1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
|
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build ppc64le
package aes
import (
"crypto/cipher"
"crypto/subtle"
"encoding/binary"
"errors"
)
// This file implements GCM using an optimized GHASH function.
//go:noescape
func gcmInit(productTable *[256]byte, h []byte)
//go:noescape
func gcmHash(output []byte, productTable *[256]byte, inp []byte, len int)
//go:noescape
func gcmMul(output []byte, productTable *[256]byte)
const (
gcmCounterSize = 16
gcmBlockSize = 16
gcmTagSize = 16
gcmStandardNonceSize = 12
)
var errOpen = errors.New("cipher: message authentication failed")
// Assert that aesCipherGCM implements the gcmAble interface.
var _ gcmAble = (*aesCipherAsm)(nil)
type gcmAsm struct {
cipher *aesCipherAsm
// ks is the key schedule, the length of which depends on the size of
// the AES key.
ks []uint32
// productTable contains pre-computed multiples of the binary-field
// element used in GHASH.
productTable [256]byte
// nonceSize contains the expected size of the nonce, in bytes.
nonceSize int
// tagSize contains the size of the tag, in bytes.
tagSize int
}
// NewGCM returns the AES cipher wrapped in Galois Counter Mode. This is only
// called by crypto/cipher.NewGCM via the gcmAble interface.
func (c *aesCipherAsm) NewGCM(nonceSize, tagSize int) (cipher.AEAD, error) {
g := &gcmAsm{cipher: c, ks: c.enc, nonceSize: nonceSize, tagSize: tagSize}
hle := make([]byte, gcmBlockSize)
c.Encrypt(hle, hle)
// Reverse the bytes in each 8 byte chunk
// Load little endian, store big endian
h1 := binary.LittleEndian.Uint64(hle[:8])
h2 := binary.LittleEndian.Uint64(hle[8:])
binary.BigEndian.PutUint64(hle[:8], h1)
binary.BigEndian.PutUint64(hle[8:], h2)
gcmInit(&g.productTable, hle)
return g, nil
}
func (g *gcmAsm) NonceSize() int {
return g.nonceSize
}
func (g *gcmAsm) Overhead() int {
return g.tagSize
}
func sliceForAppend(in []byte, n int) (head, tail []byte) {
if total := len(in) + n; cap(in) >= total {
head = in[:total]
} else {
head = make([]byte, total)
copy(head, in)
}
tail = head[len(in):]
return
}
// deriveCounter computes the initial GCM counter state from the given nonce.
func (g *gcmAsm) deriveCounter(counter *[gcmBlockSize]byte, nonce []byte) {
if len(nonce) == gcmStandardNonceSize {
copy(counter[:], nonce)
counter[gcmBlockSize-1] = 1
} else {
var hash [16]byte
g.paddedGHASH(&hash, nonce)
lens := gcmLengths(0, uint64(len(nonce))*8)
g.paddedGHASH(&hash, lens[:])
copy(counter[:], hash[:])
}
}
// counterCrypt encrypts in using AES in counter mode and places the result
// into out. counter is the initial count value and will be updated with the next
// count value. The length of out must be greater than or equal to the length
// of in.
func (g *gcmAsm) counterCrypt(out, in []byte, counter *[gcmBlockSize]byte) {
var mask [gcmBlockSize]byte
for len(in) >= gcmBlockSize {
// Hint to avoid bounds check
_, _ = in[15], out[15]
g.cipher.Encrypt(mask[:], counter[:])
gcmInc32(counter)
// XOR 16 bytes each loop iteration in 8 byte chunks
in0 := binary.LittleEndian.Uint64(in[0:])
in1 := binary.LittleEndian.Uint64(in[8:])
m0 := binary.LittleEndian.Uint64(mask[:8])
m1 := binary.LittleEndian.Uint64(mask[8:])
binary.LittleEndian.PutUint64(out[:8], in0^m0)
binary.LittleEndian.PutUint64(out[8:], in1^m1)
out = out[16:]
in = in[16:]
}
if len(in) > 0 {
g.cipher.Encrypt(mask[:], counter[:])
gcmInc32(counter)
// XOR leftover bytes
for i, inb := range in {
out[i] = inb ^ mask[i]
}
}
}
// increments the rightmost 32-bits of the count value by 1.
