1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
|
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package rsa
import (
"crypto"
"crypto/subtle"
"errors"
"io"
"math/big"
"crypto/internal/randutil"
)
// This file implements encryption and decryption using PKCS #1 v1.5 padding.
// PKCS1v15DecrypterOpts is for passing options to PKCS #1 v1.5 decryption using
// the crypto.Decrypter interface.
type PKCS1v15DecryptOptions struct {
// SessionKeyLen is the length of the session key that is being
// decrypted. If not zero, then a padding error during decryption will
// cause a random plaintext of this length to be returned rather than
// an error. These alternatives happen in constant time.
SessionKeyLen int
}
// EncryptPKCS1v15 encrypts the given message with RSA and the padding
// scheme from PKCS #1 v1.5. The message must be no longer than the
// length of the public modulus minus 11 bytes.
//
// The rand parameter is used as a source of entropy to ensure that
// encrypting the same message twice doesn't result in the same
// ciphertext.
//
// WARNING: use of this function to encrypt plaintexts other than
// session keys is dangerous. Use RSA OAEP in new protocols.
func EncryptPKCS1v15(rand io.Reader, pub *PublicKey, msg []byte) ([]byte, error) {
randutil.MaybeReadByte(rand)
if err := checkPub(pub); err != nil {
return nil, err
}
k := pub.Size()
if len(msg) > k-11 {
return nil, ErrMessageTooLong
}
// EM = 0x00 || 0x02 || PS || 0x00 || M
em := make([]byte, k)
em[1] = 2
ps, mm := em[2:len(em)-len(msg)-1], em[len(em)-len(msg):]
err := nonZeroRandomBytes(ps, rand)
if err != nil {
return nil, err
}
em[len(em)-len(msg)-1] = 0
copy(mm, msg)
m := new(big.Int).SetBytes(em)
c := encrypt(new(big.Int), pub, m)
return c.FillBytes(em), nil
}
// DecryptPKCS1v15 decrypts a plaintext using RSA and the padding scheme from PKCS #1 v1.5.
// If rand != nil, it uses RSA blinding to avoid timing side-channel attacks.
//
// Note that whether this function returns an error or not discloses secret
// information. If an attacker can cause this function to run repeatedly and
// learn whether each instance returned an error then they can decrypt and
// forge signatures as if they had the private key. See
// DecryptPKCS1v15SessionKey for a way of solving this problem.
func DecryptPKCS1v15(rand io.Reader, priv *PrivateKey, ciphertext []byte) ([]byte, error) {
if err := checkPub(&priv.PublicKey); err != nil {
return nil, err
}
valid, out, index, err := decryptPKCS1v15(rand, priv, ciphertext)
if err != nil {
return nil, err
}
if valid == 0 {
return nil, ErrDecryption
}
return out[index:], nil
}
// DecryptPKCS1v15SessionKey decrypts a session key using RSA and the padding scheme from PKCS #1 v1.5.
// If rand != nil, it uses RSA blinding to avoid timing side-channel attacks.
// It returns an error if the ciphertext is the wrong length or if the
// ciphertext is greater than the public modulus. Otherwise, no error is
// returned. If the padding is valid, the resulting plaintext message is copied
// into key. Otherwise, key is unchanged. These alternatives occur in constant
// time. It is intended that the user of this function generate a random
// session key beforehand and continue the protocol with the resulting value.
// This will remove any possibility that an attacker can learn any information
// about the plaintext.
// See ``Chosen Ciphertext Attacks Against Protocols Based on the RSA
// Encryption Standard PKCS #1'', Daniel Bleichenbacher, Advances in Cryptology
// (Crypto '98).
