1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
|
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package walk
import (
"go/constant"
"cmd/compile/internal/base"
"cmd/compile/internal/ir"
"cmd/compile/internal/reflectdata"
"cmd/compile/internal/ssagen"
"cmd/compile/internal/typecheck"
"cmd/compile/internal/types"
)
// The result of walkCompare MUST be assigned back to n, e.g.
// n.Left = walkCompare(n.Left, init)
func walkCompare(n *ir.BinaryExpr, init *ir.Nodes) ir.Node {
if n.X.Type().IsInterface() && n.Y.Type().IsInterface() && n.X.Op() != ir.ONIL && n.Y.Op() != ir.ONIL {
return walkCompareInterface(n, init)
}
if n.X.Type().IsString() && n.Y.Type().IsString() {
return walkCompareString(n, init)
}
n.X = walkExpr(n.X, init)
n.Y = walkExpr(n.Y, init)
// Given mixed interface/concrete comparison,
// rewrite into types-equal && data-equal.
// This is efficient, avoids allocations, and avoids runtime calls.
if n.X.Type().IsInterface() != n.Y.Type().IsInterface() {
// Preserve side-effects in case of short-circuiting; see #32187.
l := cheapExpr(n.X, init)
r := cheapExpr(n.Y, init)
// Swap so that l is the interface value and r is the concrete value.
if n.Y.Type().IsInterface() {
l, r = r, l
}
// Handle both == and !=.
eq := n.Op()
andor := ir.OOROR
if eq == ir.OEQ {
andor = ir.OANDAND
}
// Check for types equal.
// For empty interface, this is:
// l.tab == type(r)
// For non-empty interface, this is:
// l.tab != nil && l.tab._type == type(r)
var eqtype ir.Node
tab := ir.NewUnaryExpr(base.Pos, ir.OITAB, l)
rtyp := reflectdata.TypePtr(r.Type())
if l.Type().IsEmptyInterface() {
tab.SetType(types.NewPtr(types.Types[types.TUINT8]))
tab.SetTypecheck(1)
eqtype = ir.NewBinaryExpr(base.Pos, eq, tab, rtyp)
} else {
nonnil := ir.NewBinaryExpr(base.Pos, brcom(eq), typecheck.NodNil(), tab)
match := ir.NewBinaryExpr(base.Pos, eq, itabType(tab), rtyp)
eqtype = ir.NewLogicalExpr(base.Pos, andor, nonnil, match)
}
// Check for data equal.
eqdata := ir.NewBinaryExpr(base.Pos, eq, ifaceData(n.Pos(), l, r.Type()), r)
// Put it all together.
expr := ir.NewLogicalExpr(base.Pos, andor, eqtype, eqdata)
return finishCompare(n, expr, init)
}
// Must be comparison of array or struct.
// Otherwise back end handles it.
// While we're here, decide whether to
// inline or call an eq alg.
t := n.X.Type()
var inline bool
maxcmpsize := int64(4)
unalignedLoad := ssagen.Arch.LinkArch.CanMergeLoads
if unalignedLoad {
// Keep this low enough to generate less code than a function call.
maxcmpsize = 2 * int64(ssagen.Arch.LinkArch.RegSize)
}
switch t.Kind() {
default:
if base.Debug.Libfuzzer != 0 && t.IsInteger() {
n.X = cheapExpr(n.X, init)
n.Y = cheapExpr(n.Y, init)
// If exactly one comparison operand is
// constant, invoke the constcmp functions
// instead, and arrange for the constant
// operand to be the first argument.
