1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
|
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package png
import (
"bufio"
"compress/zlib"
"encoding/binary"
"hash/crc32"
"image"
"image/color"
"io"
"strconv"
)
// Encoder configures encoding PNG images.
type Encoder struct {
CompressionLevel CompressionLevel
// BufferPool optionally specifies a buffer pool to get temporary
// EncoderBuffers when encoding an image.
BufferPool EncoderBufferPool
}
// EncoderBufferPool is an interface for getting and returning temporary
// instances of the EncoderBuffer struct. This can be used to reuse buffers
// when encoding multiple images.
type EncoderBufferPool interface {
Get() *EncoderBuffer
Put(*EncoderBuffer)
}
// EncoderBuffer holds the buffers used for encoding PNG images.
type EncoderBuffer encoder
type encoder struct {
enc *Encoder
w io.Writer
m image.Image
cb int
err error
header [8]byte
footer [4]byte
tmp [4 * 256]byte
cr [nFilter][]uint8
pr []uint8
zw *zlib.Writer
zwLevel int
bw *bufio.Writer
}
// CompressionLevel indicates the compression level.
type CompressionLevel int
const (
DefaultCompression CompressionLevel = 0
NoCompression CompressionLevel = -1
BestSpeed CompressionLevel = -2
BestCompression CompressionLevel = -3
// Positive CompressionLevel values are reserved to mean a numeric zlib
// compression level, although that is not implemented yet.
)
type opaquer interface {
Opaque() bool
}
// Returns whether or not the image is fully opaque.
func opaque(m image.Image) bool {
if o, ok := m.(opaquer); ok {
return o.Opaque()
}
b := m.Bounds()
for y := b.Min.Y; y < b.Max.Y; y++ {
for x := b.Min.X; x < b.Max.X; x++ {
_, _, _, a := m.At(x, y).RGBA()
if a != 0xffff {
return false
}
}
}
return true
}
// The absolute value of a byte interpreted as a signed int8.
func abs8(d uint8) int {
if d < 128 {
return int(d)
}
return 256 - int(d)
}
func (e *encoder) writeChunk(b []byte, name string) {
if e.err != nil {
return
}
n := uint32(len(b))
if int(n) != len(b) {
e.err = UnsupportedError(name + " chunk is too large: " + strconv.Itoa(len(b)))
return
}
binary.BigEndian.PutUint32(e.header[:4], n)
e.header[4] = name[0]
e.header[5] = name[1]
e.header[6] = name[2]
e.header[7] = name[3]
crc := crc32.NewIEEE()
crc.Write(e.header[4:8])
crc.Write(b)
binary.BigEndian.PutUint32(e.footer[:4], crc.Sum32())
_, e.err = e.w.Write(e.header[:8])
if e.err != nil {
return
}
_, e.err = e.w.Write(b)
if e.err != nil {
return
}
_, e.err = e.w.Write(e.footer[:4])
}
func (e *encoder) writeIHDR() {
b := e.m.Bounds()
binary.BigEndian.PutUint32(e.tmp[0:4], uint32(b.Dx()))
binary.BigEndian.PutUint32(e.tmp[4:8], uint32(b.Dy()))
// Set bit depth and color type.
switch e.cb {
case cbG8:
e.tmp[8] = 8
e.tmp[9] = ctGrayscale
case cbTC8:
e.tmp[8] = 8
e.tmp[9] = ctTrueColor
case cbP8:
e.tmp[8] = 8
e.tmp[9] = ctPaletted
case cbP4:
e.tmp[8] = 4
e.tmp[9] = ctPaletted
case cbP2:
e.tmp[8] = 2
e.tmp[9] = ctPaletted
case cbP1:
e.tmp[8] = 1
e.tmp[9] = ctPaletted
case cbTCA8:
e.tmp[8] = 8
e.tmp[9] = ctTrueColorAlpha
case cbG16:
e.tmp[8] = 16
e.tmp[9] = ctGrayscale
case cbTC16:
e.tmp[8] = 16
e.tmp[9] = ctTrueColor
case cbTCA16:
e.tmp[8] = 16
e.tmp[9] = ctTrueColorAlpha
}
e.tmp[10] = 0 // default compression method
e.tmp[11] = 0 // default filter method
e.tmp[12] = 0 // non-interlaced
e.writeChunk(e.tmp[:13], "IHDR")
}
func (e *encoder) writePLTEAndTRNS(p color.Palette) {
if len(p) < 1 || len(p) > 256 {
e.err = FormatError("bad palette length: " + strconv.Itoa(len(p)))
return
}
last := -1
for i, c := range p {
c1 := color.NRGBAModel.Convert(c).(color.NRGBA)
e.tmp[3*i+0] = c1.R
e.tmp[3*i+1] = c1.G
e.tmp[3*i+2] = c1.B
if c1.A != 0xff {
last = i
}
e.tmp[3*256+i] = c1.A
}
e.writeChunk(e.tmp[:3*len(p)], "PLTE")
if last != -1 {
e.writeChunk(e.tmp[3*256:3*256+1+last], "tRNS")
}
}
// An encoder is an io.Writer that satisfies writes by writing PNG IDAT chunks,
// including an 8-byte header and 4-byte CRC checksum per Write call. Such calls
// should be relatively infrequent, since writeIDATs uses a bufio.Writer.
