summaryrefslogtreecommitdiffstats
path: root/src/crypto/elliptic/p256_asm.go
blob: 8624e031a385e909725798281b4df87f2324224a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// This file contains the Go wrapper for the constant-time, 64-bit assembly
// implementation of P256. The optimizations performed here are described in
// detail in:
// S.Gueron and V.Krasnov, "Fast prime field elliptic-curve cryptography with
//                          256-bit primes"
// https://link.springer.com/article/10.1007%2Fs13389-014-0090-x
// https://eprint.iacr.org/2013/816.pdf

//go:build amd64 || arm64

package elliptic

import (
	_ "embed"
	"math/big"
)

//go:generate go run -tags=tablegen gen_p256_table.go

//go:embed p256_asm_table.bin
var p256Precomputed string

type (
	p256Curve struct {
		*CurveParams
	}

	p256Point struct {
		xyz [12]uint64
	}
)

var p256 p256Curve

func initP256() {
	// See FIPS 186-3, section D.2.3
	p256.CurveParams = &CurveParams{Name: "P-256"}
	p256.P, _ = new(big.Int).SetString("115792089210356248762697446949407573530086143415290314195533631308867097853951", 10)
	p256.N, _ = new(big.Int).SetString("115792089210356248762697446949407573529996955224135760342422259061068512044369", 10)
	p256.B, _ = new(big.Int).SetString("5ac635d8aa3a93e7b3ebbd55769886bc651d06b0cc53b0f63bce3c3e27d2604b", 16)
	p256.Gx, _ = new(big.Int).SetString("6b17d1f2e12c4247f8bce6e563a440f277037d812deb33a0f4a13945d898c296", 16)
	p256.Gy, _ = new(big.Int).SetString("4fe342e2fe1a7f9b8ee7eb4a7c0f9e162bce33576b315ececbb6406837bf51f5", 16)
	p256.BitSize = 256
}

func (curve p256Curve) Params() *CurveParams {
	return curve.CurveParams
}

// Functions implemented in p256_asm_*64.s
// Montgomery multiplication modulo P256
//go:noescape
func p256Mul(res, in1, in2 []uint64)

// Montgomery square modulo P256, repeated n times (n >= 1)
//go:noescape
func p256Sqr(res, in []uint64, n int)

// Montgomery multiplication by 1
//go:noescape
func p256FromMont(res, in []uint64)

// iff cond == 1  val <- -val
//go:noescape
func p256NegCond(val []uint64, cond int)

// if cond == 0 res <- b; else res <- a
//go:noescape
func p256MovCond(res, a, b []uint64, cond int)

// Endianness swap
//go:noescape
func p256BigToLittle(res []uint64, in []byte)

//go:noescape
func p256LittleToBig(res []byte, in []uint64)

// Constant time table access
//go:noescape
func p256Select(point, table []uint64, idx int)

//go:noescape
func p256SelectBase(point *[12]uint64, table string, idx int)

// Montgomery multiplication modulo Ord(G)
//go:noescape
func p256OrdMul(res, in1, in2 []uint64)

// Montgomery square modulo Ord(G), repeated n times
//go:noescape
func p256OrdSqr(res, in []uint64, n int)

// Point add with in2 being affine point
// If sign == 1 -> in2 = -in2
// If sel == 0 -> res = in1
// if zero == 0 -> res = in2
//go:noescape
func p256PointAddAffineAsm(res, in1, in2 []uint64, sign, sel, zero int)

// Point add. Returns one if the two input points were equal and zero
// otherwise. (Note that, due to the way that the equations work out, some
// representations of ∞ are considered equal to everything by this function.)
//go:noescape
func p256PointAddAsm(res, in1, in2 []uint64) int

// Point double
//go:noescape
func p256PointDoubleAsm(res, in []uint64)

func (curve p256Curve) Inverse(k *big.Int) *big.Int {
	if k.Sign() < 0 {
		// This should never happen.
		k = new(big.Int).Neg(k)
	}

	if k.Cmp(p256.N) >= 0 {
		// This should never happen.
		k = new(big.Int).Mod(k, p256.N)
	}