l, r := n.X, n.Y
if r.Op() == ir.OLITERAL {
l, r = r, l
}
constcmp := l.Op() == ir.OLITERAL && r.Op() != ir.OLITERAL
var fn string
var paramType *types.Type
switch t.Size() {
case 1:
fn = "libfuzzerTraceCmp1"
if constcmp {
fn = "libfuzzerTraceConstCmp1"
}
paramType = types.Types[types.TUINT8]
case 2:
fn = "libfuzzerTraceCmp2"
if constcmp {
fn = "libfuzzerTraceConstCmp2"
}
paramType = types.Types[types.TUINT16]
case 4:
fn = "libfuzzerTraceCmp4"
if constcmp {
fn = "libfuzzerTraceConstCmp4"
}
paramType = types.Types[types.TUINT32]
case 8:
fn = "libfuzzerTraceCmp8"
if constcmp {
fn = "libfuzzerTraceConstCmp8"
}
paramType = types.Types[types.TUINT64]
default:
base.Fatalf("unexpected integer size %d for %v", t.Size(), t)
}
init.Append(mkcall(fn, nil, init, tracecmpArg(l, paramType, init), tracecmpArg(r, paramType, init)))
}
return n
case types.TARRAY:
// We can compare several elements at once with 2/4/8 byte integer compares
inline = t.NumElem() <= 1 || (types.IsSimple[t.Elem().Kind()] && (t.NumElem() <= 4 || t.Elem().Size()*t.NumElem() <= maxcmpsize))
case types.TSTRUCT:
inline = t.NumComponents(types.IgnoreBlankFields) <= 4
}
cmpl := n.X
for cmpl != nil && cmpl.Op() == ir.OCONVNOP {
cmpl = cmpl.(*ir.ConvExpr).X
}
cmpr := n.Y
for cmpr != nil && cmpr.Op() == ir.OCONVNOP {
cmpr = cmpr.(*ir.ConvExpr).X
}
// Chose not to inline. Call equality function directly.
if !inline {
// eq algs take pointers; cmpl and cmpr must be addressable
if !ir.IsAddressable(cmpl) || !ir.IsAddressable(cmpr) {
base.Fatalf("arguments of comparison must be lvalues - %v %v", cmpl, cmpr)
}
fn, needsize := eqFor(t)
call := ir.NewCallExpr(base.Pos, ir.OCALL, fn, nil)
call.Args.Append(typecheck.NodAddr(cmpl))
call.Args.Append(typecheck.NodAddr(cmpr))
if needsize {
call.Args.Append(ir.NewInt(t.Size()))
}
res := ir.Node(call)
if n.Op() != ir.OEQ {
res = ir.NewUnaryExpr(base.Pos, ir.ONOT, res)
}
return finishCompare(n, res, init)
}
// inline: build boolean expression comparing element by element
andor := ir.OANDAND
if n.Op() == ir.ONE {
andor = ir.OOROR
}
var expr ir.Node
compare := func(el, er ir.Node) {
a := ir.NewBinaryExpr(base.Pos, n.Op(), el, er)
if expr == nil {
expr = a
} else {
expr = ir.NewLogicalExpr(base.Pos, andor, expr, a)
}
}
cmpl = safeExpr(cmpl, init)
cmpr = safeExpr(cmpr, init)
if t.IsStruct() {
for _, f := range t.Fields().Slice() {
sym := f.Sym
if sym.IsBlank() {
continue
}
compare(
ir.NewSelectorExpr(base.Pos, ir.OXDOT, cmpl, sym),
ir.NewSelectorExpr(base.Pos, ir.OXDOT, cmpr, sym),
)
}
} else {
step := int64(1)
remains := t.NumElem() * t.Elem().Size()
combine64bit := unalignedLoad && types.RegSize == 8 && t.Elem().Size() <= 4 && t.Elem().IsInteger()
combine32bit := unalignedLoad && t.Elem().Size() <= 2 && t.Elem().IsInteger()
combine16bit := unalignedLoad && t.Elem().Size() == 1 && t.Elem().IsInteger()
for i := int64(0); remains > 0; {
var convType *types.Type
switch {
case remains >= 8 && combine64bit:
convType = types.Types[types.TINT64]