//
// This method should only be called from writeIDATs (via writeImage).
// No other code should treat an encoder as an io.Writer.
func (e *encoder) Write(b []byte) (int, error) {
e.writeChunk(b, "IDAT")
if e.err != nil {
return 0, e.err
}
return len(b), nil
}
// Chooses the filter to use for encoding the current row, and applies it.
// The return value is the index of the filter and also of the row in cr that has had it applied.
func filter(cr *[nFilter][]byte, pr []byte, bpp int) int {
// We try all five filter types, and pick the one that minimizes the sum of absolute differences.
// This is the same heuristic that libpng uses, although the filters are attempted in order of
// estimated most likely to be minimal (ftUp, ftPaeth, ftNone, ftSub, ftAverage), rather than
// in their enumeration order (ftNone, ftSub, ftUp, ftAverage, ftPaeth).
cdat0 := cr[0][1:]
cdat1 := cr[1][1:]
cdat2 := cr[2][1:]
cdat3 := cr[3][1:]
cdat4 := cr[4][1:]
pdat := pr[1:]
n := len(cdat0)
// The up filter.
sum := 0
for i := 0; i < n; i++ {
cdat2[i] = cdat0[i] - pdat[i]
sum += abs8(cdat2[i])
}
best := sum
filter := ftUp
// The Paeth filter.
sum = 0
for i := 0; i < bpp; i++ {
cdat4[i] = cdat0[i] - pdat[i]
sum += abs8(cdat4[i])
}
for i := bpp; i < n; i++ {
cdat4[i] = cdat0[i] - paeth(cdat0[i-bpp], pdat[i], pdat[i-bpp])
sum += abs8(cdat4[i])
if sum >= best {
break
}
}
if sum < best {
best = sum
filter = ftPaeth
}
// The none filter.
sum = 0
for i := 0; i < n; i++ {
sum += abs8(cdat0[i])
if sum >= best {
break
}
}
if sum < best {
best = sum
filter = ftNone
}
// The sub filter.
sum = 0
for i := 0; i < bpp; i++ {
cdat1[i] = cdat0[i]
sum += abs8(cdat1[i])
}
for i := bpp; i < n; i++ {
cdat1[i] = cdat0[i] - cdat0[i-bpp]
sum += abs8(cdat1[i])
if sum >= best {
break
}
}
if sum < best {
best = sum
filter = ftSub
}
// The average filter.
sum = 0
for i := 0; i < bpp; i++ {
cdat3[i] = cdat0[i] - pdat[i]/2
sum += abs8(cdat3[i])
}
for i := bpp; i < n; i++ {
cdat3[i] = cdat0[i] - uint8((int(cdat0[i-bpp])+int(pdat[i]))/2)
sum += abs8(cdat3[i])
if sum >= best {
break
}
}
if sum < best {
filter = ftAverage
}
return filter
}
func zeroMemory(v []uint8) {
for i := range v {
v[i] = 0
}
}
func (e *encoder) writeImage(w io.Writer, m image.Image, cb int, level int) error {
if e.zw == nil || e.zwLevel != level {
zw, err := zlib.NewWriterLevel(w, level)
if err != nil {
return err
}
e.zw = zw
e.zwLevel = level
} else {
e.zw.Reset(w)
}
defer e.zw.Close()
bitsPerPixel := 0
switch cb {
case cbG8:
bitsPerPixel = 8
case cbTC8:
bitsPerPixel = 24
case cbP8:
bitsPerPixel = 8
case cbP4:
bitsPerPixel = 4
case cbP2:
bitsPerPixel = 2
case cbP1:
bitsPerPixel = 1
case cbTCA8:
bitsPerPixel = 32
case cbTC16:
bitsPerPixel = 48
case cbTCA16:
bitsPerPixel = 64
case cbG16:
bitsPerPixel = 16
}
// cr[*] and pr are the bytes for the current and previous row.
// cr[0] is unfiltered (or equivalently, filtered with the ftNone filter).