	// table will store precomputed powers of x.
	var table [4 * 9]uint64
	var (
		_1      = table[4*0 : 4*1]
		_11     = table[4*1 : 4*2]
		_101    = table[4*2 : 4*3]
		_111    = table[4*3 : 4*4]
		_1111   = table[4*4 : 4*5]
		_10101  = table[4*5 : 4*6]
		_101111 = table[4*6 : 4*7]
		x       = table[4*7 : 4*8]
		t       = table[4*8 : 4*9]
	)

	fromBig(x[:], k)
	// This code operates in the Montgomery domain where R = 2^256 mod n
	// and n is the order of the scalar field. (See initP256 for the
	// value.) Elements in the Montgomery domain take the form a×R and
	// multiplication of x and y in the calculates (x × y × R^-1) mod n. RR
	// is R×R mod n thus the Montgomery multiplication x and RR gives x×R,
	// i.e. converts x into the Montgomery domain.
	// Window values borrowed from https://briansmith.org/ecc-inversion-addition-chains-01#p256_scalar_inversion
	RR := []uint64{0x83244c95be79eea2, 0x4699799c49bd6fa6, 0x2845b2392b6bec59, 0x66e12d94f3d95620}
	p256OrdMul(_1, x, RR)      // _1
	p256OrdSqr(x, _1, 1)       // _10
	p256OrdMul(_11, x, _1)     // _11
	p256OrdMul(_101, x, _11)   // _101
	p256OrdMul(_111, x, _101)  // _111
	p256OrdSqr(x, _101, 1)     // _1010
	p256OrdMul(_1111, _101, x) // _1111

	p256OrdSqr(t, x, 1)          // _10100
	p256OrdMul(_10101, t, _1)    // _10101
	p256OrdSqr(x, _10101, 1)     // _101010
	p256OrdMul(_101111, _101, x) // _101111
	p256OrdMul(x, _10101, x)     // _111111 = x6
	p256OrdSqr(t, x, 2)          // _11111100
	p256OrdMul(t, t, _11)        // _11111111 = x8
	p256OrdSqr(x, t, 8)          // _ff00
	p256OrdMul(x, x, t)          // _ffff = x16
	p256OrdSqr(t, x, 16)         // _ffff0000
	p256OrdMul(t, t, x)          // _ffffffff = x32

	p256OrdSqr(x, t, 64)
	p256OrdMul(x, x, t)
	p256OrdSqr(x, x, 32)
	p256OrdMul(x, x, t)

	sqrs := []uint8{
		6, 5, 4, 5, 5,
		4, 3, 3, 5, 9,
		6, 2, 5, 6, 5,
		4, 5, 5, 3, 10,
		2, 5, 5, 3, 7, 6}
	muls := [][]uint64{
		_101111, _111, _11, _1111, _10101,
		_101, _101, _101, _111, _101111,
		_1111, _1, _1, _1111, _111,
		_111, _111, _101, _11, _101111,
		_11, _11, _11, _1, _10101, _1111}

	for i, s := range sqrs {
		p256OrdSqr(x, x, int(s))
		p256OrdMul(x, x, muls[i])
	}

	// Multiplying by one in the Montgomery domain converts a Montgomery
	// value out of the domain.
	one := []uint64{1, 0, 0, 0}
	p256OrdMul(x, x, one)

	xOut := make([]byte, 32)
	p256LittleToBig(xOut, x)
	return new(big.Int).SetBytes(xOut)
}

// fromBig converts a *big.Int into a format used by this code.
func fromBig(out []uint64, big *big.Int) {
	for i := range out {
		out[i] = 0
	}

	for i, v := range big.Bits() {
		out[i] = uint64(v)
	}
}

// p256GetScalar endian-swaps the big-endian scalar value from in and writes it
// to out. If the scalar is equal or greater than the order of the group, it's
// reduced modulo that order.
func p256GetScalar(out []uint64, in []byte) {
	n := new(big.Int).SetBytes(in)

	if n.Cmp(p256.N) >= 0 {
		n.Mod(n, p256.N)
	}
	fromBig(out, n)
}

// p256Mul operates in a Montgomery domain with R = 2^256 mod p, where p is the
// underlying field of the curve. (See initP256 for the value.) Thus rr here is
// R×R mod p. See comment in Inverse about how this is used.
var rr = []uint64{0x0000000000000003, 0xfffffffbffffffff, 0xfffffffffffffffe, 0x00000004fffffffd}

func maybeReduceModP(in *big.Int) *big.Int {
	if in.Cmp(p256.P) < 0 {
		return in
	}
	return new(big.Int).Mod(in, p256.P)
}