//
// Note that if the session key is too small then it may be possible for an
// attacker to brute-force it. If they can do that then they can learn whether
// a random value was used (because it'll be different for the same ciphertext)
// and thus whether the padding was correct. This defeats the point of this
// function. Using at least a 16-byte key will protect against this attack.
func DecryptPKCS1v15SessionKey(rand io.Reader, priv *PrivateKey, ciphertext []byte, key []byte) error {
if err := checkPub(&priv.PublicKey); err != nil {
return err
}
k := priv.Size()
if k-(len(key)+3+8) < 0 {
return ErrDecryption
}
valid, em, index, err := decryptPKCS1v15(rand, priv, ciphertext)
if err != nil {
return err
}
if len(em) != k {
// This should be impossible because decryptPKCS1v15 always
// returns the full slice.
return ErrDecryption
}
valid &= subtle.ConstantTimeEq(int32(len(em)-index), int32(len(key)))
subtle.ConstantTimeCopy(valid, key, em[len(em)-len(key):])
return nil
}
// decryptPKCS1v15 decrypts ciphertext using priv and blinds the operation if
// rand is not nil. It returns one or zero in valid that indicates whether the
// plaintext was correctly structured. In either case, the plaintext is
// returned in em so that it may be read independently of whether it was valid
// in order to maintain constant memory access patterns. If the plaintext was
// valid then index contains the index of the original message in em.
func decryptPKCS1v15(rand io.Reader, priv *PrivateKey, ciphertext []byte) (valid int, em []byte, index int, err error) {
k := priv.Size()
if k < 11 {
err = ErrDecryption
return
}
c := new(big.Int).SetBytes(ciphertext)
m, err := decrypt(rand, priv, c)
if err != nil {
return
}
em = m.FillBytes(make([]byte, k))
firstByteIsZero := subtle.ConstantTimeByteEq(em[0], 0)
secondByteIsTwo := subtle.ConstantTimeByteEq(em[1], 2)
// The remainder of the plaintext must be a string of non-zero random
// octets, followed by a 0, followed by the message.
// lookingForIndex: 1 iff we are still looking for the zero.
// index: the offset of the first zero byte.
lookingForIndex := 1
for i := 2; i < len(em); i++ {
equals0 := subtle.ConstantTimeByteEq(em[i], 0)
index = subtle.ConstantTimeSelect(lookingForIndex&equals0, i, index)
lookingForIndex = subtle.ConstantTimeSelect(equals0, 0, lookingForIndex)
}
// The PS padding must be at least 8 bytes long, and it starts two
// bytes into em.
validPS := subtle.ConstantTimeLessOrEq(2+8, index)
valid = firstByteIsZero & secondByteIsTwo & (^lookingForIndex & 1) & validPS
index = subtle.ConstantTimeSelect(valid, index+1, 0)
return valid, em, index, nil
}
// nonZeroRandomBytes fills the given slice with non-zero random octets.
func nonZeroRandomBytes(s []byte, rand io.Reader) (err error) {
_, err = io.ReadFull(rand, s)
if err != nil {
return
}
for i := 0; i < len(s); i++ {
for s[i] == 0 {
_, err = io.ReadFull(rand, s[i:i+1])
if err != nil {
return
}
// In tests, the PRNG may return all zeros so we do
// this to break the loop.
s[i] ^= 0x42
}
}
return
}
// These are ASN1 DER structures:
// DigestInfo ::= SEQUENCE {
// digestAlgorithm AlgorithmIdentifier,
// digest OCTET STRING
// }
// For performance, we don't use the generic ASN1 encoder. Rather, we
// precompute a prefix of the digest value that makes a valid ASN1 DER string
// with the correct contents.
var hashPrefixes = map[crypto.Hash][]byte{
crypto.MD5: {0x30, 0x20, 0x30, 0x0c, 0x06, 0x08, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x02, 0x05, 0x05, 0x00, 0x04, 0x10},
crypto.SHA1: {0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2b, 0x0e, 0x03, 0x02, 0x1a, 0x05, 0x00, 0x04, 0x14},
crypto.SHA224: {0x30, 0x2d, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x04, 0x05, 0x00, 0x04, 0x1c},
crypto.SHA256: {0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01, 0x05, 0x00, 0x04, 0x20},
crypto.SHA384: {0x30, 0x41, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x02, 0x05, 0x00, 0x04, 0x30},
crypto.SHA512: {0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03, 0x05, 0x00, 0x04, 0x40},
crypto.MD5SHA1: {}, // A special TLS case which doesn't use an ASN1 prefix.
