summaryrefslogtreecommitdiffstats
path: root/src/crypto/rsa/pss.go
blob: 814522de8181fc326d29d925a7d6df8e53af7996 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package rsa

// This file implements the RSASSA-PSS signature scheme according to RFC 8017.

import (
	"bytes"
	"crypto"
	"errors"
	"hash"
	"io"
	"math/big"
)

// Per RFC 8017, Section 9.1
//
//     EM = MGF1 xor DB || H( 8*0x00 || mHash || salt ) || 0xbc
//
// where
//
//     DB = PS || 0x01 || salt
//
// and PS can be empty so
//
//     emLen = dbLen + hLen + 1 = psLen + sLen + hLen + 2
//

func emsaPSSEncode(mHash []byte, emBits int, salt []byte, hash hash.Hash) ([]byte, error) {
	// See RFC 8017, Section 9.1.1.

	hLen := hash.Size()
	sLen := len(salt)
	emLen := (emBits + 7) / 8

	// 1.  If the length of M is greater than the input limitation for the
	//     hash function (2^61 - 1 octets for SHA-1), output "message too
	//     long" and stop.
	//
	// 2.  Let mHash = Hash(M), an octet string of length hLen.

	if len(mHash) != hLen {
		return nil, errors.New("crypto/rsa: input must be hashed with given hash")
	}

	// 3.  If emLen < hLen + sLen + 2, output "encoding error" and stop.

	if emLen < hLen+sLen+2 {
		return nil, errors.New("crypto/rsa: key size too small for PSS signature")
	}

	em := make([]byte, emLen)
	psLen := emLen - sLen - hLen - 2
	db := em[:psLen+1+sLen]
	h := em[psLen+1+sLen : emLen-1]

	// 4.  Generate a random octet string salt of length sLen; if sLen = 0,
	//     then salt is the empty string.
	//
	// 5.  Let
	//       M' = (0x)00 00 00 00 00 00 00 00 || mHash || salt;
	//
	//     M' is an octet string of length 8 + hLen + sLen with eight
	//     initial zero octets.
	//
	// 6.  Let H = Hash(M'), an octet string of length hLen.

	var prefix [8]byte

	hash.Write(prefix[:])
	hash.Write(mHash)
	hash.Write(salt)

	h = hash.Sum(h[:0])
	hash.Reset()

	// 7.  Generate an octet string PS consisting of emLen - sLen - hLen - 2
	//     zero octets. The length of PS may be 0.
	//
	// 8.  Let DB = PS || 0x01 || salt; DB is an octet string of length
	//     emLen - hLen - 1.

	db[psLen] = 0x01
	copy(db[psLen+1:], salt)

	// 9.  Let dbMask = MGF(H, emLen - hLen - 1).
	//
	// 10. Let maskedDB = DB \xor dbMask.

	mgf1XOR(db, hash, h)

	// 11. Set the leftmost 8 * emLen - emBits bits of the leftmost octet in
	//     maskedDB to zero.

	db[0] &= 0xff >> (8*emLen - emBits)

	// 12. Let EM = maskedDB || H || 0xbc.
	em[emLen-1] = 0xbc

	// 13. Output EM.
	return em, nil
}

func emsaPSSVerify(mHash, em []byte, emBits, sLen int, hash hash.Hash) error {
	// See RFC 8017, Section 9.1.2.

	hLen := hash.Size()
	if sLen == PSSSaltLengthEqualsHash {
		sLen = hLen
	}
	emLen := (emBits + 7) / 8
	if emLen != len(em) {
		return errors.New("rsa: internal error: inconsistent length")
	}

	// 1.  If the length of M is greater than the input limitation for the
	//     hash function (2^61 - 1 octets for SHA-1), output "inconsistent"
	//     and stop.
	//
	// 2.  Let mHash = Hash(M), an octet string of length hLen.
	if hLen != len(mHash) {
		return ErrVerification
	}

	// 3.  If emLen < hLen + sLen + 2, output "inconsistent" and stop.
	if emLen < hLen+sLen+2 {
		return ErrVerification
	}

	// 4.  If the rightmost octet of EM does not have hexadecimal value
	//     0xbc, output "inconsistent" and stop.
	if em[emLen-1] != 0xbc {
		return ErrVerification
	}

	// 5.  Let maskedDB be the leftmost emLen - hLen - 1 octets of EM, and
	//     let H be the next hLen octets.
	db := em[:emLen-hLen-1]
	h := em[emLen-hLen-1 : emLen-1]

	// 6.  If the leftmost 8 * emLen - emBits bits of the leftmost octet in
	//     maskedDB are not all equal to zero, output "inconsistent" and
	//     stop.
	var bitMask byte = 0xff >> (8*emLen - emBits)
	if em[0] & ^bitMask != 0 {
		return ErrVerification
	}

	// 7.  Let dbMask = MGF(H, emLen - hLen - 1).
	//
	// 8.  Let DB = maskedDB \xor dbMask.
	mgf1XOR(db, hash, h)

	// 9.  Set the leftmost 8 * emLen - emBits bits of the leftmost octet in DB
	//     to zero.
	db[0] &= bitMask

