diff options
Diffstat (limited to 'src/math/big/nat.go')
-rw-r--r-- | src/math/big/nat.go | 1244 |
1 files changed, 1244 insertions, 0 deletions
diff --git a/src/math/big/nat.go b/src/math/big/nat.go new file mode 100644 index 0000000..140c619 --- /dev/null +++ b/src/math/big/nat.go @@ -0,0 +1,1244 @@ +// Copyright 2009 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +// This file implements unsigned multi-precision integers (natural +// numbers). They are the building blocks for the implementation +// of signed integers, rationals, and floating-point numbers. +// +// Caution: This implementation relies on the function "alias" +// which assumes that (nat) slice capacities are never +// changed (no 3-operand slice expressions). If that +// changes, alias needs to be updated for correctness. + +package big + +import ( + "encoding/binary" + "math/bits" + "math/rand" + "sync" +) + +// An unsigned integer x of the form +// +// x = x[n-1]*_B^(n-1) + x[n-2]*_B^(n-2) + ... + x[1]*_B + x[0] +// +// with 0 <= x[i] < _B and 0 <= i < n is stored in a slice of length n, +// with the digits x[i] as the slice elements. +// +// A number is normalized if the slice contains no leading 0 digits. +// During arithmetic operations, denormalized values may occur but are +// always normalized before returning the final result. The normalized +// representation of 0 is the empty or nil slice (length = 0). +// +type nat []Word + +var ( + natOne = nat{1} + natTwo = nat{2} + natFive = nat{5} + natTen = nat{10} +) + +func (z nat) clear() { + for i := range z { + z[i] = 0 + } +} + +func (z nat) norm() nat { + i := len(z) + for i > 0 && z[i-1] == 0 { + i-- + } + return z[0:i] +} + +func (z nat) make(n int) nat { + if n <= cap(z) { + return z[:n] // reuse z + } + if n == 1 { + // Most nats start small and stay that way; don't over-allocate. + return make(nat, 1) + } + // Choosing a good value for e has significant performance impact + // because it increases the chance that a value can be reused. + const e = 4 // extra capacity + return make(nat, n, n+e) +} + +func (z nat) setWord(x Word) nat { + if x == 0 { + return z[:0] + } + z = z.make(1) + z[0] = x + return z +} + +func (z nat) setUint64(x uint64) nat { + // single-word value + if w := Word(x); uint64(w) == x { + return z.setWord(w) + } + // 2-word value + z = z.make(2) + z[1] = Word(x >> 32) + z[0] = Word(x) + return z +} + +func (z nat) set(x nat) nat { + z = z.make(len(x)) + copy(z, x) + return z +} + +func (z nat) add(x, y nat) nat { + m := len(x) + n := len(y) + + switch { + case m < n: + return z.add(y, x) + case m == 0: + // n == 0 because m >= n; result is 0 + return z[:0] + case n == 0: + // result is x + return z.set(x) + } + // m > 0 + + z = z.make(m + 1) + c := addVV(z[0:n], x, y) + if m > n { + c = addVW(z[n:m], x[n:], c) + } + z[m] = c + + return z.norm() +} + +func (z nat) sub(x, y nat) nat { + m := len(x) + n := len(y) + + switch { + case m < n: + panic("underflow") + case m == 0: + // n == 0 because m >= n; result is 0 + return z[:0] + case n == 0: + // result is x + return z.set(x) + } + // m > 0 + + z = z.make(m) + c := subVV(z[0:n], x, y) + if m > n { + c = subVW(z[n:], x[n:], c) + } + if c != 0 { + panic("underflow") + } + + return z.norm() +} + +func (x nat) cmp(y nat) (r int) { + m := len(x) + n := len(y) + if m != n || m == 0 { + switch { + case m < n: + r = -1 + case m > n: + r = 1 + } + return + } + + i := m - 1 + for i > 0 && x[i] == y[i] { + i-- + } + + switch { + case x[i] < y[i]: + r = -1 + case x[i] > y[i]: + r = 1 + } + return +} + +func (z nat) mulAddWW(x nat, y, r Word) nat { + m := len(x) + if m == 0 || y == 0 { + return z.setWord(r) // result is r + } + // m > 0 + + z = z.make(m + 1) + z[m] = mulAddVWW(z[0:m], x, y, r) + + return z.norm() +} + +// basicMul multiplies x and y and leaves the result in z. +// The (non-normalized) result is placed in z[0 : len(x) + len(y)]. +func basicMul(z, x, y nat) { + z[0 : len(x)+len(y)].clear() // initialize z + for i, d := range y { + if d != 0 { + z[len(x)+i] = addMulVVW(z[i:i+len(x)], x, d) + } + } +} + +// montgomery computes z mod m = x*y*2**(-n*_W) mod m, +// assuming k = -1/m mod 2**_W. +// z is used for storing the result which is returned; +// z must not alias x, y or m. +// See Gueron, "Efficient Software Implementations of Modular Exponentiation". +// https://eprint.iacr.org/2011/239.pdf +// In the terminology of that paper, this is an "Almost Montgomery Multiplication": +// x and y are required to satisfy 0 <= z < 2**(n*_W) and then the result +// z is guaranteed to satisfy 0 <= z < 2**(n*_W), but it may not be < m. +func (z nat) montgomery(x, y, m nat, k Word, n int) nat { + // This code assumes x, y, m are all the same length, n. + // (required by addMulVVW and the for loop). + // It also assumes that x, y are already reduced mod m, + // or else the result will not be properly reduced. + if len(x) != n || len(y) != n || len(m) != n { + panic("math/big: mismatched montgomery number lengths") + } + z = z.make(n * 2) + z.clear() + var c Word + for i := 0; i < n; i++ { + d := y[i] + c2 := addMulVVW(z[i:n+i], x, d) + t := z[i] * k + c3 := addMulVVW(z[i:n+i], m, t) + cx := c + c2 + cy := cx + c3 + z[n+i] = cy + if cx < c2 || cy < c3 { + c = 1 + } else { + c = 0 + } + } + if c != 0 { + subVV(z[:n], z[n:], m) + } else { + copy(z[:n], z[n:]) + } + return z[:n] +} + +// Fast version of z[0:n+n>>1].add(z[0:n+n>>1], x[0:n]) w/o bounds checks. +// Factored out for readability - do not use outside karatsuba. +func karatsubaAdd(z, x nat, n int) { + if c := addVV(z[0:n], z, x); c != 0 { + addVW(z[n:n+n>>1], z[n:], c) + } +} + +// Like karatsubaAdd, but does subtract. +func karatsubaSub(z, x nat, n int) { + if c := subVV(z[0:n], z, x); c != 0 { + subVW(z[n:n+n>>1], z[n:], c) + } +} + +// Operands that are shorter than karatsubaThreshold are multiplied using +// "grade school" multiplication; for longer operands the Karatsuba algorithm +// is used. +var karatsubaThreshold = 40 // computed by calibrate_test.go + +// karatsuba multiplies x and y and leaves the result in z. +// Both x and y must have the same length n and n must be a +// power of 2. The result vector z must have len(z) >= 6*n. +// The (non-normalized) result is placed in z[0 : 2*n]. +func karatsuba(z, x, y nat) { + n := len(y) + + // Switch to basic multiplication if numbers are odd or small. + // (n is always even if karatsubaThreshold is even, but be + // conservative) + if n&1 != 0 || n < karatsubaThreshold || n < 2 { + basicMul(z, x, y) + return + } + // n&1 == 0 && n >= karatsubaThreshold && n >= 2 + + // Karatsuba multiplication is based on the observation that + // for two numbers x and y with: + // + // x = x1*b + x0 + // y = y1*b + y0 + // + // the product x*y can be obtained with 3 products z2, z1, z0 + // instead of 4: + // + // x*y = x1*y1*b*b + (x1*y0 + x0*y1)*b + x0*y0 + // = z2*b*b + z1*b + z0 + // + // with: + // + // xd = x1 - x0 + // yd = y0 - y1 + // + // z1 = xd*yd + z2 + z0 + // = (x1-x0)*(y0 - y1) + z2 + z0 + // = x1*y0 - x1*y1 - x0*y0 + x0*y1 + z2 + z0 + // = x1*y0 - z2 - z0 + x0*y1 + z2 + z0 + // = x1*y0 + x0*y1 + + // split x, y into "digits" + n2 := n >> 1 // n2 >= 1 + x1, x0 := x[n2:], x[0:n2] // x = x1*b + y0 + y1, y0 := y[n2:], y[0:n2] // y = y1*b + y0 + + // z is used for the result and temporary storage: + // + // 6*n 5*n 4*n 3*n 2*n 1*n 0*n + // z = [z2 copy|z0 copy| xd*yd | yd:xd | x1*y1 | x0*y0 ] + // + // For each recursive call of karatsuba, an unused slice of + // z is passed in that has (at least) half the length of the + // caller's z. + + // compute z0 and z2 with the result "in place" in z + karatsuba(z, x0, y0) // z0 = x0*y0 + karatsuba(z[n:], x1, y1) // z2 = x1*y1 + + // compute xd (or the negative value if underflow occurs) + s := 1 // sign of product xd*yd + xd := z[2*n : 2*n+n2] + if subVV(xd, x1, x0) != 0 { // x1-x0 + s = -s + subVV(xd, x0, x1) // x0-x1 + } + + // compute yd (or the negative value if underflow occurs) + yd := z[2*n+n2 : 3*n] + if subVV(yd, y0, y1) != 0 { // y0-y1 + s = -s + subVV(yd, y1, y0) // y1-y0 + } + + // p = (x1-x0)*(y0-y1) == x1*y0 - x1*y1 - x0*y0 + x0*y1 for s > 0 + // p = (x0-x1)*(y0-y1) == x0*y0 - x0*y1 - x1*y0 + x1*y1 for s < 0 + p := z[n*3:] + karatsuba(p, xd, yd) + + // save original z2:z0 + // (ok to use upper half of z since we're done recursing) + r := z[n*4:] + copy(r, z[:n*2]) + + // add up all partial products + // + // 2*n n 0 + // z = [ z2 | z0 ] + // + [ z0 ] + // + [ z2 ] + // + [ p ] + // + karatsubaAdd(z[n2:], r, n) + karatsubaAdd(z[n2:], r[n:], n) + if s > 0 { + karatsubaAdd(z[n2:], p, n) + } else { + karatsubaSub(z[n2:], p, n) + } +} + +// alias reports whether x and y share the same base array. +// Note: alias assumes that the capacity of underlying arrays +// is never changed for nat values; i.e. that there are +// no 3-operand slice expressions in this code (or worse, +// reflect-based operations to the same effect). +func alias(x, y nat) bool { + return cap(x) > 0 && cap(y) > 0 && &x[0:cap(x)][cap(x)-1] == &y[0:cap(y)][cap(y)-1] +} + +// addAt implements z += x<<(_W*i); z must be long enough. +// (we don't use nat.add because we need z to stay the same +// slice, and we don't need to normalize z after each addition) +func addAt(z, x nat, i int) { + if n := len(x); n > 0 { + if c := addVV(z[i:i+n], z[i:], x); c != 0 { + j := i + n + if j < len(z) { + addVW(z[j:], z[j:], c) + } + } + } +} + +func max(x, y int) int { + if x > y { + return x + } + return y +} + +// karatsubaLen computes an approximation to the maximum k <= n such that +// k = p<<i for a number p <= threshold and an i >= 0. Thus, the +// result is the largest number that can be divided repeatedly by 2 before +// becoming about the value of threshold. +func karatsubaLen(n, threshold int) int { + i := uint(0) + for n > threshold { + n >>= 1 + i++ + } + return n << i +} + +func (z nat) mul(x, y nat) nat { + m := len(x) + n := len(y) + + switch { + case m < n: + return z.mul(y, x) + case m == 0 || n == 0: + return z[:0] + case n == 1: + return z.mulAddWW(x, y[0], 0) + } + // m >= n > 1 + + // determine if z can be reused + if alias(z, x) || alias(z, y) { + z = nil // z is an alias for x or y - cannot reuse + } + + // use basic multiplication if the numbers are small + if n < karatsubaThreshold { + z = z.make(m + n) + basicMul(z, x, y) + return z.norm() + } + // m >= n && n >= karatsubaThreshold && n >= 2 + + // determine Karatsuba length k such that + // + // x = xh*b + x0 (0 <= x0 < b) + // y = yh*b + y0 (0 <= y0 < b) + // b = 1<<(_W*k) ("base" of digits xi, yi) + // + k := karatsubaLen(n, karatsubaThreshold) + // k <= n + + // multiply x0 and y0 via Karatsuba + x0 := x[0:k] // x0 is not normalized + y0 := y[0:k] // y0 is not normalized + z = z.make(max(6*k, m+n)) // enough space for karatsuba of x0*y0 and full result of x*y + karatsuba(z, x0, y0) + z = z[0 : m+n] // z has final length but may be incomplete + z[2*k:].clear() // upper portion of z is garbage (and 2*k <= m+n since k <= n <= m) + + // If xh != 0 or yh != 0, add the missing terms to z. For + // + // xh = xi*b^i + ... + x2*b^2 + x1*b (0 <= xi < b) + // yh = y1*b (0 <= y1 < b) + // + // the missing terms are + // + // x0*y1*b and xi*y0*b^i, xi*y1*b^(i+1) for i > 0 + // + // since all the yi for i > 1 are 0 by choice of k: If any of them + // were > 0, then yh >= b^2 and thus y >= b^2. Then k' = k*2 would + // be a larger valid threshold contradicting the assumption about k. + // + if k < n || m != n { + tp := getNat(3 * k) + t := *tp + + // add x0*y1*b + x0 := x0.norm() + y1 := y[k:] // y1 is normalized because y is + t = t.mul(x0, y1) // update t so we don't lose t's underlying array + addAt(z, t, k) + + // add xi*y0<<i, xi*y1*b<<(i+k) + y0 := y0.norm() + for i := k; i < len(x); i += k { + xi := x[i:] + if len(xi) > k { + xi = xi[:k] + } + xi = xi.norm() + t = t.mul(xi, y0) + addAt(z, t, i) + t = t.mul(xi, y1) + addAt(z, t, i+k) + } + + putNat(tp) + } + + return z.norm() +} + +// basicSqr sets z = x*x and is asymptotically faster than basicMul +// by about a factor of 2, but slower for small arguments due to overhead. +// Requirements: len(x) > 0, len(z) == 2*len(x) +// The (non-normalized) result is placed in z. +func basicSqr(z, x nat) { + n := len(x) + tp := getNat(2 * n) + t := *tp // temporary variable to hold the products + t.clear() + z[1], z[0] = mulWW(x[0], x[0]) // the initial square + for i := 1; i < n; i++ { + d := x[i] + // z collects the squares x[i] * x[i] + z[2*i+1], z[2*i] = mulWW(d, d) + // t collects the products x[i] * x[j] where j < i + t[2*i] = addMulVVW(t[i:2*i], x[0:i], d) + } + t[2*n-1] = shlVU(t[1:2*n-1], t[1:2*n-1], 1) // double the j < i products + addVV(z, z, t) // combine the result + putNat(tp) +} + +// karatsubaSqr squares x and leaves the result in z. +// len(x) must be a power of 2 and len(z) >= 6*len(x). +// The (non-normalized) result is placed in z[0 : 2*len(x)]. +// +// The algorithm and the layout of z are the same as for karatsuba. +func karatsubaSqr(z, x nat) { + n := len(x) + + if n&1 != 0 || n < karatsubaSqrThreshold || n < 2 { + basicSqr(z[:2*n], x) + return + } + + n2 := n >> 1 + x1, x0 := x[n2:], x[0:n2] + + karatsubaSqr(z, x0) + karatsubaSqr(z[n:], x1) + + // s = sign(xd*yd) == -1 for xd != 0; s == 1 for xd == 0 + xd := z[2*n : 2*n+n2] + if subVV(xd, x1, x0) != 0 { + subVV(xd, x0, x1) + } + + p := z[n*3:] + karatsubaSqr(p, xd) + + r := z[n*4:] + copy(r, z[:n*2]) + + karatsubaAdd(z[n2:], r, n) + karatsubaAdd(z[n2:], r[n:], n) + karatsubaSub(z[n2:], p, n) // s == -1 for p != 0; s == 1 for p == 0 +} + +// Operands that are shorter than basicSqrThreshold are squared using +// "grade school" multiplication; for operands longer than karatsubaSqrThreshold +// we use the Karatsuba algorithm optimized for x == y. +var basicSqrThreshold = 20 // computed by calibrate_test.go +var karatsubaSqrThreshold = 260 // computed by calibrate_test.go + +// z = x*x +func (z nat) sqr(x nat) nat { + n := len(x) + switch { + case n == 0: + return z[:0] + case n == 1: + d := x[0] + z = z.make(2) + z[1], z[0] = mulWW(d, d) + return z.norm() + } + + if alias(z, x) { + z = nil // z is an alias for x - cannot reuse + } + + if n < basicSqrThreshold { + z = z.make(2 * n) + basicMul(z, x, x) + return z.norm() + } + if n < karatsubaSqrThreshold { + z = z.make(2 * n) + basicSqr(z, x) + return z.norm() + } + + // Use Karatsuba multiplication optimized for x == y. + // The algorithm and layout of z are the same as for mul. + + // z = (x1*b + x0)^2 = x1^2*b^2 + 2*x1*x0*b + x0^2 + + k := karatsubaLen(n, karatsubaSqrThreshold) + + x0 := x[0:k] + z = z.make(max(6*k, 2*n)) + karatsubaSqr(z, x0) // z = x0^2 + z = z[0 : 2*n] + z[2*k:].clear() + + if k < n { + tp := getNat(2 * k) + t := *tp + x0 := x0.norm() + x1 := x[k:] + t = t.mul(x0, x1) + addAt(z, t, k) + addAt(z, t, k) // z = 2*x1*x0*b + x0^2 + t = t.sqr(x1) + addAt(z, t, 2*k) // z = x1^2*b^2 + 2*x1*x0*b + x0^2 + putNat(tp) + } + + return z.norm() +} + +// mulRange computes the product of all the unsigned integers in the +// range [a, b] inclusively. If a > b (empty range), the result is 1. +func (z nat) mulRange(a, b uint64) nat { + switch { + case a == 0: + // cut long ranges short (optimization) + return z.setUint64(0) + case a > b: + return z.setUint64(1) + case a == b: + return z.setUint64(a) + case a+1 == b: + return z.mul(nat(nil).setUint64(a), nat(nil).setUint64(b)) + } + m := (a + b) / 2 + return z.mul(nat(nil).mulRange(a, m), nat(nil).mulRange(m+1, b)) +} + +// getNat returns a *nat of len n. The contents may not be zero. +// The pool holds *nat to avoid allocation when converting to interface{}. +func getNat(n int) *nat { + var z *nat + if v := natPool.Get(); v != nil { + z = v.(*nat) + } + if z == nil { + z = new(nat) + } + *z = z.make(n) + return z +} + +func putNat(x *nat) { + natPool.Put(x) +} + +var natPool sync.Pool + +// Length of x in bits. x must be normalized. +func (x nat) bitLen() int { + if i := len(x) - 1; i >= 0 { + return i*_W + bits.Len(uint(x[i])) + } + return 0 +} + +// trailingZeroBits returns the number of consecutive least significant zero +// bits of x. +func (x nat) trailingZeroBits() uint { + if len(x) == 0 { + return 0 + } + var i uint + for x[i] == 0 { + i++ + } + // x[i] != 0 + return i*_W + uint(bits.TrailingZeros(uint(x[i]))) +} + +func same(x, y nat) bool { + return len(x) == len(y) && len(x) > 0 && &x[0] == &y[0] +} + +// z = x << s +func (z nat) shl(x nat, s uint) nat { + if s == 0 { + if same(z, x) { + return z + } + if !alias(z, x) { + return z.set(x) + } + } + + m := len(x) + if m == 0 { + return z[:0] + } + // m > 0 + + n := m + int(s/_W) + z = z.make(n + 1) + z[n] = shlVU(z[n-m:n], x, s%_W) + z[0 : n-m].clear() + + return z.norm() +} + +// z = x >> s +func (z nat) shr(x nat, s uint) nat { + if s == 0 { + if same(z, x) { + return z + } + if !alias(z, x) { + return z.set(x) + } + } + + m := len(x) + n := m - int(s/_W) + if n <= 0 { + return z[:0] + } + // n > 0 + + z = z.make(n) + shrVU(z, x[m-n:], s%_W) + + return z.norm() +} + +func (z nat) setBit(x nat, i uint, b uint) nat { + j := int(i / _W) + m := Word(1) << (i % _W) + n := len(x) + switch b { + case 0: + z = z.make(n) + copy(z, x) + if j >= n { + // no need to grow + return z + } + z[j] &^= m + return z.norm() + case 1: + if j >= n { + z = z.make(j + 1) + z[n:].clear() + } else { + z = z.make(n) + } + copy(z, x) + z[j] |= m + // no need to normalize + return z + } + panic("set bit is not 0 or 1") +} + +// bit returns the value of