1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
|
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package escape
import (
"cmd/compile/internal/base"
"cmd/compile/internal/ir"
"cmd/compile/internal/logopt"
"cmd/internal/src"
"fmt"
"strings"
)
// walkAll computes the minimal dereferences between all pairs of
// locations.
func (b *batch) walkAll() {
// We use a work queue to keep track of locations that we need
// to visit, and repeatedly walk until we reach a fixed point.
//
// We walk once from each location (including the heap), and
// then re-enqueue each location on its transition from
// transient->!transient and !escapes->escapes, which can each
// happen at most once. So we take Θ(len(e.allLocs)) walks.
// LIFO queue, has enough room for e.allLocs and e.heapLoc.
todo := make([]*location, 0, len(b.allLocs)+1)
enqueue := func(loc *location) {
if !loc.queued {
todo = append(todo, loc)
loc.queued = true
}
}
for _, loc := range b.allLocs {
enqueue(loc)
}
enqueue(&b.heapLoc)
var walkgen uint32
for len(todo) > 0 {
root := todo[len(todo)-1]
todo = todo[:len(todo)-1]
root.queued = false
walkgen++
b.walkOne(root, walkgen, enqueue)
}
}
// walkOne computes the minimal number of dereferences from root to
// all other locations.
func (b *batch) walkOne(root *location, walkgen uint32, enqueue func(*location)) {
// The data flow graph has negative edges (from addressing
// operations), so we use the Bellman-Ford algorithm. However,
// we don't have to worry about infinite negative cycles since
// we bound intermediate dereference counts to 0.
root.walkgen = walkgen
root.derefs = 0
root.dst = nil
todo := []*location{root} // LIFO queue
for len(todo) > 0 {
l := todo[len(todo)-1]
todo = todo[:len(todo)-1]
derefs := l.derefs
// If l.derefs < 0, then l's address flows to root.
addressOf := derefs < 0
if addressOf {
// For a flow path like "root = &l; l = x",
// l's address flows to root, but x's does
// not. We recognize this by lower bounding
// derefs at 0.
derefs = 0
// If l's address flows to a non-transient
// location, then l can't be transiently
// allocated.
if !root.transient && l.transient {
l.transient = false
enqueue(l)
}
}
if b.outlives(root, l) {
// l's value flows to root. If l is a function
// parameter and root is the heap or a
// corresponding result parameter, then record
// that value flow for tagging the function
// later.
if l.isName(ir.PPARAM) {
if (logopt.Enabled() || base.Flag.LowerM >= 2) && !l.escapes {
if base.Flag.LowerM >= 2 {
fmt.Printf("%s: parameter %v leaks to %s with derefs=%d:\n", base.FmtPos(l.n.Pos()), l.n, b.explainLoc(root), derefs)
}
explanation := b.explainPath(root, l)
if logopt.Enabled() {
var e_curfn *ir.Func // TODO(mdempsky): Fix.
logopt.LogOpt(l.n.Pos(), "leak", "escape", ir.FuncName(e_curfn),
fmt.Sprintf("parameter %v leaks to %s with derefs=%d", l.n, b.explainLoc(root), derefs), explanation)
}
}
l.leakTo(root, derefs)
}
// If l's address flows somewhere that
// outlives it, then l needs to be heap
// allocated.
if addressOf && !l.escapes {
if logopt.Enabled() || base.Flag.LowerM >= 2 {
if base.Flag.LowerM >= 2 {
fmt.Printf("%s: %v escapes to heap:\n", base.FmtPos(l.n.Pos()), l.n)
}
explanation := b.explainPath(root, l)
if logopt.Enabled() {
var e_curfn *ir.Func // TODO(mdempsky): Fix.
logopt.LogOpt(l.n.Pos(), "escape", "escape", ir.FuncName(e_curfn), fmt.Sprintf("%v escapes to heap", l.n), explanation)
}
}
l.escapes = true
enqueue(l)
continue
}
}
for i, edge := range l.edges {
if edge.src.escapes {
continue
}
d := derefs + edge.derefs
if edge.src.walkgen != walkgen || edge.src.derefs > d {
edge.src.walkgen = walkgen
edge.src.derefs = d
edge.src.dst = l
edge.src.dstEdgeIdx = i
todo = append(todo, edge.src)
}
}
}
}
// explainPath prints an explanation of how src flows to the walk root.
