summaryrefslogtreecommitdiffstats
path: root/src/math/cmplx/tan.go
diff options
context:
space:
mode:
Diffstat (limited to 'src/math/cmplx/tan.go')
-rw-r--r--src/math/cmplx/tan.go297
1 files changed, 297 insertions, 0 deletions
diff --git a/src/math/cmplx/tan.go b/src/math/cmplx/tan.go
new file mode 100644
index 0000000..67a1133
--- /dev/null
+++ b/src/math/cmplx/tan.go
@@ -0,0 +1,297 @@
+// Copyright 2010 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package cmplx
+
+import (
+ "math"
+ "math/bits"
+)
+
+// The original C code, the long comment, and the constants
+// below are from http://netlib.sandia.gov/cephes/c9x-complex/clog.c.
+// The go code is a simplified version of the original C.
+//
+// Cephes Math Library Release 2.8: June, 2000
+// Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier
+//
+// The readme file at http://netlib.sandia.gov/cephes/ says:
+// Some software in this archive may be from the book _Methods and
+// Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster
+// International, 1989) or from the Cephes Mathematical Library, a
+// commercial product. In either event, it is copyrighted by the author.
+// What you see here may be used freely but it comes with no support or
+// guarantee.
+//
+// The two known misprints in the book are repaired here in the
+// source listings for the gamma function and the incomplete beta
+// integral.
+//
+// Stephen L. Moshier
+// moshier@na-net.ornl.gov
+
+// Complex circular tangent
+//
+// DESCRIPTION:
+//
+// If
+// z = x + iy,
+//
+// then
+//
+// sin 2x + i sinh 2y
+// w = --------------------.
+// cos 2x + cosh 2y
+//
+// On the real axis the denominator is zero at odd multiples
+// of PI/2. The denominator is evaluated by its Taylor
+// series near these points.
+//
+// ctan(z) = -i ctanh(iz).
+//
+// ACCURACY:
+//
+// Relative error:
+// arithmetic domain # trials peak rms
+// DEC -10,+10 5200 7.1e-17 1.6e-17
+// IEEE -10,+10 30000 7.2e-16 1.2e-16
+// Also tested by ctan * ccot = 1 and catan(ctan(z)) = z.
+
+// Tan returns the tangent of x.
+func Tan(x complex128) complex128 {
+ switch re, im := real(x), imag(x); {
+ case math.IsInf(im, 0):
+ switch {
+ case math.IsInf(re, 0) || math.IsNaN(re):
+ return complex(math.Copysign(0, re), math.Copysign(1, im))
+ }
+ return complex(math.Copysign(0, math.Sin(2*re)), math.Copysign(1, im))
+ case re == 0 && math.IsNaN(im):
+ return x
+ }
+ d := math.Cos(2*real(x)) + math.Cosh(2*imag(x))
+ if math.Abs(d) < 0.25 {
+ d = tanSeries(x)
+ }
+ if d == 0 {
+ return Inf()
+ }
+ return complex(math.Sin(2*real(x))/d, math.Sinh(2*imag(x))/d)
+}
+
+// Complex hyperbolic tangent
+//
+// DESCRIPTION:
+//
+// tanh z = (sinh 2x + i sin 2y) / (cosh 2x + cos 2y) .
+//
+// ACCURACY:
+//
+// Relative error:
+// arithmetic domain # trials peak rms
+// IEEE -10,+10 30000 1.7e-14 2.4e-16
+
+// Tanh returns the hyperbolic tangent of x.
+func Tanh(x complex128) complex128 {
+ switch re, im := real(x), imag(x); {
+ case math.IsInf(re, 0):
+ switch {
+ case math.IsInf(im, 0) || math.IsNaN(im):
+ return complex(math.Copysign(1, re), math.Copysign(0, im))
+ }
+ return complex(math.Copysign(1, re), math.Copysign(0, math.Sin(2*im)))
+ case im == 0 && math.IsNaN(re):
+ return x
+ }
+ d := math.Cosh(2*real(x)) + math.Cos(2*imag(x))
+ if d == 0 {
+ return Inf()
+ }
+ return complex(math.Sinh(2*real(x))/d, math.Sin(2*imag(x))/d)
+}
+
+// reducePi reduces the input argument x to the range (-Pi/2, Pi/2].
