1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
|
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gc
import (
"cmd/compile/internal/base"
"cmd/compile/internal/ir"
"cmd/compile/internal/noder"
"cmd/compile/internal/objw"
"cmd/compile/internal/reflectdata"
"cmd/compile/internal/staticdata"
"cmd/compile/internal/typecheck"
"cmd/compile/internal/types"
"cmd/internal/archive"
"cmd/internal/bio"
"cmd/internal/obj"
"cmd/internal/objabi"
"encoding/json"
"fmt"
)
// These modes say which kind of object file to generate.
// The default use of the toolchain is to set both bits,
// generating a combined compiler+linker object, one that
// serves to describe the package to both the compiler and the linker.
// In fact the compiler and linker read nearly disjoint sections of
// that file, though, so in a distributed build setting it can be more
// efficient to split the output into two files, supplying the compiler
// object only to future compilations and the linker object only to
// future links.
//
// By default a combined object is written, but if -linkobj is specified
// on the command line then the default -o output is a compiler object
// and the -linkobj output is a linker object.
const (
modeCompilerObj = 1 << iota
modeLinkerObj
)
func dumpobj() {
if base.Flag.LinkObj == "" {
dumpobj1(base.Flag.LowerO, modeCompilerObj|modeLinkerObj)
return
}
dumpobj1(base.Flag.LowerO, modeCompilerObj)
dumpobj1(base.Flag.LinkObj, modeLinkerObj)
}
func dumpobj1(outfile string, mode int) {
bout, err := bio.Create(outfile)
if err != nil {
base.FlushErrors()
fmt.Printf("can't create %s: %v\n", outfile, err)
base.ErrorExit()
}
defer bout.Close()
bout.WriteString("!<arch>\n")
if mode&modeCompilerObj != 0 {
start := startArchiveEntry(bout)
dumpCompilerObj(bout)
finishArchiveEntry(bout, start, "__.PKGDEF")
}
if mode&modeLinkerObj != 0 {
start := startArchiveEntry(bout)
dumpLinkerObj(bout)
finishArchiveEntry(bout, start, "_go_.o")
}
}
func printObjHeader(bout *bio.Writer) {
bout.WriteString(objabi.HeaderString())
if base.Flag.BuildID != "" {
fmt.Fprintf(bout, "build id %q\n", base.Flag.BuildID)
}
if types.LocalPkg.Name == "main" {
fmt.Fprintf(bout, "main\n")
}
fmt.Fprintf(bout, "\n") // header ends with blank line
}
func startArchiveEntry(bout *bio.Writer) int64 {
var arhdr [archive.HeaderSize]byte
bout.Write(arhdr[:])
return bout.Offset()
}
func finishArchiveEntry(bout *bio.Writer, start int64, name string) {
bout.Flush()
size := bout.Offset() - start
if size&1 != 0 {
bout.WriteByte(0)
}
bout.MustSeek(start-archive.HeaderSize, 0)
var arhdr [archive.HeaderSize]byte
archive.FormatHeader(arhdr[:], name, size)
bout.Write(arhdr[:])
bout.Flush()
bout.MustSeek(start+size+(size&1), 0)
}
func dumpCompilerObj(bout *bio.Writer) {
printObjHeader(bout)
noder.WriteExports(bout)
}
func dumpdata() {
numExterns := len(typecheck.Target.Externs)
numDecls := len(typecheck.Target.Decls)
dumpglobls(typecheck.Target.Externs)
reflectdata.CollectPTabs()
numExports := len(typecheck.Target.Exports)
addsignats(typecheck.Target.Externs)
reflectdata.WriteRuntimeTypes()
reflectdata.WriteTabs()
numPTabs := reflectdata.CountPTabs()
reflectdata.WriteImportStrings()
reflectdata.WriteBasicTypes()
dumpembeds()
// Calls to WriteRuntimeTypes can generate functions,
// like method wrappers and hash and equality routines.
// Compile any generated functions, process any new resulting types, repeat.
// This can't loop forever, because there is no way to generate an infinite
// number of types in a finite amount of code.
// In the typical case, we loop 0 or 1 times.
// It was not until issue 24761 that we found any code that required a loop at all.
for {
for i := numDecls; i < len(typecheck.Target.Decls); i++ {
if n, ok := typecheck.Target.Decls[i].(*ir.Func); ok {
enqueueFunc(n)
}
}
numDecls = len(typecheck.Target.Decls)
compileFunctions()
reflectdata.WriteRuntimeTypes()
if numDecls == len(typecheck.Target.Decls) {
break
}
}
// Dump extra globals.
