summaryrefslogtreecommitdiffstats
path: root/src/runtime/mgcsweep.go
blob: 2aa670e1b864ddb7346586ae77815ca715d0f5e6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Garbage collector: sweeping

// The sweeper consists of two different algorithms:
//
// * The object reclaimer finds and frees unmarked slots in spans. It
//   can free a whole span if none of the objects are marked, but that
//   isn't its goal. This can be driven either synchronously by
//   mcentral.cacheSpan for mcentral spans, or asynchronously by
//   sweepone, which looks at all the mcentral lists.
//
// * The span reclaimer looks for spans that contain no marked objects
//   and frees whole spans. This is a separate algorithm because
//   freeing whole spans is the hardest task for the object reclaimer,
//   but is critical when allocating new spans. The entry point for
//   this is mheap_.reclaim and it's driven by a sequential scan of
//   the page marks bitmap in the heap arenas.
//
// Both algorithms ultimately call mspan.sweep, which sweeps a single
// heap span.

package runtime

import (
	"runtime/internal/atomic"
	"unsafe"
)

var sweep sweepdata

// State of background sweep.
type sweepdata struct {
	lock    mutex
	g       *g
	parked  bool
	started bool

	nbgsweep    uint32
	npausesweep uint32

	// active tracks outstanding sweepers and the sweep
	// termination condition.
	active activeSweep

	// centralIndex is the current unswept span class.
	// It represents an index into the mcentral span
	// sets. Accessed and updated via its load and
	// update methods. Not protected by a lock.
	//
	// Reset at mark termination.
	// Used by mheap.nextSpanForSweep.
	centralIndex sweepClass
}

// sweepClass is a spanClass and one bit to represent whether we're currently
// sweeping partial or full spans.
type sweepClass uint32

const (
	numSweepClasses            = numSpanClasses * 2
	sweepClassDone  sweepClass = sweepClass(^uint32(0))
)

func (s *sweepClass) load() sweepClass {
	return sweepClass(atomic.Load((*uint32)(s)))
}

func (s *sweepClass) update(sNew sweepClass) {
	// Only update *s if its current value is less than sNew,
	// since *s increases monotonically.
	sOld := s.load()
	for sOld < sNew && !atomic.Cas((*uint32)(s), uint32(sOld), uint32(sNew)) {
		sOld = s.load()
	}
	// TODO(mknyszek): This isn't the only place we have
	// an atomic monotonically increasing counter. It would
	// be nice to have an "atomic max" which is just implemented
	// as the above on most architectures. Some architectures
	// like RISC-V however have native support for an atomic max.
}

func (s *sweepClass) clear() {
	atomic.Store((*uint32)(s), 0)
}

// split returns the underlying span class as well as
// whether we're interested in the full or partial
// unswept lists for that class, indicated as a boolean
// (true means "full").
func (s sweepClass) split() (spc spanClass, full bool) {
	return spanClass(s >> 1), s&1 == 0
}

// nextSpanForSweep finds and pops the next span for sweeping from the
// central sweep buffers. It returns ownership of the span to the caller.
// Returns nil if no such span exists.
func (h *mheap) nextSpanForSweep() *mspan {
	sg := h.sweepgen
	for sc := sweep.centralIndex.load(); sc < numSweepClasses; sc++ {
		spc, full := sc.split()
		c := &h.central[spc].mcentral
		var s *mspan
		if full {
			s = c.fullUnswept(sg).pop()
		} else {
			s = c.partialUnswept(sg).pop()
		}
		if s != nil {
			// Write down that we found something so future sweepers
			// can start from here.
			sweep.centralIndex.update(sc)
			return s
		}
	}
	// Write down that we found nothing.
	sweep.centralIndex.update(sweepClassDone)
	return nil
}

const sweepDrainedMask = 1 << 31

// activeSweep is a type that captures whether sweeping
// is done, and whether there are any outstanding sweepers.
//
// Every potential sweeper must call begin() before they look
// for work, and end() after they've finished sweeping.
type activeSweep struct {
	// state is divided into two parts.
	//
	// The top bit (masked by sweepDrainedMask) is a boolean
	// value indicating whether all the sweep work has been
	// drained from the queue.
	//
	// The rest of the bits are a counter, indicating the
	// number of outstanding concurrent sweepers.
	state atomic.Uint32
}

// begin registers a new sweeper. Returns a sweepLocker
// for acquiring spans for sweeping. Any outstanding sweeper blocks
// sweep termination.
//
// If the sweepLocker is invalid, the caller can be sure that all
// outstanding sweep work has been drained, so there is nothing left
// to sweep. Note that there may be sweepers currently running, so
// this does not indicate that all sweeping has completed.
//
// Even if the sweepLocker is invalid, its sweepGen is always valid.
func (a *activeSweep) begin() sweepLocker {
	for {
		state := a.state.Load()
		if state&sweepDrainedMask != 0 {
			return sweepLocker{mheap_.sweepgen, false}
		}
		if a.state.CompareAndSwap(state, state+1) {
			return sweepLocker{mheap_.sweepgen, true}
		}
	}
}

