summaryrefslogtreecommitdiffstats
path: root/src/crypto/ed25519/internal/edwards25519/field/fe.go
diff options
context:
space:
mode:
Diffstat (limited to 'src/crypto/ed25519/internal/edwards25519/field/fe.go')
-rw-r--r--src/crypto/ed25519/internal/edwards25519/field/fe.go416
1 files changed, 416 insertions, 0 deletions
diff --git a/src/crypto/ed25519/internal/edwards25519/field/fe.go b/src/crypto/ed25519/internal/edwards25519/field/fe.go
new file mode 100644
index 0000000..dbe8659
--- /dev/null
+++ b/src/crypto/ed25519/internal/edwards25519/field/fe.go
@@ -0,0 +1,416 @@
+// Copyright (c) 2017 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// Package field implements fast arithmetic modulo 2^255-19.
+package field
+
+import (
+ "crypto/subtle"
+ "encoding/binary"
+ "math/bits"
+)
+
+// Element represents an element of the field GF(2^255-19). Note that this
+// is not a cryptographically secure group, and should only be used to interact
+// with edwards25519.Point coordinates.
+//
+// This type works similarly to math/big.Int, and all arguments and receivers
+// are allowed to alias.
+//
+// The zero value is a valid zero element.
+type Element struct {
+ // An element t represents the integer
+ // t.l0 + t.l1*2^51 + t.l2*2^102 + t.l3*2^153 + t.l4*2^204
+ //
+ // Between operations, all limbs are expected to be lower than 2^52.
+ l0 uint64
+ l1 uint64
+ l2 uint64
+ l3 uint64
+ l4 uint64
+}
+
+const maskLow51Bits uint64 = (1 << 51) - 1
+
+var feZero = &Element{0, 0, 0, 0, 0}
+
+// Zero sets v = 0, and returns v.
+func (v *Element) Zero() *Element {
+ *v = *feZero
+ return v
+}
+
+var feOne = &Element{1, 0, 0, 0, 0}
+
+// One sets v = 1, and returns v.
+func (v *Element) One() *Element {
+ *v = *feOne
+ return v
+}
+
+// reduce reduces v modulo 2^255 - 19 and returns it.
+func (v *Element) reduce() *Element {
+ v.carryPropagate()
+
+ // After the light reduction we now have a field element representation
+ // v < 2^255 + 2^13 * 19, but need v < 2^255 - 19.
+
+ // If v >= 2^255 - 19, then v + 19 >= 2^255, which would overflow 2^255 - 1,
+ // generating a carry. That is, c will be 0 if v < 2^255 - 19, and 1 otherwise.
+ c := (v.l0 + 19) >> 51
+ c = (v.l1 + c) >> 51
+ c = (v.l2 + c) >> 51
+ c = (v.l3 + c) >> 51
+ c = (v.l4 + c) >> 51
+
+ // If v < 2^255 - 19 and c = 0, this will be a no-op. Otherwise, it's
+ // effectively applying the reduction identity to the carry.
+ v.l0 += 19 * c
+
+ v.l1 += v.l0 >> 51
+ v.l0 = v.l0 & maskLow51Bits
+ v.l2 += v.l1 >> 51
+ v.l1 = v.l1 & maskLow51Bits
+ v.l3 += v.l2 >> 51
+ v.l2 = v.l2 & maskLow51Bits
+ v.l4 += v.l3 >> 51
+ v.l3 = v.l3 & maskLow51Bits
+ // no additional carry
+ v.l4 = v.l4 & maskLow51Bits
+
+ return v
+}
+
+// Add sets v = a + b, and returns v.
+func (v *Element) Add(a, b *Element) *Element {
+ v.l0 = a.l0 + b.l0
+ v.l1 = a.l1 + b.l1
+ v.l2 = a.l2 + b.l2
+ v.l3 = a.l3 + b.l3
+ v.l4 = a.l4 + b.l4
+ // Using the generic implementation here is actually faster than the
+ // assembly. Probably because the body of this function is so simple that
+ // the compiler can figure out better optimizations by inlining the carry
+ // propagation.
+ return v.carryPropagateGeneric()
+}
+
+// Subtract sets v = a - b, and returns v.
+func (v *Element) Subtract(a, b *Element) *Element {
+ // We first add 2 * p, to guarantee the subtraction won't underflow, and
+ // then subtract b (which can be up to 2^255 + 2^13 * 19).