the i'th bit, with lsb == bit 0. +func (x nat) bit(i uint) uint { + j := i / _W + if j >= uint(len(x)) { + return 0 + } + // 0 <= j < len(x) + return uint(x[j] >> (i % _W) & 1) +} + +// sticky returns 1 if there's a 1 bit within the +// i least significant bits, otherwise it returns 0. +func (x nat) sticky(i uint) uint { + j := i / _W + if j >= uint(len(x)) { + if len(x) == 0 { + return 0 + } + return 1 + } + // 0 <= j < len(x) + for _, x := range x[:j] { + if x != 0 { + return 1 + } + } + if x[j]<<(_W-i%_W) != 0 { + return 1 + } + return 0 +} + +func (z nat) and(x, y nat) nat { + m := len(x) + n := len(y) + if m > n { + m = n + } + // m <= n + + z = z.make(m) + for i := 0; i < m; i++ { + z[i] = x[i] & y[i] + } + + return z.norm() +} + +func (z nat) andNot(x, y nat) nat { + m := len(x) + n := len(y) + if n > m { + n = m + } + // m >= n + + z = z.make(m) + for i := 0; i < n; i++ { + z[i] = x[i] &^ y[i] + } + copy(z[n:m], x[n:m]) + + return z.norm() +} + +func (z nat) or(x, y nat) nat { + m := len(x) + n := len(y) + s := x + if m < n { + n, m = m, n + s = y + } + // m >= n + + z = z.make(m) + for i := 0; i < n; i++ { + z[i] = x[i] | y[i] + } + copy(z[n:m], s[n:m]) + + return z.norm() +} + +func (z nat) xor(x, y nat) nat { + m := len(x) + n := len(y) + s := x + if m < n { + n, m = m, n + s = y + } + // m >= n + + z = z.make(m) + for i := 0; i < n; i++ { + z[i] = x[i] ^ y[i] + } + copy(z[n:m], s[n:m]) + + return z.norm() +} + +// random creates a random integer in [0..limit), using the space in z if +// possible. n is the bit length of limit. +func (z nat) random(rand *rand.Rand, limit nat, n int) nat { + if alias(z, limit) { + z = nil // z is an alias for limit - cannot reuse + } + z = z.make(len(limit)) + + bitLengthOfMSW := uint(n % _W) + if bitLengthOfMSW == 0 { + bitLengthOfMSW = _W + } + mask := Word((1 << bitLengthOfMSW) - 1) + + for { + switch _W { + case 32: + for i := range z { + z[i] = Word(rand.Uint32()) + } + case 64: + for i := range z { + z[i] = Word(rand.Uint32()) | Word(rand.Uint32())<<32 + } + default: + panic("unknown word size") + } + z[len(limit)-1] &= mask + if z.cmp(limit) < 0 { + break + } + } + + return z.norm() +} + +// If m != 0 (i.e., len(m) != 0), expNN sets z to x**y mod m; +// otherwise it sets z to x**y. The result is the value of z. +func (z nat) expNN(x, y, m nat) nat { + if alias(z, x) || alias(z, y) { + // We cannot allow in-place modification of x or y. + z = nil + } + + // x**y mod 1 == 0 + if len(m) == 1 && m[0] == 1 { + return z.setWord(0) + } + // m == 0 || m > 1 + + // x**0 == 1 + if len(y) == 0 { + return z.setWord(1) + } + // y > 0 + + // x**1 mod m == x mod m + if len(y) == 1 && y[0] == 1 && len(m) != 0 { + _, z = nat(nil).div(z, x, m) + return z + } + // y > 1 + + if len(m) != 0 { + // We likely end up being as long as the modulus. + z = z.make(len(m)) + } + z = z.set(x) + + // If the base is non-trivial and the exponent is large, we use + // 4-bit, windowed exponentiation. This involves precomputing 14 values + // (x^2...x^15) but then reduces the number of multiply-reduces by a + // third. Even for a 32-bit exponent, this reduces the number of + // operations. Uses Montgomery method for odd moduli. + if x.cmp(natOne) > 0 && len(y) > 1 && len(m) > 0 { + if m[0]&1 == 1 { + return z.expNNMontgomery(x, y, m) + } + return z.expNNWindowed(x, y, m) + } + + v := y[len(y)-1] // v > 0 because y is normalized and y > 0 + shift := nlz(v) + 1 + v <<= shift + var q nat + + const mask = 1 << (_W - 1) + + // We