// end deregisters a sweeper. Must be called once for each time
// begin is called if the sweepLocker is valid.
func (a *activeSweep) end(sl sweepLocker) {
	if sl.sweepGen != mheap_.sweepgen {
		throw("sweeper left outstanding across sweep generations")
	}
	for {
		state := a.state.Load()
		if (state&^sweepDrainedMask)-1 >= sweepDrainedMask {
			throw("mismatched begin/end of activeSweep")
		}
		if a.state.CompareAndSwap(state, state-1) {
			if state != sweepDrainedMask {
				return
			}
			if debug.gcpacertrace > 0 {
				print("pacer: sweep done at heap size ", gcController.heapLive>>20, "MB; allocated ", (gcController.heapLive-mheap_.sweepHeapLiveBasis)>>20, "MB during sweep; swept ", mheap_.pagesSwept.Load(), " pages at ", mheap_.sweepPagesPerByte, " pages/byte\n")
			}
			return
		}
	}
}

// markDrained marks the active sweep cycle as having drained
// all remaining work. This is safe to be called concurrently
// with all other methods of activeSweep, though may race.
//
// Returns true if this call was the one that actually performed
// the mark.
func (a *activeSweep) markDrained() bool {
	for {
		state := a.state.Load()
		if state&sweepDrainedMask != 0 {
			return false
		}
		if a.state.CompareAndSwap(state, state|sweepDrainedMask) {
			return true
		}
	}
}

// sweepers returns the current number of active sweepers.
func (a *activeSweep) sweepers() uint32 {
	return a.state.Load() &^ sweepDrainedMask
}

// isDone returns true if all sweep work has been drained and no more
// outstanding sweepers exist. That is, when the sweep phase is
// completely done.
func (a *activeSweep) isDone() bool {
	return a.state.Load() == sweepDrainedMask
}

// reset sets up the activeSweep for the next sweep cycle.
//
// The world must be stopped.
func (a *activeSweep) reset() {
	assertWorldStopped()
	a.state.Store(0)
}

// finishsweep_m ensures that all spans are swept.
//
// The world must be stopped. This ensures there are no sweeps in
// progress.
//
//go:nowritebarrier
func finishsweep_m() {
	assertWorldStopped()

	// Sweeping must be complete before marking commences, so
	// sweep any unswept spans. If this is a concurrent GC, there
	// shouldn't be any spans left to sweep, so this should finish
	// instantly. If GC was forced before the concurrent sweep
	// finished, there may be spans to sweep.
	for sweepone() != ^uintptr(0) {
		sweep.npausesweep++
	}

	// Make sure there aren't any outstanding sweepers left.
	// At this point, with the world stopped, it means one of two
	// things. Either we were able to preempt a sweeper, or that
	// a sweeper didn't call sweep.active.end when it should have.
	// Both cases indicate a bug, so throw.
	if sweep.active.sweepers() != 0 {
		throw("active sweepers found at start of mark phase")
	}

	// Reset all the unswept buffers, which should be empty.
	// Do this in sweep termination as opposed to mark termination
	// so that we can catch unswept spans and reclaim blocks as
	// soon as possible.
	sg := mheap_.sweepgen
	for i := range mheap_.central {
		c := &mheap_.central[i].mcentral
		c.partialUnswept(sg).reset()
		c.fullUnswept(sg).reset()
	}

	// Sweeping is done, so if the scavenger isn't already awake,
	// wake it up. There's definitely work for it to do at this
	// point.
	wakeScavenger()

	nextMarkBitArenaEpoch()
}

func bgsweep(c chan int) {
	sweep.g = getg()

	lockInit(&sweep.lock, lockRankSweep)
	lock(&sweep.lock)
	sweep.parked = true
	c <- 1
	goparkunlock(&sweep.lock, waitReasonGCSweepWait, traceEvGoBlock, 1)

	for {
		for sweepone() != ^uintptr(0) {
			sweep.nbgsweep++
			Gosched()
		}
		for freeSomeWbufs(true) {
			Gosched()
		}
		lock(&sweep.lock)
		if !isSweepDone() {
			// This can happen if a GC runs between
			// gosweepone returning ^0 above
			// and the lock being acquired.
			unlock(&sweep.lock)
			continue
		}
		sweep.parked = true
		goparkunlock(&sweep.lock, waitReasonGCSweepWait, traceEvGoBlock, 1)
	}
}