+// x must be greater than or equal to 0. For small arguments it
+// uses Cody-Waite reduction in 3 float64 parts based on:
+// "Elementary Function Evaluation: Algorithms and Implementation"
+// Jean-Michel Muller, 1997.
+// For very large arguments it uses Payne-Hanek range reduction based on:
+// "ARGUMENT REDUCTION FOR HUGE ARGUMENTS: Good to the Last Bit"
+// K. C. Ng et al, March 24, 1992.
+func reducePi(x float64) float64 {
+ // reduceThreshold is the maximum value of x where the reduction using
+ // Cody-Waite reduction still gives accurate results. This threshold
+ // is set by t*PIn being representable as a float64 without error
+ // where t is given by t = floor(x * (1 / Pi)) and PIn are the leading partial
+ // terms of Pi. Since the leading terms, PI1 and PI2 below, have 30 and 32
+ // trailing zero bits respectively, t should have less than 30 significant bits.
+ // t < 1<<30 -> floor(x*(1/Pi)+0.5) < 1<<30 -> x < (1<<30-1) * Pi - 0.5
+ // So, conservatively we can take x < 1<<30.
+ const reduceThreshold float64 = 1 << 30
+ if math.Abs(x) < reduceThreshold {
+ // Use Cody-Waite reduction in three parts.
+ const (
+ // PI1, PI2 and PI3 comprise an extended precision value of PI
+ // such that PI ~= PI1 + PI2 + PI3. The parts are chosen so
+ // that PI1 and PI2 have an approximately equal number of trailing
+ // zero bits. This ensures that t*PI1 and t*PI2 are exact for
+ // large integer values of t. The full precision PI3 ensures the
+ // approximation of PI is accurate to 102 bits to handle cancellation
+ // during subtraction.
+ PI1 = 3.141592502593994 // 0x400921fb40000000
+ PI2 = 1.5099578831723193e-07 // 0x3e84442d00000000
+ PI3 = 1.0780605716316238e-14 // 0x3d08469898cc5170
+ )
+ t := x / math.Pi
+ t += 0.5
+ t = float64(int64(t)) // int64(t) = the multiple
+ return ((x - t*PI1) - t*PI2) - t*PI3
+ }
+ // Must apply Payne-Hanek range reduction
+ const (
+ mask = 0x7FF
+ shift = 64 - 11 - 1
+ bias = 1023
+ fracMask = 1<<shift - 1
+ )
+ // Extract out the integer and exponent such that,
+ // x = ix * 2 ** exp.
+ ix := math.Float64bits(x)
+ exp := int(ix>>shift&mask) - bias - shift
+ ix &= fracMask
+ ix |= 1 << shift
+
+ // mPi is the binary digits of 1/Pi as a uint64 array,
+ // that is, 1/Pi = Sum mPi[i]*2^(-64*i).
+ // 19 64-bit digits give 1216 bits of precision
+ // to handle the largest possible float64 exponent.
+ var mPi = [...]uint64{
+ 0x0000000000000000,
+ 0x517cc1b727220a94,
+ 0xfe13abe8fa9a6ee0,
+ 0x6db14acc9e21c820,
+ 0xff28b1d5ef5de2b0,
+ 0xdb92371d2126e970,
+ 0x0324977504e8c90e,
+ 0x7f0ef58e5894d39f,
+ 0x74411afa975da242,
+ 0x74ce38135a2fbf20,
+ 0x9cc8eb1cc1a99cfa,
+ 0x4e422fc5defc941d,
+ 0x8ffc4bffef02cc07,
+ 0xf79788c5ad05368f,
+ 0xb69b3f6793e584db,
+ 0xa7a31fb34f2ff516,
+ 0xba93dd63f5f2f8bd,
+ 0x9e839cfbc5294975,
+ 0x35fdafd88fc6ae84,
+ 0x2b0198237e3db5d5,
+ }
+ // Use the exponent to extract the 3 appropriate uint64 digits from mPi,
+ // B ~ (z0, z1, z2), such that the product leading digit has the exponent -64.