step = 8 / t.Elem().Size()
case remains >= 4 && combine32bit:
convType = types.Types[types.TUINT32]
step = 4 / t.Elem().Size()
case remains >= 2 && combine16bit:
convType = types.Types[types.TUINT16]
step = 2 / t.Elem().Size()
default:
step = 1
}
if step == 1 {
compare(
ir.NewIndexExpr(base.Pos, cmpl, ir.NewInt(i)),
ir.NewIndexExpr(base.Pos, cmpr, ir.NewInt(i)),
)
i++
remains -= t.Elem().Size()
} else {
elemType := t.Elem().ToUnsigned()
cmplw := ir.Node(ir.NewIndexExpr(base.Pos, cmpl, ir.NewInt(i)))
cmplw = typecheck.Conv(cmplw, elemType) // convert to unsigned
cmplw = typecheck.Conv(cmplw, convType) // widen
cmprw := ir.Node(ir.NewIndexExpr(base.Pos, cmpr, ir.NewInt(i)))
cmprw = typecheck.Conv(cmprw, elemType)
cmprw = typecheck.Conv(cmprw, convType)
// For code like this: uint32(s[0]) | uint32(s[1])<<8 | uint32(s[2])<<16 ...
// ssa will generate a single large load.
for offset := int64(1); offset < step; offset++ {
lb := ir.Node(ir.NewIndexExpr(base.Pos, cmpl, ir.NewInt(i+offset)))
lb = typecheck.Conv(lb, elemType)
lb = typecheck.Conv(lb, convType)
lb = ir.NewBinaryExpr(base.Pos, ir.OLSH, lb, ir.NewInt(8*t.Elem().Size()*offset))
cmplw = ir.NewBinaryExpr(base.Pos, ir.OOR, cmplw, lb)
rb := ir.Node(ir.NewIndexExpr(base.Pos, cmpr, ir.NewInt(i+offset)))
rb = typecheck.Conv(rb, elemType)
rb = typecheck.Conv(rb, convType)
rb = ir.NewBinaryExpr(base.Pos, ir.OLSH, rb, ir.NewInt(8*t.Elem().Size()*offset))
cmprw = ir.NewBinaryExpr(base.Pos, ir.OOR, cmprw, rb)
}
compare(cmplw, cmprw)
i += step
remains -= step * t.Elem().Size()
}
}
}
if expr == nil {
expr = ir.NewBool(n.Op() == ir.OEQ)
// We still need to use cmpl and cmpr, in case they contain
// an expression which might panic. See issue 23837.
t := typecheck.Temp(cmpl.Type())
a1 := typecheck.Stmt(ir.NewAssignStmt(base.Pos, t, cmpl))
a2 := typecheck.Stmt(ir.NewAssignStmt(base.Pos, t, cmpr))
init.Append(a1, a2)
}
return finishCompare(n, expr, init)
}
func walkCompareInterface(n *ir.BinaryExpr, init *ir.Nodes) ir.Node {
n.Y = cheapExpr(n.Y, init)
n.X = cheapExpr(n.X, init)
eqtab, eqdata := reflectdata.EqInterface(n.X, n.Y)
var cmp ir.Node
if n.Op() == ir.OEQ {
cmp = ir.NewLogicalExpr(base.Pos, ir.OANDAND, eqtab, eqdata)
} else {
eqtab.SetOp(ir.ONE)
cmp = ir.NewLogicalExpr(base.Pos, ir.OOROR, eqtab, ir.NewUnaryExpr(base.Pos, ir.ONOT, eqdata))
}
return finishCompare(n, cmp, init)
}
func walkCompareString(n *ir.BinaryExpr, init *ir.Nodes) ir.Node {
// Rewrite comparisons to short constant strings as length+byte-wise comparisons.
var cs, ncs ir.Node // const string, non-const string
switch {
case ir.IsConst(n.X, constant.String) && ir.IsConst(n.Y, constant.String):
// ignore; will be constant evaluated
case ir.IsConst(n.X, constant.String):
cs = n.X
ncs = n.Y
case ir.IsConst(n.Y, constant.String):
cs = n.Y
ncs = n.X
}
if cs != nil {
cmp := n.Op()
// Our comparison below assumes that the non-constant string
// is on the left hand side, so rewrite "" cmp x to x cmp "".