	// If we don't know the salt length, look for the 0x01 delimiter.
	if sLen == PSSSaltLengthAuto {
		psLen := bytes.IndexByte(db, 0x01)
		if psLen < 0 {
			return ErrVerification
		}
		sLen = len(db) - psLen - 1
	}

	// 10. If the emLen - hLen - sLen - 2 leftmost octets of DB are not zero
	//     or if the octet at position emLen - hLen - sLen - 1 (the leftmost
	//     position is "position 1") does not have hexadecimal value 0x01,
	//     output "inconsistent" and stop.
	psLen := emLen - hLen - sLen - 2
	for _, e := range db[:psLen] {
		if e != 0x00 {
			return ErrVerification
		}
	}
	if db[psLen] != 0x01 {
		return ErrVerification
	}

	// 11.  Let salt be the last sLen octets of DB.
	salt := db[len(db)-sLen:]

	// 12.  Let
	//          M' = (0x)00 00 00 00 00 00 00 00 || mHash || salt ;
	//     M' is an octet string of length 8 + hLen + sLen with eight
	//     initial zero octets.
	//
	// 13. Let H' = Hash(M'), an octet string of length hLen.
	var prefix [8]byte
	hash.Write(prefix[:])
	hash.Write(mHash)
	hash.Write(salt)

	h0 := hash.Sum(nil)

	// 14. If H = H', output "consistent." Otherwise, output "inconsistent."
	if !bytes.Equal(h0, h) { // TODO: constant time?
		return ErrVerification
	}
	return nil
}

// signPSSWithSalt calculates the signature of hashed using PSS with specified salt.
// Note that hashed must be the result of hashing the input message using the
// given hash function. salt is a random sequence of bytes whose length will be
// later used to verify the signature.
func signPSSWithSalt(rand io.Reader, priv *PrivateKey, hash crypto.Hash, hashed, salt []byte) ([]byte, error) {
	emBits := priv.N.BitLen() - 1
	em, err := emsaPSSEncode(hashed, emBits, salt, hash.New())
	if err != nil {
		return nil, err
	}
	m := new(big.Int).SetBytes(em)
	c, err := decryptAndCheck(rand, priv, m)
	if err != nil {
		return nil, err
	}
	s := make([]byte, priv.Size())
	return c.FillBytes(s), nil
}

const (
	// PSSSaltLengthAuto causes the salt in a PSS signature to be as large
	// as possible when signing, and to be auto-detected when verifying.
	PSSSaltLengthAuto = 0
	// PSSSaltLengthEqualsHash causes the salt length to equal the length
	// of the hash used in the signature.
	PSSSaltLengthEqualsHash = -1
)

// PSSOptions contains options for creating and verifying PSS signatures.
type PSSOptions struct {
	// SaltLength controls the length of the salt used in the PSS
	// signature. It can either be a number of bytes, or one of the special
	// PSSSaltLength constants.
	SaltLength int

	// Hash is the hash function used to generate the message digest. If not
	// zero, it overrides the hash function passed to SignPSS. It's required
	// when using PrivateKey.Sign.
	Hash crypto.Hash
}

// HashFunc returns opts.Hash so that PSSOptions implements crypto.SignerOpts.
func (opts *PSSOptions) HashFunc() crypto.Hash {
	return opts.Hash
}

func (opts *PSSOptions) saltLength() int {
	if opts == nil {
		return PSSSaltLengthAuto
	}
	return opts.SaltLength
}

// SignPSS calculates the signature of digest using PSS.
//
// digest must be the result of hashing the input message using the given hash
// function. The opts argument may be nil, in which case sensible defaults are
// used. If opts.Hash is set, it overrides hash.
func SignPSS(rand io.Reader, priv *PrivateKey, hash crypto.Hash, digest []byte, opts *PSSOptions) ([]byte, error) {
	if opts != nil && opts.Hash != 0 {
		hash = opts.Hash
	}

	saltLength := opts.saltLength()
	switch saltLength {
	case PSSSaltLengthAuto:
		saltLength = (priv.N.BitLen()-1+7)/8 - 2 - hash.Size()
	case PSSSaltLengthEqualsHash:
		saltLength = hash.Size()
	}

	salt := make([]byte, saltLength)
	if _, err := io.ReadFull(rand, salt); err != nil {
		return nil, err
	}
	return signPSSWithSalt(rand, priv, hash, digest, salt)
}

// VerifyPSS verifies a PSS signature.
//
// A valid signature is indicated by returning a nil error. digest must be the
// result of hashing the input message using the given hash function. The opts
// argument may be nil, in which case sensible defaults are used. opts.Hash is
// ignored.
func VerifyPSS(pub *PublicKey, hash crypto.Hash, digest []byte, sig []byte, opts *PSSOptions) error {
	if len(sig) != pub.Size() {
		return ErrVerification
	}
	s := new(big.Int).SetBytes(sig)
	m := encrypt(new(big.Int), pub, s)
	emBits := pub.N.BitLen() - 1
	emLen := (emBits + 7) / 8
	if m.BitLen() > emLen*8 {
		return ErrVerification
	}
	em := m.FillBytes(make([]byte, emLen))
	return emsaPSSVerify(digest, em, emBits, opts.saltLength(), hash.New())
}