dumpglobls(typecheck.Target.Externs[numExterns:])
if reflectdata.ZeroSize > 0 {
zero := base.PkgLinksym("go.map", "zero", obj.ABI0)
objw.Global(zero, int32(reflectdata.ZeroSize), obj.DUPOK|obj.RODATA)
zero.Set(obj.AttrStatic, true)
}
staticdata.WriteFuncSyms()
addGCLocals()
if numExports != len(typecheck.Target.Exports) {
base.Fatalf("Target.Exports changed after compile functions loop")
}
newNumPTabs := reflectdata.CountPTabs()
if newNumPTabs != numPTabs {
base.Fatalf("ptabs changed after compile functions loop")
}
}
func dumpLinkerObj(bout *bio.Writer) {
printObjHeader(bout)
if len(typecheck.Target.CgoPragmas) != 0 {
// write empty export section; must be before cgo section
fmt.Fprintf(bout, "\n$$\n\n$$\n\n")
fmt.Fprintf(bout, "\n$$ // cgo\n")
if err := json.NewEncoder(bout).Encode(typecheck.Target.CgoPragmas); err != nil {
base.Fatalf("serializing pragcgobuf: %v", err)
}
fmt.Fprintf(bout, "\n$$\n\n")
}
fmt.Fprintf(bout, "\n!\n")
obj.WriteObjFile(base.Ctxt, bout)
}
func dumpGlobal(n *ir.Name) {
if n.Type() == nil {
base.Fatalf("external %v nil type\n", n)
}
if n.Class == ir.PFUNC {
return
}
if n.Sym().Pkg != types.LocalPkg {
return
}
types.CalcSize(n.Type())
ggloblnod(n)
base.Ctxt.DwarfGlobal(base.Ctxt.Pkgpath, types.TypeSymName(n.Type()), n.Linksym())
}
func dumpGlobalConst(n ir.Node) {
// only export typed constants
t := n.Type()
if t == nil {
return
}
if n.Sym().Pkg != types.LocalPkg {
return
}
// only export integer constants for now
if !t.IsInteger() {
return
}
v := n.Val()
if t.IsUntyped() {
// Export untyped integers as int (if they fit).
t = types.Types[types.TINT]
if ir.ConstOverflow(v, t) {
return
}
} else {
// If the type of the constant is an instantiated generic, we need to emit
// that type so the linker knows about it. See issue 51245.
_ = reflectdata.TypeLinksym(t)
}
base.Ctxt.DwarfIntConst(base.Ctxt.Pkgpath, n.Sym().Name, types.TypeSymName(t), ir.IntVal(t, v))
}
func dumpglobls(externs []ir.Node) {
// add globals
for _, n := range externs {
switch n.Op() {
case ir.ONAME:
dumpGlobal(n.(*ir.Name))
case ir.OLITERAL:
dumpGlobalConst(n)
}
}
}
// addGCLocals adds gcargs, gclocals, gcregs, and stack object symbols to Ctxt.Data.
//
// This is done during the sequential phase after compilation, since
// global symbols can't be declared during parallel compilation.
func addGCLocals() {
for _, s := range base.Ctxt.Text {
fn := s.Func()
if fn == nil {
continue
}
for _, gcsym := range []*obj.LSym{fn.GCArgs, fn.GCLocals} {
if gcsym != nil && !gcsym.OnList() {
objw.Global(gcsym, int32(len(gcsym.P)), obj.RODATA|obj.DUPOK)
}
}
if x := fn.StackObjects; x != nil {
objw.Global(x, int32(len(x.P)), obj.RODATA)
x.Set(obj.AttrStatic, true)
}
if x := fn.OpenCodedDeferInfo; x != nil {
objw.Global(x, int32(len(x.P)), obj.RODATA|obj.DUPOK)
}
if x := fn.ArgInfo; x != nil {
objw.Global(x, int32(len(x.P)), obj.RODATA|obj.DUPOK)
x.Set(obj.AttrStatic, true)
}
if x := fn.ArgLiveInfo; x != nil {
objw.Global(x, int32(len(x.P)), obj.RODATA|obj.DUPOK)
x.Set(obj.AttrStatic, true)
}
if x := fn.WrapInfo; x != nil && !x.OnList() {
objw.Global(x, int32(len(x.P)), obj.RODATA|obj.DUPOK)
x.Set(obj.AttrStatic, true)
}
}
}
func ggloblnod(nam *ir.Name) {
s := nam.Linksym()
s.Gotype = reflectdata.TypeLinksym(nam.Type())
flags := 0
if nam.Readonly() {
flags = obj.RODATA
}
if nam.Type() != nil && !nam.Type().HasPointers() {
flags |= obj.NOPTR
}
base.Ctxt.Globl(s, nam.Type().Size(), flags)
if nam.LibfuzzerExtraCounter() {
s.Type = objabi.SLIBFUZZER_EXTRA_COUNTER
}
if nam.Sym().Linkname != "" {
// Make sure linkname'd symbol is non-package. When a symbol is
// both imported and linkname'd, s.Pkg may not set to "_" in
// types.Sym.Linksym because LSym already exists. Set it here.
s.Pkg = "_"
}
}
func dumpembeds() {
for _, v := range typecheck.Target.Embeds {
staticdata.WriteEmbed(v)
}
}
func addsignats(dcls []ir.Node) {
// copy types from dcl list to signatset
for _, n := range dcls {
if n.Op() == ir.OTYPE {
reflectdata.NeedRuntimeType(n.Type())
}
}
}
|