// sweepLocker acquires sweep ownership of spans.
type sweepLocker struct {
	// sweepGen is the sweep generation of the heap.
	sweepGen uint32
	valid    bool
}

// sweepLocked represents sweep ownership of a span.
type sweepLocked struct {
	*mspan
}

// tryAcquire attempts to acquire sweep ownership of span s. If it
// successfully acquires ownership, it blocks sweep completion.
func (l *sweepLocker) tryAcquire(s *mspan) (sweepLocked, bool) {
	if !l.valid {
		throw("use of invalid sweepLocker")
	}
	// Check before attempting to CAS.
	if atomic.Load(&s.sweepgen) != l.sweepGen-2 {
		return sweepLocked{}, false
	}
	// Attempt to acquire sweep ownership of s.
	if !atomic.Cas(&s.sweepgen, l.sweepGen-2, l.sweepGen-1) {
		return sweepLocked{}, false
	}
	return sweepLocked{s}, true
}

// sweepone sweeps some unswept heap span and returns the number of pages returned
// to the heap, or ^uintptr(0) if there was nothing to sweep.
func sweepone() uintptr {
	gp := getg()

	// Increment locks to ensure that the goroutine is not preempted
	// in the middle of sweep thus leaving the span in an inconsistent state for next GC
	gp.m.locks++

	// TODO(austin): sweepone is almost always called in a loop;
	// lift the sweepLocker into its callers.
	sl := sweep.active.begin()
	if !sl.valid {
		gp.m.locks--
		return ^uintptr(0)
	}

	// Find a span to sweep.
	npages := ^uintptr(0)
	var noMoreWork bool
	for {
		s := mheap_.nextSpanForSweep()
		if s == nil {
			noMoreWork = sweep.active.markDrained()
			break
		}
		if state := s.state.get(); state != mSpanInUse {
			// This can happen if direct sweeping already
			// swept this span, but in that case the sweep
			// generation should always be up-to-date.
			if !(s.sweepgen == sl.sweepGen || s.sweepgen == sl.sweepGen+3) {
				print("runtime: bad span s.state=", state, " s.sweepgen=", s.sweepgen, " sweepgen=", sl.sweepGen, "\n")
				throw("non in-use span in unswept list")
			}
			continue
		}
		if s, ok := sl.tryAcquire(s); ok {
			// Sweep the span we found.
			npages = s.npages
			if s.sweep(false) {
				// Whole span was freed. Count it toward the
				// page reclaimer credit since these pages can
				// now be used for span allocation.
				mheap_.reclaimCredit.Add(npages)
			} else {
				// Span is still in-use, so this returned no
				// pages to the heap and the span needs to
				// move to the swept in-use list.
				npages = 0
			}
			break
		}
	}
	sweep.active.end(sl)

	if noMoreWork {
		// The sweep list is empty. There may still be
		// concurrent sweeps running, but we're at least very
		// close to done sweeping.

		// Move the scavenge gen forward (signalling
		// that there's new work to do) and wake the scavenger.
		//
		// The scavenger is signaled by the last sweeper because once
		// sweeping is done, we will definitely have useful work for
		// the scavenger to do, since the scavenger only runs over the
		// heap once per GC cycle. This update is not done during sweep
		// termination because in some cases there may be a long delay
		// between sweep done and sweep termination (e.g. not enough
		// allocations to trigger a GC) which would be nice to fill in
		// with scavenging work.
		systemstack(func() {
			lock(&mheap_.lock)
			mheap_.pages.scavengeStartGen()
			unlock(&mheap_.lock)
		})
		// Since we might sweep in an allocation path, it's not possible
		// for us to wake the scavenger directly via wakeScavenger, since
		// it could allocate. Ask sysmon to do it for us instead.
		readyForScavenger()
	}

	gp.m.locks--
	return npages
}

// isSweepDone reports whether all spans are swept.
//
// Note that this condition may transition from false to true at any
// time as the sweeper runs. It may transition from true to false if a
// GC runs; to prevent that the caller must be non-preemptible or must
// somehow block GC progress.
func isSweepDone() bool {
	return sweep.active.isDone()
}

// Returns only when span s has been swept.
//go:nowritebarrier
func (s *mspan) ensureSwept() {
	// Caller must disable preemption.
	// Otherwise when this function returns the span can become unswept again
	// (if GC is triggered on another goroutine).
	_g_ := getg()
	if _g_.m.locks == 0 && _g_.m.mallocing == 0 && _g_ != _g_.m.g0 {
		throw("mspan.ensureSwept: m is not locked")
	}

