ir.NewSelectorExpr(base.Pos, ir.ODOT, hit, elemsym)) + a := ir.NewAssignListStmt(base.Pos, ir.OAS2, []ir.Node{v1, v2}, []ir.Node{key, elem}) + body = []ir.Node{a} + } + + case types.TCHAN: + // order.stmt arranged for a copy of the channel variable. + ha := a + + hv1 := typecheck.Temp(t.Elem()) + hv1.SetTypecheck(1) + if t.Elem().HasPointers() { + init = append(init, ir.NewAssignStmt(base.Pos, hv1, nil)) + } + hb := typecheck.Temp(types.Types[types.TBOOL]) + + nfor.Cond = ir.NewBinaryExpr(base.Pos, ir.ONE, hb, ir.NewBool(false)) + lhs := []ir.Node{hv1, hb} + rhs := []ir.Node{ir.NewUnaryExpr(base.Pos, ir.ORECV, ha)} + a := ir.NewAssignListStmt(base.Pos, ir.OAS2RECV, lhs, rhs) + a.SetTypecheck(1) + nfor.Cond = ir.InitExpr([]ir.Node{a}, nfor.Cond) + if v1 == nil { + body = nil + } else { + body = []ir.Node{ir.NewAssignStmt(base.Pos, v1, hv1)} + } + // Zero hv1. This prevents hv1 from being the sole, inaccessible + // reference to an otherwise GC-able value during the next channel receive. + // See issue 15281. + body = append(body, ir.NewAssignStmt(base.Pos, hv1, nil)) + + case types.TSTRING: + // Transform string range statements like "for v1, v2 = range a" into + // + // ha := a + // for hv1 := 0; hv1 < len(ha); { + // hv1t := hv1 + // hv2 := rune(ha[hv1]) + // if hv2 < utf8.RuneSelf { + // hv1++ + // } else { + // hv2, hv1 = decoderune(ha, hv1) + // } + // v1, v2 = hv1t, hv2 + // // original body + // } + + // order.stmt arranged for a copy of the string variable. + ha := a + + hv1 := typecheck.Temp(types.Types[types.TINT]) + hv1t := typecheck.Temp(types.Types[types.TINT]) + hv2 := typecheck.Temp(types.RuneType) + + // hv1 := 0 + init = append(init, ir.NewAssignStmt(base.Pos, hv1, nil)) + + // hv1 < len(ha) + nfor.Cond = ir.NewBinaryExpr(base.Pos, ir.OLT, hv1, ir.NewUnaryExpr(base.Pos, ir.OLEN, ha)) + + if v1 != nil { + // hv1t = hv1 + body = append(body, ir.NewAssignStmt(base.Pos, hv1t, hv1)) + } + + // hv2 := rune(ha[hv1]) + nind := ir.NewIndexExpr(base.Pos, ha, hv1) + nind.SetBounded(true) + body = append(body, ir.NewAssignStmt(base.Pos, hv2, typecheck.Conv(nind, types.RuneType))) + + // if hv2 < utf8.RuneSelf + nif := ir.NewIfStmt(base.Pos, nil, nil, nil) + nif.Cond = ir.NewBinaryExpr(base.Pos, ir.OLT, hv2, ir.NewInt(utf8.RuneSelf)) + + // hv1++ + nif.Body = []ir.Node{ir.NewAssignStmt(base.Pos, hv1, ir.NewBinaryExpr(base.Pos, ir.OADD, hv1, ir.NewInt(1)))} + + // } else { + // hv2, hv1 = decoderune(ha, hv1) + fn := typecheck.LookupRuntime("decoderune") + call := mkcall1(fn, fn.Type().Results(), &nif.Else, ha, hv1) + a := ir.NewAssignListStmt(base.Pos, ir.OAS2, []ir.Node{hv2, hv1}, []ir.Node{call}) + nif.Else.Append(a) + + body = append(body, nif) + + if v1 != nil { + if v2 != nil { + // v1, v2 = hv1t, hv2 + a := ir.NewAssignListStmt(base.Pos, ir.OAS2, []ir.Node{v1, v2}, []ir.Node{hv1t, hv2}) + body = append(body, a) + } else { + // v1 = hv1t + body = append(body, ir.NewAssignStmt(base.Pos, v1, hv1t)) + } + } + } + + typecheck.Stmts(init) + + if ifGuard != nil { + ifGuard.PtrInit().Append(init...) + ifGuard = typecheck.Stmt(ifGuard).(*ir.IfStmt) + } else { + nfor.PtrInit().Append(init...) + } + + typecheck.Stmts(nfor.Cond.Init()) + + nfor.Cond = typecheck.Expr(nfor.Cond) + nfor.Cond = typecheck.DefaultLit(nfor.Cond, nil) + nfor.Post = typecheck.Stmt(nfor.Post) + typecheck.Stmts(body) + nfor.Body.Append(body...) + nfor.Body.Append(nrange.Body...) + + var n ir.Node = nfor + if ifGuard != nil { + ifGuard.Body = []ir.Node{n} + n = ifGuard + } + + n = walkStmt(n) + + base.Pos = lno + return n +} + +// isMapClear checks if n is of the form: +// +// for k := range m { +// delete(m, k) +// } +// +// where == for keys of map m is reflexive. +func isMapClear(n *ir.RangeStmt) bool { + if base.Flag.N != 0 || base.Flag.Cfg.Instrumenting { + return false + } + + t := n.X.Type() + if n.Op() != ir.ORANGE || t.Kind() != types.TMAP || n.Key == nil || n.Value != nil { + return false + } + + k := n.Key + // Require k to be a new variable name. + if !ir.DeclaredBy(k, n) { + return false + } + + if len(n.Body) != 1 { + return false + } + + stmt := n.Body[0] // only stmt in body + if stmt == nil || stmt.Op() != ir.ODELETE { + return false + } + + m := n.X + if delete := stmt.