// See issue 24817.
if ir.IsConst(n.X, constant.String) {
cmp = brrev(cmp)
}
// maxRewriteLen was chosen empirically.
// It is the value that minimizes cmd/go file size
// across most architectures.
// See the commit description for CL 26758 for details.
maxRewriteLen := 6
// Some architectures can load unaligned byte sequence as 1 word.
// So we can cover longer strings with the same amount of code.
canCombineLoads := ssagen.Arch.LinkArch.CanMergeLoads
combine64bit := false
if canCombineLoads {
// Keep this low enough to generate less code than a function call.
maxRewriteLen = 2 * ssagen.Arch.LinkArch.RegSize
combine64bit = ssagen.Arch.LinkArch.RegSize >= 8
}
var and ir.Op
switch cmp {
case ir.OEQ:
and = ir.OANDAND
case ir.ONE:
and = ir.OOROR
default:
// Don't do byte-wise comparisons for <, <=, etc.
// They're fairly complicated.
// Length-only checks are ok, though.
maxRewriteLen = 0
}
if s := ir.StringVal(cs); len(s) <= maxRewriteLen {
if len(s) > 0 {
ncs = safeExpr(ncs, init)
}
r := ir.Node(ir.NewBinaryExpr(base.Pos, cmp, ir.NewUnaryExpr(base.Pos, ir.OLEN, ncs), ir.NewInt(int64(len(s)))))
remains := len(s)
for i := 0; remains > 0; {
if remains == 1 || !canCombineLoads {
cb := ir.NewInt(int64(s[i]))
ncb := ir.NewIndexExpr(base.Pos, ncs, ir.NewInt(int64(i)))
r = ir.NewLogicalExpr(base.Pos, and, r, ir.NewBinaryExpr(base.Pos, cmp, ncb, cb))
remains--
i++
continue
}
var step int
var convType *types.Type
switch {
case remains >= 8 && combine64bit:
convType = types.Types[types.TINT64]
step = 8
case remains >= 4:
convType = types.Types[types.TUINT32]
step = 4
case remains >= 2:
convType = types.Types[types.TUINT16]
step = 2
}
ncsubstr := typecheck.Conv(ir.NewIndexExpr(base.Pos, ncs, ir.NewInt(int64(i))), convType)
csubstr := int64(s[i])
// Calculate large constant from bytes as sequence of shifts and ors.
// Like this: uint32(s[0]) | uint32(s[1])<<8 | uint32(s[2])<<16 ...
// ssa will combine this into a single large load.
for offset := 1; offset < step; offset++ {
b := typecheck.Conv(ir.NewIndexExpr(base.Pos, ncs, ir.NewInt(int64(i+offset))), convType)
b = ir.NewBinaryExpr(base.Pos, ir.OLSH, b, ir.NewInt(int64(8*offset)))
ncsubstr = ir.NewBinaryExpr(base.Pos, ir.OOR, ncsubstr, b)
csubstr |= int64(s[i+offset]) << uint8(8*offset)
}
csubstrPart := ir.NewInt(csubstr)
// Compare "step" bytes as once
r = ir.NewLogicalExpr(base.Pos, and, r, ir.NewBinaryExpr(base.Pos, cmp, csubstrPart, ncsubstr))
remains -= step
i += step
}
return finishCompare(n, r, init)
}
}
var r ir.Node
if n.Op() == ir.OEQ || n.Op() == ir.ONE {
// prepare for rewrite below
n.X = cheapExpr(n.X, init)
n.Y = cheapExpr(n.Y, init)
eqlen, eqmem := reflectdata.EqString(n.X, n.Y)
// quick check of len before full compare for == or !=.