func (b *batch) explainPath(root, src *location) []*logopt.LoggedOpt {
visited := make(map[*location]bool)
pos := base.FmtPos(src.n.Pos())
var explanation []*logopt.LoggedOpt
for {
// Prevent infinite loop.
if visited[src] {
if base.Flag.LowerM >= 2 {
fmt.Printf("%s: warning: truncated explanation due to assignment cycle; see golang.org/issue/35518\n", pos)
}
break
}
visited[src] = true
dst := src.dst
edge := &dst.edges[src.dstEdgeIdx]
if edge.src != src {
base.Fatalf("path inconsistency: %v != %v", edge.src, src)
}
explanation = b.explainFlow(pos, dst, src, edge.derefs, edge.notes, explanation)
if dst == root {
break
}
src = dst
}
return explanation
}
func (b *batch) explainFlow(pos string, dst, srcloc *location, derefs int, notes *note, explanation []*logopt.LoggedOpt) []*logopt.LoggedOpt {
ops := "&"
if derefs >= 0 {
ops = strings.Repeat("*", derefs)
}
print := base.Flag.LowerM >= 2
flow := fmt.Sprintf(" flow: %s = %s%v:", b.explainLoc(dst), ops, b.explainLoc(srcloc))
if print {
fmt.Printf("%s:%s\n", pos, flow)
}
if logopt.Enabled() {
var epos src.XPos
if notes != nil {
epos = notes.where.Pos()
} else if srcloc != nil && srcloc.n != nil {
epos = srcloc.n.Pos()
}
var e_curfn *ir.Func // TODO(mdempsky): Fix.
explanation = append(explanation, logopt.NewLoggedOpt(epos, "escflow", "escape", ir.FuncName(e_curfn), flow))
}
for note := notes; note != nil; note = note.next {
if print {
fmt.Printf("%s: from %v (%v) at %s\n", pos, note.where, note.why, base.FmtPos(note.where.Pos()))
}
if logopt.Enabled() {
var e_curfn *ir.Func // TODO(mdempsky): Fix.
explanation = append(explanation, logopt.NewLoggedOpt(note.where.Pos(), "escflow", "escape", ir.FuncName(e_curfn),
fmt.Sprintf(" from %v (%v)", note.where, note.why)))
}
}
return explanation
}
func (b *batch) explainLoc(l *location) string {
if l == &b.heapLoc {
return "{heap}"
}
if l.n == nil {
// TODO(mdempsky): Omit entirely.
return "{temp}"
}
if l.n.Op() == ir.ONAME {
return fmt.Sprintf("%v", l.n)
}
return fmt.Sprintf("{storage for %v}", l.n)
}
// outlives reports whether values stored in l may survive beyond
// other's lifetime if stack allocated.
func (b *batch) outlives(l, other *location) bool {
// The heap outlives everything.
if l.escapes {
return true
}
// We don't know what callers do with returned values, so
// pessimistically we need to assume they flow to the heap and
// outlive everything too.
if l.isName(ir.PPARAMOUT) {
// Exception: Directly called closures can return
// locations allocated outside of them without forcing
// them to the heap. For example:
//
// var u int // okay to stack allocate
// *(func() *int { return &u }()) = 42
if containsClosure(other.curfn, l.curfn) && l.curfn.ClosureCalled() {
return false
}
return true
}
// If l and other are within the same function, then l
// outlives other if it was declared outside other's loop
// scope. For example:
//
// var l *int
// for {
// l = new(int)
// }
if l.curfn == other.curfn && l.loopDepth < other.loopDepth {
return true
}
// If other is declared within a child closure of where l is
// declared, then l outlives it. For example:
//
// var l *int
// func() {
// l = new(int)
// }
if containsClosure(l.curfn, other.curfn) {
return true
}
return false
}
// containsClosure reports whether c is a closure contained within f.
func containsClosure(f, c *ir.Func) bool {
// Common case.
if f == c {
return false
}
// Closures within function Foo are named like "Foo.funcN..."
// TODO(mdempsky): Better way to recognize this.
fn := f.Sym().Name
cn := c.Sym().Name
return len(cn) > len(fn) && cn[:len(fn)] == fn && cn[len(fn)] == '.'
}
|