(*ir.CallExpr); !ir.SameSafeExpr(delete.Args[0], m) || !ir.SameSafeExpr(delete.Args[1], k) { + return false + } + + // Keys where equality is not reflexive can not be deleted from maps. + if !types.IsReflexive(t.Key()) { + return false + } + + return true +} + +// mapClear constructs a call to runtime.mapclear for the map m. +func mapClear(m ir.Node) ir.Node { + t := m.Type() + + // instantiate mapclear(typ *type, hmap map[any]any) + fn := typecheck.LookupRuntime("mapclear") + fn = typecheck.SubstArgTypes(fn, t.Key(), t.Elem()) + n := mkcallstmt1(fn, reflectdata.TypePtr(t), m) + return walkStmt(typecheck.Stmt(n)) +} + +// Lower n into runtime·memclr if possible, for +// fast zeroing of slices and arrays (issue 5373). +// Look for instances of +// +// for i := range a { +// a[i] = zero +// } +// +// in which the evaluation of a is side-effect-free. +// +// Parameters are as in walkRange: "for v1, v2 = range a". +func arrayClear(loop *ir.RangeStmt, v1, v2, a ir.Node) ir.Node { + if base.Flag.N != 0 || base.Flag.Cfg.Instrumenting { + return nil + } + + if v1 == nil || v2 != nil { + return nil + } + + if len(loop.Body) != 1 || loop.Body[0] == nil { + return nil + } + + stmt1 := loop.Body[0] // only stmt in body + if stmt1.Op() != ir.OAS { + return nil + } + stmt := stmt1.(*ir.AssignStmt) + if stmt.X.Op() != ir.OINDEX { + return nil + } + lhs := stmt.X.(*ir.IndexExpr) + + if !ir.SameSafeExpr(lhs.X, a) || !ir.SameSafeExpr(lhs.Index, v1) { + return nil + } + + elemsize := typecheck.RangeExprType(loop.X.Type()).Elem().Size() + if elemsize <= 0 || !ir.IsZero(stmt.Y) { + return nil + } + + // Convert to + // if len(a) != 0 { + // hp = &a[0] + // hn = len(a)*sizeof(elem(a)) + // memclr{NoHeap,Has}Pointers(hp, hn) + // i = len(a) - 1 + // } + n := ir.NewIfStmt(base.Pos, nil, nil, nil) + n.Cond = ir.NewBinaryExpr(base.Pos, ir.ONE, ir.NewUnaryExpr(base.Pos, ir.OLEN, a), ir.NewInt(0)) + + // hp = &a[0] + hp := typecheck.Temp(types.Types[types.TUNSAFEPTR]) + + ix := ir.NewIndexExpr(base.Pos, a, ir.NewInt(0)) + ix.SetBounded(true) + addr := typecheck.ConvNop(typecheck.NodAddr(ix), types.Types[types.TUNSAFEPTR]) + n.Body.Append(ir.NewAssignStmt(base.Pos, hp, addr)) + + // hn = len(a) * sizeof(elem(a)) + hn := typecheck.Temp(types.Types[types.TUINTPTR]) + mul := typecheck.Conv(ir.NewBinaryExpr(base.Pos, ir.OMUL, ir.NewUnaryExpr(base.Pos, ir.OLEN, a), ir.NewInt(elemsize)), types.Types[types.TUINTPTR]) + n.Body.Append(ir.NewAssignStmt(base.Pos, hn, mul)) + + var fn ir.Node + if a.Type().Elem().HasPointers() { + // memclrHasPointers(hp, hn) + ir.CurFunc.SetWBPos(stmt.Pos()) + fn = mkcallstmt("memclrHasPointers", hp, hn) + } else { + // memclrNoHeapPointers(hp, hn) + fn = mkcallstmt("memclrNoHeapPointers", hp, hn) + } + + n.Body.Append(fn) + + // i = len(a) - 1 + v1 = ir.NewAssignStmt(base.Pos, v1, ir.NewBinaryExpr(base.Pos, ir.OSUB, ir.NewUnaryExpr(base.Pos, ir.OLEN, a), ir.NewInt(1))) + + n.Body.Append(v1) + + n.Cond = typecheck.Expr(n.Cond) + n.Cond = typecheck.DefaultLit(n.Cond, nil) + typecheck.Stmts(n.Body) + return walkStmt(n) +} + +// addptr returns (*T)(uintptr(p) + n). +func addptr(p ir.Node, n int64) ir.Node { + t := p.Type() + + p = ir.NewConvExpr(base.Pos, ir.OCONVNOP, nil, p) + p.SetType(types.Types[types.TUINTPTR]) + + p = ir.NewBinaryExpr(base.Pos, ir.OADD, p, ir.NewInt(n)) + + p = ir.NewConvExpr(base.Pos, ir.OCONVNOP, nil, p) + p.SetType(t) + + return p +} |