+ // Note, exp >= 50 since x >= reduceThreshold and exp < 971 for maximum float64.
+ digit, bitshift := uint(exp+64)/64, uint(exp+64)%64
+ z0 := (mPi[digit] << bitshift) | (mPi[digit+1] >> (64 - bitshift))
+ z1 := (mPi[digit+1] << bitshift) | (mPi[digit+2] >> (64 - bitshift))
+ z2 := (mPi[digit+2] << bitshift) | (mPi[digit+3] >> (64 - bitshift))
+ // Multiply mantissa by the digits and extract the upper two digits (hi, lo).
+ z2hi, _ := bits.Mul64(z2, ix)
+ z1hi, z1lo := bits.Mul64(z1, ix)
+ z0lo := z0 * ix
+ lo, c := bits.Add64(z1lo, z2hi, 0)
+ hi, _ := bits.Add64(z0lo, z1hi, c)
+ // Find the magnitude of the fraction.
+ lz := uint(bits.LeadingZeros64(hi))
+ e := uint64(bias - (lz + 1))
+ // Clear implicit mantissa bit and shift into place.
+ hi = (hi << (lz + 1)) | (lo >> (64 - (lz + 1)))
+ hi >>= 64 - shift
+ // Include the exponent and convert to a float.
+ hi |= e << shift
+ x = math.Float64frombits(hi)
+ // map to (-Pi/2, Pi/2]
+ if x > 0.5 {
+ x--
+ }
+ return math.Pi * x
+}
+
+// Taylor series expansion for cosh(2y) - cos(2x)
+func tanSeries(z complex128) float64 {
+ const MACHEP = 1.0 / (1 << 53)
+ x := math.Abs(2 * real(z))
+ y := math.Abs(2 * imag(z))
+ x = reducePi(x)
+ x = x * x
+ y = y * y
+ x2 := 1.0
+ y2 := 1.0
+ f := 1.0
+ rn := 0.0
+ d := 0.0
+ for {
+ rn++
+ f *= rn
+ rn++
+ f *= rn
+ x2 *= x
+ y2 *= y
+ t := y2 + x2
+ t /= f
+ d += t
+
+ rn++
+ f *= rn
+ rn++
+ f *= rn
+ x2 *= x
+ y2 *= y
+ t = y2 - x2
+ t /= f
+ d += t
+ if !(math.Abs(t/d) > MACHEP) {
+ // Caution: Use ! and > instead of <= for correct behavior if t/d is NaN.
+ // See issue 17577.
+ break
+ }
+ }
+ return d
+}
+
+// Complex circular cotangent
+//
+// DESCRIPTION:
+//
+// If
+// z = x + iy,
+//
+// then
+//
+// sin 2x - i sinh 2y
+// w = --------------------.
+// cosh 2y - cos 2x
+//
+// On the real axis, the denominator has zeros at even
+// multiples of PI/2. Near these points it is evaluated
+// by a Taylor series.
+//
+// ACCURACY:
+//
+// Relative error:
+// arithmetic domain # trials peak rms
+// DEC -10,+10 3000 6.5e-17 1.6e-17
+// IEEE -10,+10 30000 9.2e-16 1.2e-16
+// Also tested by ctan * ccot = 1 + i0.
+
+// Cot returns the cotangent of x.
+func Cot(x complex128) complex128 {
+ d := math.Cosh(2*imag(x)) - math.Cos(2*real(x))
+ if math.Abs(d) < 0.25 {
+ d = tanSeries(x)
+ }
+ if d == 0 {
+ return Inf()
+ }
+ return complex(math.Sin(2*real(x))/d, -math.Sinh(2*imag(x))/d)
+}