walk through the bits of the exponent one by one. Each time we + // see a bit, we square, thus doubling the power. If the bit is a one, + // we also multiply by x, thus adding one to the power. + + w := _W - int(shift) + // zz and r are used to avoid allocating in mul and div as + // otherwise the arguments would alias. + var zz, r nat + for j := 0; j < w; j++ { + zz = zz.sqr(z) + zz, z = z, zz + + if v&mask != 0 { + zz = zz.mul(z, x) + zz, z = z, zz + } + + if len(m) != 0 { + zz, r = zz.div(r, z, m) + zz, r, q, z = q, z, zz, r + } + + v <<= 1 + } + + for i := len(y) - 2; i >= 0; i-- { + v = y[i] + + for j := 0; j < _W; j++ { + zz = zz.sqr(z) + zz, z = z, zz + + if v&mask != 0 { + zz = zz.mul(z, x) + zz, z = z, zz + } + + if len(m) != 0 { + zz, r = zz.div(r, z, m) + zz, r, q, z = q, z, zz, r + } + + v <<= 1 + } + } + + return z.norm() +} + +// expNNWindowed calculates x**y mod m using a fixed, 4-bit window. +func (z nat) expNNWindowed(x, y, m nat) nat { + // zz and r are used to avoid allocating in mul and div as otherwise + // the arguments would alias. + var zz, r nat + + const n = 4 + // powers[i] contains x^i. + var powers [1 << n]nat + powers[0] = natOne + powers[1] = x + for i := 2; i < 1<<n; i += 2 { + p2, p, p1 := &powers[i/2], &powers[i], &powers[i+1] + *p = p.sqr(*p2) + zz, r = zz.div(r, *p, m) + *p, r = r, *p + *p1 = p1.mul(*p, x) + zz, r = zz.div(r, *p1, m) + *p1, r = r, *p1 + } + + z = z.setWord(1) + + for i := len(y) - 1; i >= 0; i-- { + yi := y[i] + for j := 0; j < _W; j += n { + if i != len(y)-1 || j != 0 { + // Unrolled loop for significant performance + // gain. Use go test -bench=".*" in crypto/rsa + // to check performance before making changes. + zz = zz.sqr(z) + zz, z = z, zz + zz, r = zz.div(r, z, m) + z, r = r, z + + zz = zz.sqr(z) + zz, z = z, zz + zz, r = zz.div(r, z, m) + z, r = r, z + + zz = zz.sqr(z) + zz, z = z, zz + zz, r = zz.div(r, z, m) + z, r = r, z + + zz = zz.sqr(z) + zz, z = z, zz + zz, r = zz.div(r, z, m) + z, r = r, z + } + + zz = zz.mul(z, powers[yi>>(_W-n)]) + zz, z = z, zz + zz, r = zz.div(r, z, m) + z, r = r, z + + yi <<= n + } + } + + return z.norm() +} + +// expNNMontgomery calculates x**y mod m using a fixed, 4-bit window. +// Uses Montgomery representation. +func (z nat) expNNMontgomery(x, y, m nat) nat { + numWords := len(m) + + // We want the lengths of x and m to be equal. + // It is OK if x >= m as long as len(x) == len(m). + if len(x) > numWords { + _, x = nat(nil).div(nil, x, m) + // Note: now len(x) <= numWords, not guaranteed ==. + } + if len(x) < numWords { + rr := make(nat, numWords) + copy(rr, x) + x = rr + } + + // Ideally the precomputations would be performed outside, and reused + // k0 = -m**-1 mod 2**_W. Algorithm from: Dumas, J.G. "On Newton–Raphson + // Iteration for Multiplicative Inverses Modulo Prime Powers". + k0 := 2 - m[0] + t := m[0] - 1 + for i := 1; i < _W; i <<= 1 { + t *= t + k0 *= (t + 1) + } + k0 = -k0 + + // RR = 2**(2*_W*len(m)) mod m + RR := nat(nil).setWord(1) + zz := nat(nil).shl(RR, uint(2*numWords*_W)) + _, RR = nat(nil).div(RR, zz, m) + if len(RR) < numWords { + zz = zz.make(numWords) + copy(zz, RR) + RR = zz + } + // one = 1, with equal length to that of m + one := make(nat, numWords) + one[0] = 1 + + const n = 4 + // powers[i] contains x^i + var powers [1 << n]nat + powers[0] = powers[0].montgomery(one, RR, m, k0, numWords) + powers[1] = powers[1].montgomery(x, RR, m, k0, numWords) + for i := 2; i < 1<<n; i++ { + powers[i] = powers[i].montgomery(powers[i-1], powers[1], m, k0, numWords) + } + + // initialize z = 1 (Montgomery 1) + z = z.make(numWords) + copy(z, powers[0]) + + zz = zz.make(numWords) + + // same windowed exponent, but with Montgomery multiplications + for i := len(y) - 1; i >= 0; i-- { + yi := y[i] + for j := 0; j < _W; j += n { + if i != len(y)-1 || j != 0 { + zz = zz.montgomery(z, z, m, k0, numWords) + z = z.montgomery(zz, zz, m, k0, numWords) + zz = zz.montgomery(z, z, m, k0, numWords) + z = z.montgomery(zz, zz, m, k0, numWords) + } + zz = zz.montgomery(z, powers[yi>>(_W-n)], m, k0, numWords) + z, zz = zz, z + yi <<= n + } + } + // convert to regular number + zz = zz.montgomery(z, one, m, k0, numWords) + + // One last reduction, just in case. + // See golang.org/issue/13907. + if zz.cmp(m) >= 0 { + // Common case is m has high bit set; in that case, + // since zz is the same length as m, there can be just + // one multiple of m to remove. Just subtract. + // We think that the subtract should be sufficient in general, + // so do that unconditionally, but double-check, + // in case our beliefs are wrong. + // The div is not expected to be reached. + zz = zz.sub(zz, m) + if zz.cmp(m) >= 0 { + _, zz = nat(nil).div(nil, zz, m) + } + } + + return zz.norm() +} + +// bytes writes the value of z into buf using big-endian encoding. +// The value of z is encoded in the slice buf[i:]. If the value of z +// cannot be represented in buf, bytes panics. The number i of unused +// bytes at the beginning of buf is returned as result. +func (z nat) bytes(buf []byte) (i int) { + i = len(buf) + for _, d := range z { + for j := 0; j < _S; j++ { + i-- + if i >= 0 { + buf[i] = byte(d) + } else if byte(d) != 0 { + panic("math/big: buffer too small to fit value") + } + d >>= 8 + } + } + + if i < 0 { + i = 0 + } + for i < len(buf) && buf[i] == 0 { + i++ + } + + return +} + +// bigEndianWord returns the contents of buf interpreted as a big-endian encoded Word value. +func bigEndianWord(buf []byte) Word { + if _W == 64 { + return Word(binary.BigEndian.Uint64(buf)) + } + return Word(binary.BigEndian.Uint32(buf)) +} + +// setBytes interprets buf as the bytes of a big-endian unsigned +// integer, sets z to that value, and returns z. +func (z nat) setBytes(buf []byte) nat { + z = z.make((len(buf) + _S - 1) / _S) + + i := len(buf) + for k := 0; i >= _S; k++ { + z[k] = bigEndianWord(buf[i-_S : i]) + i -= _S + } + if i > 0 { + var d Word + for s := uint(0); i > 0; s += 8 { + d |= Word(buf[i-1]) << s + i-- + } + z[len(z)-1] = d + } + + return z.norm() +} + +// sqrt sets z = ⌊√x⌋ +func (z nat) sqrt(x nat) nat { + if x.cmp(natOne) <= 0 { + return z.set(x) + } + if alias(z, x) { + z = nil + } + + // Start with value known to be too large and repeat "z = ⌊(z + ⌊x/z⌋)/2⌋" until it stops getting smaller. + // See Brent and Zimmermann, Modern Computer Arithmetic, Algorithm 1.13 (SqrtInt). + // https://members.loria.fr/PZimmermann/mca/pub226.html + // If x is one less than a perfect square, the sequence oscillates between the correct z and z+1; + // otherwise it converges to the correct z and stays there. + var z1, z2 nat + z1 = z + z1 = z1.setUint64(1) + z1 = z1.shl(z1, uint(x.bitLen()+1)/2) // must be ≥ √x + for n := 0; ; n++ { + z2, _ = z2.div(nil, x, z1) + z2 = z2.add(z2, z1) + z2 = z2.shr(z2, 1) + if z2.cmp(z1) >= 0 { + // z1 is answer. + // Figure out whether z1 or z2 is currently aliased to z by looking at loop count. + if n&1 == 0 { + return z1 + } + return z.set(z1) + } + z1, z2 = z2, z1 + } +} |