func gcmInc32(counterBlock *[16]byte) {
c := counterBlock[len(counterBlock)-4:]
x := binary.BigEndian.Uint32(c) + 1
binary.BigEndian.PutUint32(c, x)
}
// paddedGHASH pads data with zeroes until its length is a multiple of
// 16-bytes. It then calculates a new value for hash using the ghash
// algorithm.
func (g *gcmAsm) paddedGHASH(hash *[16]byte, data []byte) {
if siz := len(data) - (len(data) % gcmBlockSize); siz > 0 {
gcmHash(hash[:], &g.productTable, data[:], siz)
data = data[siz:]
}
if len(data) > 0 {
var s [16]byte
copy(s[:], data)
gcmHash(hash[:], &g.productTable, s[:], len(s))
}
}
// auth calculates GHASH(ciphertext, additionalData), masks the result with
// tagMask and writes the result to out.
func (g *gcmAsm) auth(out, ciphertext, aad []byte, tagMask *[gcmTagSize]byte) {
var hash [16]byte
g.paddedGHASH(&hash, aad)
g.paddedGHASH(&hash, ciphertext)
lens := gcmLengths(uint64(len(aad))*8, uint64(len(ciphertext))*8)
g.paddedGHASH(&hash, lens[:])
copy(out, hash[:])
for i := range out {
out[i] ^= tagMask[i]
}
}
// Seal encrypts and authenticates plaintext. See the cipher.AEAD interface for
// details.
func (g *gcmAsm) Seal(dst, nonce, plaintext, data []byte) []byte {
if len(nonce) != g.nonceSize {
panic("cipher: incorrect nonce length given to GCM")
}
if uint64(len(plaintext)) > ((1<<32)-2)*BlockSize {
panic("cipher: message too large for GCM")
}
ret, out := sliceForAppend(dst, len(plaintext)+g.tagSize)
var counter, tagMask [gcmBlockSize]byte
g.deriveCounter(&counter, nonce)
g.cipher.Encrypt(tagMask[:], counter[:])
gcmInc32(&counter)
g.counterCrypt(out, plaintext, &counter)
g.auth(out[len(plaintext):], out[:len(plaintext)], data, &tagMask)
return ret
}
// Open authenticates and decrypts ciphertext. See the cipher.AEAD interface
// for details.
func (g *gcmAsm) Open(dst, nonce, ciphertext, data []byte) ([]byte, error) {
if len(nonce) != g.nonceSize {
panic("cipher: incorrect nonce length given to GCM")
}
if len(ciphertext) < g.tagSize {
return nil, errOpen
}
if uint64(len(ciphertext)) > ((1<<32)-2)*uint64(BlockSize)+uint64(g.tagSize) {
return nil, errOpen
}
tag := ciphertext[len(ciphertext)-g.tagSize:]
ciphertext = ciphertext[:len(ciphertext)-g.tagSize]
var counter, tagMask [gcmBlockSize]byte
g.deriveCounter(&counter, nonce)
g.cipher.Encrypt(tagMask[:], counter[:])
gcmInc32(&counter)
var expectedTag [gcmTagSize]byte
g.auth(expectedTag[:], ciphertext, data, &tagMask)
ret, out := sliceForAppend(dst, len(ciphertext))
if subtle.ConstantTimeCompare(expectedTag[:g.tagSize], tag) != 1 {
for i := range out {
out[i] = 0
}
return nil, errOpen
}
g.counterCrypt(out, ciphertext, &counter)
return ret, nil
}
func gcmLengths(len0, len1 uint64) [16]byte {
return [16]byte{
byte(len0 >> 56),
byte(len0 >> 48),
byte(len0 >> 40),
byte(len0 >> 32),
byte(len0 >> 24),
byte(len0 >> 16),
byte(len0 >> 8),
byte(len0),
byte(len1 >> 56),
byte(len1 >> 48),
byte(len1 >> 40),
byte(len1 >> 32),
byte(len1 >> 24),
byte(len1 >> 16),
byte(len1 >> 8),
byte(len1),
}
}
|