+ v.l0 = (a.l0 + 0xFFFFFFFFFFFDA) - b.l0
+ v.l1 = (a.l1 + 0xFFFFFFFFFFFFE) - b.l1
+ v.l2 = (a.l2 + 0xFFFFFFFFFFFFE) - b.l2
+ v.l3 = (a.l3 + 0xFFFFFFFFFFFFE) - b.l3
+ v.l4 = (a.l4 + 0xFFFFFFFFFFFFE) - b.l4
+ return v.carryPropagate()
+}
+
+// Negate sets v = -a, and returns v.
+func (v *Element) Negate(a *Element) *Element {
+ return v.Subtract(feZero, a)
+}
+
+// Invert sets v = 1/z mod p, and returns v.
+//
+// If z == 0, Invert returns v = 0.
+func (v *Element) Invert(z *Element) *Element {
+ // Inversion is implemented as exponentiation with exponent p − 2. It uses the
+ // same sequence of 255 squarings and 11 multiplications as [Curve25519].
+ var z2, z9, z11, z2_5_0, z2_10_0, z2_20_0, z2_50_0, z2_100_0, t Element
+
+ z2.Square(z) // 2
+ t.Square(&z2) // 4
+ t.Square(&t) // 8
+ z9.Multiply(&t, z) // 9
+ z11.Multiply(&z9, &z2) // 11
+ t.Square(&z11) // 22
+ z2_5_0.Multiply(&t, &z9) // 31 = 2^5 - 2^0
+
+ t.Square(&z2_5_0) // 2^6 - 2^1
+ for i := 0; i < 4; i++ {
+ t.Square(&t) // 2^10 - 2^5
+ }
+ z2_10_0.Multiply(&t, &z2_5_0) // 2^10 - 2^0
+
+ t.Square(&z2_10_0) // 2^11 - 2^1
+ for i := 0; i < 9; i++ {
+ t.Square(&t) // 2^20 - 2^10
+ }
+ z2_20_0.Multiply(&t, &z2_10_0) // 2^20 - 2^0
+
+ t.Square(&z2_20_0) // 2^21 - 2^1
+ for i := 0; i < 19; i++ {
+ t.Square(&t) // 2^40 - 2^20
+ }
+ t.Multiply(&t, &z2_20_0) // 2^40 - 2^0
+
+ t.Square(&t) // 2^41 - 2^1
+ for i := 0; i < 9; i++ {
+ t.Square(&t) // 2^50 - 2^10
+ }
+ z2_50_0.Multiply(&t, &z2_10_0) // 2^50 - 2^0
+
+ t.Square(&z2_50_0) // 2^51 - 2^1
+ for i := 0; i < 49; i++ {
+ t.Square(&t) // 2^100 - 2^50
+ }
+ z2_100_0.Multiply(&t, &z2_50_0) // 2^100 - 2^0
+
+ t.Square(&z2_100_0) // 2^101 - 2^1
+ for i := 0; i < 99; i++ {
+ t.Square(&t) // 2^200 - 2^100
+ }
+ t.Multiply(&t, &z2_100_0) // 2^200 - 2^0
+
+ t.Square(&t) // 2^201 - 2^1
+ for i := 0; i < 49; i++ {
+ t.Square(&t) // 2^250 - 2^50
+ }
+ t.Multiply(&t, &z2_50_0) // 2^250 - 2^0
+
+ t.Square(&t) // 2^251 - 2^1
+ t.Square(&t) // 2^252 - 2^2
+ t.Square(&t) // 2^253 - 2^3
+ t.Square(&t) // 2^254 - 2^4
+ t.Square(&t) // 2^255 - 2^5
+
+ return v.Multiply(&t, &z11) // 2^255 - 21
+}
+
+// Set sets v = a, and returns v.
+func (v *Element) Set(a *Element) *Element {
+ *v = *a
+ return v
+}
+
+// SetBytes sets v to x, which must be a 32-byte little-endian encoding.
+//
+// Consistent with RFC 7748, the most significant bit (the high bit of the
+// last byte) is ignored, and non-canonical values (2^255-19 through 2^255-1)
+// are accepted. Note that this is laxer than specified by RFC 8032.
+func (v *Element) SetBytes(x []byte) *Element {
+ if len(x) != 32 {
+ panic("edwards25519: invalid field element input size")
+ }
+
+ // Bits 0:51 (bytes 0:8, bits 0:64, shift 0, mask 51).
+ v.l0 = binary.LittleEndian.Uint64(x[0:8])
+ v.l0 &= maskLow51Bits
+ // Bits 51:102 (bytes 6:14, bits 48:112, shift 3, mask 51).
+ v.l1 = binary.LittleEndian.Uint64(x[6:14]) >> 3
+ v.l1 &= maskLow51Bits
+ // Bits 102:153 (bytes 12:20, bits 96:160, shift 6, mask 51).