func (curve p256Curve) CombinedMult(bigX, bigY *big.Int, baseScalar, scalar []byte) (x, y *big.Int) {
	scalarReversed := make([]uint64, 4)
	var r1, r2 p256Point
	p256GetScalar(scalarReversed, baseScalar)
	r1IsInfinity := scalarIsZero(scalarReversed)
	r1.p256BaseMult(scalarReversed)

	p256GetScalar(scalarReversed, scalar)
	r2IsInfinity := scalarIsZero(scalarReversed)
	fromBig(r2.xyz[0:4], maybeReduceModP(bigX))
	fromBig(r2.xyz[4:8], maybeReduceModP(bigY))
	p256Mul(r2.xyz[0:4], r2.xyz[0:4], rr[:])
	p256Mul(r2.xyz[4:8], r2.xyz[4:8], rr[:])

	// This sets r2's Z value to 1, in the Montgomery domain.
	r2.xyz[8] = 0x0000000000000001
	r2.xyz[9] = 0xffffffff00000000
	r2.xyz[10] = 0xffffffffffffffff
	r2.xyz[11] = 0x00000000fffffffe

	r2.p256ScalarMult(scalarReversed)

	var sum, double p256Point
	pointsEqual := p256PointAddAsm(sum.xyz[:], r1.xyz[:], r2.xyz[:])
	p256PointDoubleAsm(double.xyz[:], r1.xyz[:])
	sum.CopyConditional(&double, pointsEqual)
	sum.CopyConditional(&r1, r2IsInfinity)
	sum.CopyConditional(&r2, r1IsInfinity)

	return sum.p256PointToAffine()
}

func (curve p256Curve) ScalarBaseMult(scalar []byte) (x, y *big.Int) {
	scalarReversed := make([]uint64, 4)
	p256GetScalar(scalarReversed, scalar)

	var r p256Point
	r.p256BaseMult(scalarReversed)
	return r.p256PointToAffine()
}

func (curve p256Curve) ScalarMult(bigX, bigY *big.Int, scalar []byte) (x, y *big.Int) {
	scalarReversed := make([]uint64, 4)
	p256GetScalar(scalarReversed, scalar)

	var r p256Point
	fromBig(r.xyz[0:4], maybeReduceModP(bigX))
	fromBig(r.xyz[4:8], maybeReduceModP(bigY))
	p256Mul(r.xyz[0:4], r.xyz[0:4], rr[:])
	p256Mul(r.xyz[4:8], r.xyz[4:8], rr[:])
	// This sets r2's Z value to 1, in the Montgomery domain.
	r.xyz[8] = 0x0000000000000001
	r.xyz[9] = 0xffffffff00000000
	r.xyz[10] = 0xffffffffffffffff
	r.xyz[11] = 0x00000000fffffffe

	r.p256ScalarMult(scalarReversed)
	return r.p256PointToAffine()
}

// uint64IsZero returns 1 if x is zero and zero otherwise.
func uint64IsZero(x uint64) int {
	x = ^x
	x &= x >> 32
	x &= x >> 16
	x &= x >> 8
	x &= x >> 4
	x &= x >> 2
	x &= x >> 1
	return int(x & 1)
}

// scalarIsZero returns 1 if scalar represents the zero value, and zero
// otherwise.
func scalarIsZero(scalar []uint64) int {
	return uint64IsZero(scalar[0] | scalar[1] | scalar[2] | scalar[3])
}

func (p *p256Point) p256PointToAffine() (x, y *big.Int) {
	zInv := make([]uint64, 4)
	zInvSq := make([]uint64, 4)
	p256Inverse(zInv, p.xyz[8:12])
	p256Sqr(zInvSq, zInv, 1)
	p256Mul(zInv, zInv, zInvSq)

	p256Mul(zInvSq, p.xyz[0:4], zInvSq)
	p256Mul(zInv, p.xyz[4:8], zInv)

	p256FromMont(zInvSq, zInvSq)
	p256FromMont(zInv, zInv)

	xOut := make([]byte, 32)
	yOut := make([]byte, 32)
	p256LittleToBig(xOut, zInvSq)
	p256LittleToBig(yOut, zInv)

	return new(big.Int).SetBytes(xOut), new(big.Int).SetBytes(yOut)
}

// CopyConditional copies overwrites p with src if v == 1, and leaves p
// unchanged if v == 0.
func (p *p256Point) CopyConditional(src *p256Point, v int) {
	pMask := uint64(v) - 1
	srcMask := ^pMask