// cr[ft], for non-zero filter types ft, are buffers for transforming cr[0] under the
// other PNG filter types. These buffers are allocated once and re-used for each row.
// The +1 is for the per-row filter type, which is at cr[*][0].
b := m.Bounds()
sz := 1 + (bitsPerPixel*b.Dx()+7)/8
for i := range e.cr {
if cap(e.cr[i]) < sz {
e.cr[i] = make([]uint8, sz)
} else {
e.cr[i] = e.cr[i][:sz]
}
e.cr[i][0] = uint8(i)
}
cr := e.cr
if cap(e.pr) < sz {
e.pr = make([]uint8, sz)
} else {
e.pr = e.pr[:sz]
zeroMemory(e.pr)
}
pr := e.pr
gray, _ := m.(*image.Gray)
rgba, _ := m.(*image.RGBA)
paletted, _ := m.(*image.Paletted)
nrgba, _ := m.(*image.NRGBA)
for y := b.Min.Y; y < b.Max.Y; y++ {
// Convert from colors to bytes.
i := 1
switch cb {
case cbG8:
if gray != nil {
offset := (y - b.Min.Y) * gray.Stride
copy(cr[0][1:], gray.Pix[offset:offset+b.Dx()])
} else {
for x := b.Min.X; x < b.Max.X; x++ {
c := color.GrayModel.Convert(m.At(x, y)).(color.Gray)
cr[0][i] = c.Y
i++
}
}
case cbTC8:
// We have previously verified that the alpha value is fully opaque.
cr0 := cr[0]
stride, pix := 0, []byte(nil)
if rgba != nil {
stride, pix = rgba.Stride, rgba.Pix
} else if nrgba != nil {
stride, pix = nrgba.Stride, nrgba.Pix
}
if stride != 0 {
j0 := (y - b.Min.Y) * stride
j1 := j0 + b.Dx()*4
for j := j0; j < j1; j += 4 {
cr0[i+0] = pix[j+0]
cr0[i+1] = pix[j+1]
cr0[i+2] = pix[j+2]
i += 3
}
} else {
for x := b.Min.X; x < b.Max.X; x++ {
r, g, b, _ := m.At(x, y).RGBA()
cr0[i+0] = uint8(r >> 8)
cr0[i+1] = uint8(g >> 8)
cr0[i+2] = uint8(b >> 8)
i += 3
}
}
case cbP8:
if paletted != nil {
offset := (y - b.Min.Y) * paletted.Stride
copy(cr[0][1:], paletted.Pix[offset:offset+b.Dx()])
} else {
pi := m.(image.PalettedImage)
for x := b.Min.X; x < b.Max.X; x++ {
cr[0][i] = pi.ColorIndexAt(x, y)
i += 1
}
}
case cbP4, cbP2, cbP1:
pi := m.(image.PalettedImage)
var a uint8
var c int
pixelsPerByte := 8 / bitsPerPixel
for x := b.Min.X; x < b.Max.X; x++ {
a = a<<uint(bitsPerPixel) | pi.ColorIndexAt(x, y)
c++
if c == pixelsPerByte {
cr[0][i] = a
i += 1
a = 0
c = 0
}
}
if c != 0 {
for c != pixelsPerByte {
a = a << uint(bitsPerPixel)
c++
}
cr[0][i] = a
}
case cbTCA8:
if nrgba != nil {
offset := (y - b.Min.Y) * nrgba.Stride
copy(cr[0][1:], nrgba.Pix[offset:offset+b.Dx()*4])
} else {
// Convert from image.Image (which is alpha-premultiplied) to PNG's non-alpha-premultiplied.
for x := b.Min.X; x < b.Max.X; x++ {
c := color.NRGBAModel.Convert(m.At(x, y)).(color.NRGBA)
cr[0][i+0] = c.R
cr[0][i+1] = c.G
cr[0][i+2] = c.B
cr[0][i+3] = c.A
i += 4
}
}
case cbG16:
for x := b.Min.X; x < b.Max.X; x++ {
c := color.Gray16Model.Convert(m.At(x, y)).(color.Gray16)
cr[0][i+0] = uint8(c.Y >> 8)
cr[0][i+1] = uint8(c.Y)
i += 2
}
case cbTC16:
// We have previously verified that the alpha value is fully opaque.
for x := b.Min.X; x < b.Max.X; x++ {
r, g, b, _ := m.At(x, y).RGBA()
cr[0][i+0] = uint8(r >> 8)
cr[0][i+1] = uint8(r)
cr[0][i+2] = uint8(g >> 8)
cr[0][i+3] = uint8(g)
cr[0][i+4] = uint8(b >> 8)
cr[0][i+5] = uint8(b)
i += 6
}
case cbTCA16:
// Convert from image.Image (which is alpha-premultiplied) to PNG's non-alpha-premultiplied.
for x := b.Min.X; x < b.Max.X; x++ {
c := color.NRGBA64Model.Convert(m.At(x, y)).(color.NRGBA64)
cr[0][i+0] = uint8(c.R >> 8)
cr[0][i+1] = uint8(c.R)
cr[0][i+2] = uint8(c.G >> 8)
cr[0][i+3] = uint8(c.G)
cr[0][i+4] = uint8(c.B >> 8)
cr[0][i+5] = uint8(c.B)
cr[0][i+6] = uint8(c.A >> 8)
cr[0][i+7] = uint8(c.A)
i += 8
}
}
// Apply the filter.