+ v.l2 = binary.LittleEndian.Uint64(x[12:20]) >> 6
+ v.l2 &= maskLow51Bits
+ // Bits 153:204 (bytes 19:27, bits 152:216, shift 1, mask 51).
+ v.l3 = binary.LittleEndian.Uint64(x[19:27]) >> 1
+ v.l3 &= maskLow51Bits
+ // Bits 204:251 (bytes 24:32, bits 192:256, shift 12, mask 51).
+ // Note: not bytes 25:33, shift 4, to avoid overread.
+ v.l4 = binary.LittleEndian.Uint64(x[24:32]) >> 12
+ v.l4 &= maskLow51Bits
+
+ return v
+}
+
+// Bytes returns the canonical 32-byte little-endian encoding of v.
+func (v *Element) Bytes() []byte {
+ // This function is outlined to make the allocations inline in the caller
+ // rather than happen on the heap.
+ var out [32]byte
+ return v.bytes(&out)
+}
+
+func (v *Element) bytes(out *[32]byte) []byte {
+ t := *v
+ t.reduce()
+
+ var buf [8]byte
+ for i, l := range [5]uint64{t.l0, t.l1, t.l2, t.l3, t.l4} {
+ bitsOffset := i * 51
+ binary.LittleEndian.PutUint64(buf[:], l<<uint(bitsOffset%8))
+ for i, bb := range buf {
+ off := bitsOffset/8 + i
+ if off >= len(out) {
+ break
+ }
+ out[off] |= bb
+ }
+ }
+
+ return out[:]
+}
+
+// Equal returns 1 if v and u are equal, and 0 otherwise.
+func (v *Element) Equal(u *Element) int {
+ sa, sv := u.Bytes(), v.Bytes()
+ return subtle.ConstantTimeCompare(sa, sv)
+}
+
+// mask64Bits returns 0xffffffff if cond is 1, and 0 otherwise.
+func mask64Bits(cond int) uint64 { return ^(uint64(cond) - 1) }
+
+// Select sets v to a if cond == 1, and to b if cond == 0.
+func (v *Element) Select(a, b *Element, cond int) *Element {
+ m := mask64Bits(cond)
+ v.l0 = (m & a.l0) | (^m & b.l0)
+ v.l1 = (m & a.l1) | (^m & b.l1)
+ v.l2 = (m & a.l2) | (^m & b.l2)
+ v.l3 = (m & a.l3) | (^m & b.l3)
+ v.l4 = (m & a.l4) | (^m & b.l4)
+ return v
+}
+
+// Swap swaps v and u if cond == 1 or leaves them unchanged if cond == 0, and returns v.
+func (v *Element) Swap(u *Element, cond int) {
+ m := mask64Bits(cond)
+ t := m & (v.l0 ^ u.l0)
+ v.l0 ^= t
+ u.l0 ^= t
+ t = m & (v.l1 ^ u.l1)
+ v.l1 ^= t
+ u.l1 ^= t
+ t = m & (v.l2 ^ u.l2)
+ v.l2 ^= t
+ u.l2 ^= t
+ t = m & (v.l3 ^ u.l3)
+ v.l3 ^= t
+ u.l3 ^= t
+ t = m & (v.l4 ^ u.l4)
+ v.l4 ^= t
+ u.l4 ^= t
+}
+
+// IsNegative returns 1 if v is negative, and 0 otherwise.
+func (v *Element) IsNegative() int {
+ return int(v.Bytes()[0] & 1)
+}
+
+// Absolute sets v to |u|, and returns v.
+func (v *Element) Absolute(u *Element) *Element {
+ return v.Select(new(Element).Negate(u), u, u.IsNegative())
+}
+
+// Multiply sets v = x * y, and returns v.
+func (v *Element) Multiply(x, y *Element) *Element {
+ feMul(v, x, y)
+ return v
+}
+
+// Square sets v = x * x, and returns v.
+func (v *Element) Square(x *Element) *Element {
+ feSquare(v, x)
+ return v
+}
+
+// Mult32 sets v = x * y, and returns v.
+func (v *Element) Mult32(x *Element, y uint32) *Element {
+ x0lo, x0hi := mul51(x.l0, y)
+ x1lo, x1hi := mul51(x.l1, y)
+ x2lo, x2hi := mul51(x.l2, y)
+ x3lo, x3hi := mul51(x.l3, y)
+ x4lo, x4hi := mul51(x.l4, y)
+ v.l0 = x0lo + 19*x4hi // carried over per the reduction identity
+ v.l1 = x1lo + x0hi
+ v.l2 = x2lo + x1hi
+ v.l3 = x3lo + x2hi
+ v.l4 = x4lo + x3hi
+ // The hi portions are going to be only 32 bits, plus any previous excess,
+ // so we can skip the carry propagation.