	for i, n := range p.xyz {
		p.xyz[i] = (n & pMask) | (src.xyz[i] & srcMask)
	}
}

// p256Inverse sets out to in^-1 mod p.
func p256Inverse(out, in []uint64) {
	var stack [6 * 4]uint64
	p2 := stack[4*0 : 4*0+4]
	p4 := stack[4*1 : 4*1+4]
	p8 := stack[4*2 : 4*2+4]
	p16 := stack[4*3 : 4*3+4]
	p32 := stack[4*4 : 4*4+4]

	p256Sqr(out, in, 1)
	p256Mul(p2, out, in) // 3*p

	p256Sqr(out, p2, 2)
	p256Mul(p4, out, p2) // f*p

	p256Sqr(out, p4, 4)
	p256Mul(p8, out, p4) // ff*p

	p256Sqr(out, p8, 8)
	p256Mul(p16, out, p8) // ffff*p

	p256Sqr(out, p16, 16)
	p256Mul(p32, out, p16) // ffffffff*p

	p256Sqr(out, p32, 32)
	p256Mul(out, out, in)

	p256Sqr(out, out, 128)
	p256Mul(out, out, p32)

	p256Sqr(out, out, 32)
	p256Mul(out, out, p32)

	p256Sqr(out, out, 16)
	p256Mul(out, out, p16)

	p256Sqr(out, out, 8)
	p256Mul(out, out, p8)

	p256Sqr(out, out, 4)
	p256Mul(out, out, p4)

	p256Sqr(out, out, 2)
	p256Mul(out, out, p2)

	p256Sqr(out, out, 2)
	p256Mul(out, out, in)
}

func (p *p256Point) p256StorePoint(r *[16 * 4 * 3]uint64, index int) {
	copy(r[index*12:], p.xyz[:])
}

func boothW5(in uint) (int, int) {
	var s uint = ^((in >> 5) - 1)
	var d uint = (1 << 6) - in - 1
	d = (d & s) | (in & (^s))
	d = (d >> 1) + (d & 1)
	return int(d), int(s & 1)
}

func boothW6(in uint) (int, int) {
	var s uint = ^((in >> 6) - 1)
	var d uint = (1 << 7) - in - 1
	d = (d & s) | (in & (^s))
	d = (d >> 1) + (d & 1)
	return int(d), int(s & 1)
}

func (p *p256Point) p256BaseMult(scalar []uint64) {
	wvalue := (scalar[0] << 1) & 0x7f
	sel, sign := boothW6(uint(wvalue))
	p256SelectBase(&p.xyz, p256Precomputed, sel)
	p256NegCond(p.xyz[4:8], sign)

	// (This is one, in the Montgomery domain.)
	p.xyz[8] = 0x0000000000000001
	p.xyz[9] = 0xffffffff00000000
	p.xyz[10] = 0xffffffffffffffff
	p.xyz[11] = 0x00000000fffffffe

	var t0 p256Point
	// (This is one, in the Montgomery domain.)
	t0.xyz[8] = 0x0000000000000001
	t0.xyz[9] = 0xffffffff00000000
	t0.xyz[10] = 0xffffffffffffffff
	t0.xyz[11] = 0x00000000fffffffe

	index := uint(5)
	zero := sel

	for i := 1; i < 43; i++ {
		if index < 192 {
			wvalue = ((scalar[index/64] >> (index % 64)) + (scalar[index/64+1] << (64 - (index % 64)))) & 0x7f
		} else {
			wvalue = (scalar[index/64] >> (index % 64)) & 0x7f
		}
		index += 6
		sel, sign = boothW6(uint(wvalue))
		p256SelectBase(&t0.xyz, p256Precomputed[i*32*8*8:], sel)
		p256PointAddAffineAsm(p.xyz[0:12], p.xyz[0:12], t0.xyz[0:8], sign, sel, zero)
		zero |= sel
	}
}

func (p *p256Point) p256ScalarMult(scalar []uint64) {
	// precomp is a table of precomputed points that stores powers of p
	// from p^1 to p^16.
	var precomp [16 * 4 * 3]uint64
	var t0, t1, t2, t3 p256Point