// Skip filter for NoCompression and paletted images (cbP8) as
// "filters are rarely useful on palette images" and will result
// in larger files (see http://www.libpng.org/pub/png/book/chapter09.html).
f := ftNone
if level != zlib.NoCompression && cb != cbP8 && cb != cbP4 && cb != cbP2 && cb != cbP1 {
// Since we skip paletted images we don't have to worry about
// bitsPerPixel not being a multiple of 8
bpp := bitsPerPixel / 8
f = filter(&cr, pr, bpp)
}
// Write the compressed bytes.
if _, err := e.zw.Write(cr[f]); err != nil {
return err
}
// The current row for y is the previous row for y+1.
pr, cr[0] = cr[0], pr
}
return nil
}
// Write the actual image data to one or more IDAT chunks.
func (e *encoder) writeIDATs() {
if e.err != nil {
return
}
if e.bw == nil {
e.bw = bufio.NewWriterSize(e, 1<<15)
} else {
e.bw.Reset(e)
}
e.err = e.writeImage(e.bw, e.m, e.cb, levelToZlib(e.enc.CompressionLevel))
if e.err != nil {
return
}
e.err = e.bw.Flush()
}
// This function is required because we want the zero value of
// Encoder.CompressionLevel to map to zlib.DefaultCompression.
func levelToZlib(l CompressionLevel) int {
switch l {
case DefaultCompression:
return zlib.DefaultCompression
case NoCompression:
return zlib.NoCompression
case BestSpeed:
return zlib.BestSpeed
case BestCompression:
return zlib.BestCompression
default:
return zlib.DefaultCompression
}
}
func (e *encoder) writeIEND() { e.writeChunk(nil, "IEND") }
// Encode writes the Image m to w in PNG format. Any Image may be
// encoded, but images that are not image.NRGBA might be encoded lossily.
func Encode(w io.Writer, m image.Image) error {
var e Encoder
return e.Encode(w, m)
}
// Encode writes the Image m to w in PNG format.
func (enc *Encoder) Encode(w io.Writer, m image.Image) error {
// Obviously, negative widths and heights are invalid. Furthermore, the PNG
// spec section 11.2.2 says that zero is invalid. Excessively large images are
// also rejected.
mw, mh := int64(m.Bounds().Dx()), int64(m.Bounds().Dy())
if mw <= 0 || mh <= 0 || mw >= 1<<32 || mh >= 1<<32 {
return FormatError("invalid image size: " + strconv.FormatInt(mw, 10) + "x" + strconv.FormatInt(mh, 10))
}
var e *encoder
if enc.BufferPool != nil {
buffer := enc.BufferPool.Get()
e = (*encoder)(buffer)
}
if e == nil {
e = &encoder{}
}
if enc.BufferPool != nil {
defer enc.BufferPool.Put((*EncoderBuffer)(e))
}
e.enc = enc
e.w = w
e.m = m
var pal color.Palette
// cbP8 encoding needs PalettedImage's ColorIndexAt method.
if _, ok := m.(image.PalettedImage); ok {
pal, _ = m.ColorModel().(color.Palette)
}
if pal != nil {
if len(pal) <= 2 {
e.cb = cbP1
} else if len(pal) <= 4 {
e.cb = cbP2
} else if len(pal) <= 16 {
e.cb = cbP4
} else {
e.cb = cbP8
}
} else {
switch m.ColorModel() {
case color.GrayModel:
e.cb = cbG8
case color.Gray16Model:
e.cb = cbG16
case color.RGBAModel, color.NRGBAModel, color.AlphaModel:
if opaque(m) {
e.cb = cbTC8
} else {
e.cb = cbTCA8
}
default:
if opaque(m) {
e.cb = cbTC16
} else {
e.cb = cbTCA16
}
}
}
_, e.err = io.WriteString(w, pngHeader)
e.writeIHDR()
if pal != nil {
e.writePLTEAndTRNS(pal)
}
e.writeIDATs()
e.writeIEND()
return e.err
}
|