crypto.RIPEMD160: {0x30, 0x20, 0x30, 0x08, 0x06, 0x06, 0x28, 0xcf, 0x06, 0x03, 0x00, 0x31, 0x04, 0x14},
}
// SignPKCS1v15 calculates the signature of hashed using
// RSASSA-PKCS1-V1_5-SIGN from RSA PKCS #1 v1.5. Note that hashed must
// be the result of hashing the input message using the given hash
// function. If hash is zero, hashed is signed directly. This isn't
// advisable except for interoperability.
//
// If rand is not nil then RSA blinding will be used to avoid timing
// side-channel attacks.
//
// This function is deterministic. Thus, if the set of possible
// messages is small, an attacker may be able to build a map from
// messages to signatures and identify the signed messages. As ever,
// signatures provide authenticity, not confidentiality.
func SignPKCS1v15(rand io.Reader, priv *PrivateKey, hash crypto.Hash, hashed []byte) ([]byte, error) {
hashLen, prefix, err := pkcs1v15HashInfo(hash, len(hashed))
if err != nil {
return nil, err
}
tLen := len(prefix) + hashLen
k := priv.Size()
if k < tLen+11 {
return nil, ErrMessageTooLong
}
// EM = 0x00 || 0x01 || PS || 0x00 || T
em := make([]byte, k)
em[1] = 1
for i := 2; i < k-tLen-1; i++ {
em[i] = 0xff
}
copy(em[k-tLen:k-hashLen], prefix)
copy(em[k-hashLen:k], hashed)
m := new(big.Int).SetBytes(em)
c, err := decryptAndCheck(rand, priv, m)
if err != nil {
return nil, err
}
return c.FillBytes(em), nil
}
// VerifyPKCS1v15 verifies an RSA PKCS #1 v1.5 signature.
// hashed is the result of hashing the input message using the given hash
// function and sig is the signature. A valid signature is indicated by
// returning a nil error. If hash is zero then hashed is used directly. This
// isn't advisable except for interoperability.
func VerifyPKCS1v15(pub *PublicKey, hash crypto.Hash, hashed []byte, sig []byte) error {
hashLen, prefix, err := pkcs1v15HashInfo(hash, len(hashed))
if err != nil {
return err
}
tLen := len(prefix) + hashLen
k := pub.Size()
if k < tLen+11 {
return ErrVerification
}
// RFC 8017 Section 8.2.2: If the length of the signature S is not k
// octets (where k is the length in octets of the RSA modulus n), output
// "invalid signature" and stop.
if k != len(sig) {
return ErrVerification
}
c := new(big.Int).SetBytes(sig)
m := encrypt(new(big.Int), pub, c)
em := m.FillBytes(make([]byte, k))
// EM = 0x00 || 0x01 || PS || 0x00 || T
ok := subtle.ConstantTimeByteEq(em[0], 0)
ok &= subtle.ConstantTimeByteEq(em[1], 1)
ok &= subtle.ConstantTimeCompare(em[k-hashLen:k], hashed)
ok &= subtle.ConstantTimeCompare(em[k-tLen:k-hashLen], prefix)
ok &= subtle.ConstantTimeByteEq(em[k-tLen-1], 0)
for i := 2; i < k-tLen-1; i++ {
ok &= subtle.ConstantTimeByteEq(em[i], 0xff)
}
if ok != 1 {
return ErrVerification
}
return nil
}
func pkcs1v15HashInfo(hash crypto.Hash, inLen int) (hashLen int, prefix []byte, err error) {
// Special case: crypto.Hash(0) is used to indicate that the data is
// signed directly.
if hash == 0 {
return inLen, nil, nil
}
hashLen = hash.Size()
if inLen != hashLen {
return 0, nil, errors.New("crypto/rsa: input must be hashed message")
}
prefix, ok := hashPrefixes[hash]
if !ok {
return 0, nil, errors.New("crypto/rsa: unsupported hash function")
}
return
}
|