	// Prepare the table
	p.p256StorePoint(&precomp, 0) // 1

	p256PointDoubleAsm(t0.xyz[:], p.xyz[:])
	p256PointDoubleAsm(t1.xyz[:], t0.xyz[:])
	p256PointDoubleAsm(t2.xyz[:], t1.xyz[:])
	p256PointDoubleAsm(t3.xyz[:], t2.xyz[:])
	t0.p256StorePoint(&precomp, 1)  // 2
	t1.p256StorePoint(&precomp, 3)  // 4
	t2.p256StorePoint(&precomp, 7)  // 8
	t3.p256StorePoint(&precomp, 15) // 16

	p256PointAddAsm(t0.xyz[:], t0.xyz[:], p.xyz[:])
	p256PointAddAsm(t1.xyz[:], t1.xyz[:], p.xyz[:])
	p256PointAddAsm(t2.xyz[:], t2.xyz[:], p.xyz[:])
	t0.p256StorePoint(&precomp, 2) // 3
	t1.p256StorePoint(&precomp, 4) // 5
	t2.p256StorePoint(&precomp, 8) // 9

	p256PointDoubleAsm(t0.xyz[:], t0.xyz[:])
	p256PointDoubleAsm(t1.xyz[:], t1.xyz[:])
	t0.p256StorePoint(&precomp, 5) // 6
	t1.p256StorePoint(&precomp, 9) // 10

	p256PointAddAsm(t2.xyz[:], t0.xyz[:], p.xyz[:])
	p256PointAddAsm(t1.xyz[:], t1.xyz[:], p.xyz[:])
	t2.p256StorePoint(&precomp, 6)  // 7
	t1.p256StorePoint(&precomp, 10) // 11

	p256PointDoubleAsm(t0.xyz[:], t0.xyz[:])
	p256PointDoubleAsm(t2.xyz[:], t2.xyz[:])
	t0.p256StorePoint(&precomp, 11) // 12
	t2.p256StorePoint(&precomp, 13) // 14

	p256PointAddAsm(t0.xyz[:], t0.xyz[:], p.xyz[:])
	p256PointAddAsm(t2.xyz[:], t2.xyz[:], p.xyz[:])
	t0.p256StorePoint(&precomp, 12) // 13
	t2.p256StorePoint(&precomp, 14) // 15

	// Start scanning the window from top bit
	index := uint(254)
	var sel, sign int

	wvalue := (scalar[index/64] >> (index % 64)) & 0x3f
	sel, _ = boothW5(uint(wvalue))

	p256Select(p.xyz[0:12], precomp[0:], sel)
	zero := sel

	for index > 4 {
		index -= 5
		p256PointDoubleAsm(p.xyz[:], p.xyz[:])
		p256PointDoubleAsm(p.xyz[:], p.xyz[:])
		p256PointDoubleAsm(p.xyz[:], p.xyz[:])
		p256PointDoubleAsm(p.xyz[:], p.xyz[:])
		p256PointDoubleAsm(p.xyz[:], p.xyz[:])

		if index < 192 {
			wvalue = ((scalar[index/64] >> (index % 64)) + (scalar[index/64+1] << (64 - (index % 64)))) & 0x3f
		} else {
			wvalue = (scalar[index/64] >> (index % 64)) & 0x3f
		}

		sel, sign = boothW5(uint(wvalue))

		p256Select(t0.xyz[0:], precomp[0:], sel)
		p256NegCond(t0.xyz[4:8], sign)
		p256PointAddAsm(t1.xyz[:], p.xyz[:], t0.xyz[:])
		p256MovCond(t1.xyz[0:12], t1.xyz[0:12], p.xyz[0:12], sel)
		p256MovCond(p.xyz[0:12], t1.xyz[0:12], t0.xyz[0:12], zero)
		zero |= sel
	}

	p256PointDoubleAsm(p.xyz[:], p.xyz[:])
	p256PointDoubleAsm(p.xyz[:], p.xyz[:])
	p256PointDoubleAsm(p.xyz[:], p.xyz[:])
	p256PointDoubleAsm(p.xyz[:], p.xyz[:])
	p256PointDoubleAsm(p.xyz[:], p.xyz[:])

	wvalue = (scalar[0] << 1) & 0x3f
	sel, sign = boothW5(uint(wvalue))

	p256Select(t0.xyz[0:], precomp[0:], sel)
	p256NegCond(t0.xyz[4:8], sign)
	p256PointAddAsm(t1.xyz[:], p.xyz[:], t0.xyz[:])
	p256MovCond(t1.xyz[0:12], t1.xyz[0:12], p.xyz[0:12], sel)
	p256MovCond(p.xyz[0:12], t1.xyz[0:12], t0.xyz[0:12], zero)
}