+ return v
+}
+
+// mul51 returns lo + hi * 2⁵¹ = a * b.
+func mul51(a uint64, b uint32) (lo uint64, hi uint64) {
+ mh, ml := bits.Mul64(a, uint64(b))
+ lo = ml & maskLow51Bits
+ hi = (mh << 13) | (ml >> 51)
+ return
+}
+
+// Pow22523 set v = x^((p-5)/8), and returns v. (p-5)/8 is 2^252-3.
+func (v *Element) Pow22523(x *Element) *Element {
+ var t0, t1, t2 Element
+
+ t0.Square(x) // x^2
+ t1.Square(&t0) // x^4
+ t1.Square(&t1) // x^8
+ t1.Multiply(x, &t1) // x^9
+ t0.Multiply(&t0, &t1) // x^11
+ t0.Square(&t0) // x^22
+ t0.Multiply(&t1, &t0) // x^31
+ t1.Square(&t0) // x^62
+ for i := 1; i < 5; i++ { // x^992
+ t1.Square(&t1)
+ }
+ t0.Multiply(&t1, &t0) // x^1023 -> 1023 = 2^10 - 1
+ t1.Square(&t0) // 2^11 - 2
+ for i := 1; i < 10; i++ { // 2^20 - 2^10
+ t1.Square(&t1)
+ }
+ t1.Multiply(&t1, &t0) // 2^20 - 1
+ t2.Square(&t1) // 2^21 - 2
+ for i := 1; i < 20; i++ { // 2^40 - 2^20
+ t2.Square(&t2)
+ }
+ t1.Multiply(&t2, &t1) // 2^40 - 1
+ t1.Square(&t1) // 2^41 - 2
+ for i := 1; i < 10; i++ { // 2^50 - 2^10
+ t1.Square(&t1)
+ }
+ t0.Multiply(&t1, &t0) // 2^50 - 1
+ t1.Square(&t0) // 2^51 - 2
+ for i := 1; i < 50; i++ { // 2^100 - 2^50
+ t1.Square(&t1)
+ }
+ t1.Multiply(&t1, &t0) // 2^100 - 1
+ t2.Square(&t1) // 2^101 - 2
+ for i := 1; i < 100; i++ { // 2^200 - 2^100
+ t2.Square(&t2)
+ }
+ t1.Multiply(&t2, &t1) // 2^200 - 1
+ t1.Square(&t1) // 2^201 - 2
+ for i := 1; i < 50; i++ { // 2^250 - 2^50
+ t1.Square(&t1)
+ }
+ t0.Multiply(&t1, &t0) // 2^250 - 1
+ t0.Square(&t0) // 2^251 - 2
+ t0.Square(&t0) // 2^252 - 4
+ return v.Multiply(&t0, x) // 2^252 - 3 -> x^(2^252-3)
+}
+
+// sqrtM1 is 2^((p-1)/4), which squared is equal to -1 by Euler's Criterion.
+var sqrtM1 = &Element{1718705420411056, 234908883556509,
+ 2233514472574048, 2117202627021982, 765476049583133}
+
+// SqrtRatio sets r to the non-negative square root of the ratio of u and v.
+//
+// If u/v is square, SqrtRatio returns r and 1. If u/v is not square, SqrtRatio
+// sets r according to Section 4.3 of draft-irtf-cfrg-ristretto255-decaf448-00,
+// and returns r and 0.
+func (r *Element) SqrtRatio(u, v *Element) (rr *Element, wasSquare int) {
+ var a, b Element
+
+ // r = (u * v3) * (u * v7)^((p-5)/8)
+ v2 := a.Square(v)
+ uv3 := b.Multiply(u, b.Multiply(v2, v))
+ uv7 := a.Multiply(uv3, a.Square(v2))
+ r.Multiply(uv3, r.Pow22523(uv7))
+
+ check := a.Multiply(v, a.Square(r)) // check = v * r^2
+
+ uNeg := b.Negate(u)
+ correctSignSqrt := check.Equal(u)
+ flippedSignSqrt := check.Equal(uNeg)
+ flippedSignSqrtI := check.Equal(uNeg.Multiply(uNeg, sqrtM1))
+
+ rPrime := b.Multiply(r, sqrtM1) // r_prime = SQRT_M1 * r
+ // r = CT_SELECT(r_prime IF flipped_sign_sqrt | flipped_sign_sqrt_i ELSE r)
+ r.Select(rPrime, r, flippedSignSqrt|flippedSignSqrtI)
+
+ r.Absolute(r) // Choose the nonnegative square root.
+ return r, correctSignSqrt | flippedSignSqrt
+}