// memequal then tests equality up to length len.
if n.Op() == ir.OEQ {
// len(left) == len(right) && memequal(left, right, len)
r = ir.NewLogicalExpr(base.Pos, ir.OANDAND, eqlen, eqmem)
} else {
// len(left) != len(right) || !memequal(left, right, len)
eqlen.SetOp(ir.ONE)
r = ir.NewLogicalExpr(base.Pos, ir.OOROR, eqlen, ir.NewUnaryExpr(base.Pos, ir.ONOT, eqmem))
}
} else {
// sys_cmpstring(s1, s2) :: 0
r = mkcall("cmpstring", types.Types[types.TINT], init, typecheck.Conv(n.X, types.Types[types.TSTRING]), typecheck.Conv(n.Y, types.Types[types.TSTRING]))
r = ir.NewBinaryExpr(base.Pos, n.Op(), r, ir.NewInt(0))
}
return finishCompare(n, r, init)
}
// The result of finishCompare MUST be assigned back to n, e.g.
// n.Left = finishCompare(n.Left, x, r, init)
func finishCompare(n *ir.BinaryExpr, r ir.Node, init *ir.Nodes) ir.Node {
r = typecheck.Expr(r)
r = typecheck.Conv(r, n.Type())
r = walkExpr(r, init)
return r
}
func eqFor(t *types.Type) (n ir.Node, needsize bool) {
// Should only arrive here with large memory or
// a struct/array containing a non-memory field/element.
// Small memory is handled inline, and single non-memory
// is handled by walkCompare.
switch a, _ := types.AlgType(t); a {
case types.AMEM:
n := typecheck.LookupRuntime("memequal")
n = typecheck.SubstArgTypes(n, t, t)
return n, true
case types.ASPECIAL:
sym := reflectdata.TypeSymPrefix(".eq", t)
// TODO(austin): This creates an ir.Name with a nil Func.
n := typecheck.NewName(sym)
ir.MarkFunc(n)
n.SetType(types.NewSignature(types.NoPkg, nil, nil, []*types.Field{
types.NewField(base.Pos, nil, types.NewPtr(t)),
types.NewField(base.Pos, nil, types.NewPtr(t)),
}, []*types.Field{
types.NewField(base.Pos, nil, types.Types[types.TBOOL]),
}))
return n, false
}
base.Fatalf("eqFor %v", t)
return nil, false
}
// brcom returns !(op).
// For example, brcom(==) is !=.
func brcom(op ir.Op) ir.Op {
switch op {
case ir.OEQ:
return ir.ONE
case ir.ONE:
return ir.OEQ
case ir.OLT:
return ir.OGE
case ir.OGT:
return ir.OLE
case ir.OLE:
return ir.OGT
case ir.OGE:
return ir.OLT
}
base.Fatalf("brcom: no com for %v\n", op)
return op
}
// brrev returns reverse(op).
// For example, Brrev(<) is >.
func brrev(op ir.Op) ir.Op {
switch op {
case ir.OEQ:
return ir.OEQ
case ir.ONE:
return ir.ONE
case ir.OLT:
return ir.OGT
case ir.OGT:
return ir.OLT
case ir.OLE:
return ir.OGE
case ir.OGE:
return ir.OLE
}
base.Fatalf("brrev: no rev for %v\n", op)
return op
}
func tracecmpArg(n ir.Node, t *types.Type, init *ir.Nodes) ir.Node {
// Ugly hack to avoid "constant -1 overflows uintptr" errors, etc.
if n.Op() == ir.OLITERAL && n.Type().IsSigned() && ir.Int64Val(n) < 0 {
n = copyExpr(n, n.Type(), init)
}
return typecheck.Conv(n, t)
}
|