	// If this operation fails, then that means that there are
	// no more spans to be swept. In this case, either s has already
	// been swept, or is about to be acquired for sweeping and swept.
	sl := sweep.active.begin()
	if sl.valid {
		// The caller must be sure that the span is a mSpanInUse span.
		if s, ok := sl.tryAcquire(s); ok {
			s.sweep(false)
			sweep.active.end(sl)
			return
		}
		sweep.active.end(sl)
	}

	// Unfortunately we can't sweep the span ourselves. Somebody else
	// got to it first. We don't have efficient means to wait, but that's
	// OK, it will be swept fairly soon.
	for {
		spangen := atomic.Load(&s.sweepgen)
		if spangen == sl.sweepGen || spangen == sl.sweepGen+3 {
			break
		}
		osyield()
	}
}

// Sweep frees or collects finalizers for blocks not marked in the mark phase.
// It clears the mark bits in preparation for the next GC round.
// Returns true if the span was returned to heap.
// If preserve=true, don't return it to heap nor relink in mcentral lists;
// caller takes care of it.
func (sl *sweepLocked) sweep(preserve bool) bool {
	// It's critical that we enter this function with preemption disabled,
	// GC must not start while we are in the middle of this function.
	_g_ := getg()
	if _g_.m.locks == 0 && _g_.m.mallocing == 0 && _g_ != _g_.m.g0 {
		throw("mspan.sweep: m is not locked")
	}

	s := sl.mspan
	if !preserve {
		// We'll release ownership of this span. Nil it out to
		// prevent the caller from accidentally using it.
		sl.mspan = nil
	}

	sweepgen := mheap_.sweepgen
	if state := s.state.get(); state != mSpanInUse || s.sweepgen != sweepgen-1 {
		print("mspan.sweep: state=", state, " sweepgen=", s.sweepgen, " mheap.sweepgen=", sweepgen, "\n")
		throw("mspan.sweep: bad span state")
	}

	if trace.enabled {
		traceGCSweepSpan(s.npages * _PageSize)
	}

	mheap_.pagesSwept.Add(int64(s.npages))

	spc := s.spanclass
	size := s.elemsize

	// The allocBits indicate which unmarked objects don't need to be
	// processed since they were free at the end of the last GC cycle
	// and were not allocated since then.
	// If the allocBits index is >= s.freeindex and the bit
	// is not marked then the object remains unallocated
	// since the last GC.
	// This situation is analogous to being on a freelist.

	// Unlink & free special records for any objects we're about to free.
	// Two complications here:
	// 1. An object can have both finalizer and profile special records.
	//    In such case we need to queue finalizer for execution,
	//    mark the object as live and preserve the profile special.
	// 2. A tiny object can have several finalizers setup for different offsets.
	//    If such object is not marked, we need to queue all finalizers at once.
	// Both 1 and 2 are possible at the same time.
	hadSpecials := s.specials != nil
	siter := newSpecialsIter(s)
	for siter.valid() {
		// A finalizer can be set for an inner byte of an object, find object beginning.
		objIndex := uintptr(siter.s.offset) / size
		p := s.base() + objIndex*size
		mbits := s.markBitsForIndex(objIndex)
		if !mbits.isMarked() {
			// This object is not marked and has at least one special record.
			// Pass 1: see if it has at least one finalizer.
			hasFin := false
			endOffset := p - s.base() + size
			for tmp := siter.s; tmp != nil && uintptr(tmp.offset) < endOffset; tmp = tmp.next {
				if tmp.kind == _KindSpecialFinalizer {
					// Stop freeing of object if it has a finalizer.
					mbits.setMarkedNonAtomic()
					hasFin = true
					break
				}
			}
			// Pass 2: queue all finalizers _or_ handle profile record.
			for siter.valid() && uintptr(siter.s.offset) < endOffset {
				// Find the exact byte for which the special was setup
				// (as opposed to object beginning).
				special := siter.s
				p := s.base() + uintptr(special.offset)
				if special.kind == _KindSpecialFinalizer || !hasFin {
					siter.unlinkAndNext()
					freeSpecial(special, unsafe.Pointer(p), size)
				} else {
					// The object has finalizers, so we're keeping it alive.
					// All other specials only apply when an object is freed,
					// so just keep the special record.
					siter.next()
				}
			}
		} else {
			// object is still live
			if siter.s.kind == _KindSpecialReachable {
				special := siter.unlinkAndNext()
				(*specialReachable)(unsafe.Pointer(special)).reachable = true
				freeSpecial(special, unsafe.Pointer(p), size)
			} else {
				// keep special record
				siter.next()
			}
		}
	}
	if hadSpecials && s.specials == nil {
		spanHasNoSpecials(s)
	}

	if debug.allocfreetrace != 0 || debug.clobberfree != 0 || raceenabled || msanenabled || asanenabled {
		// Find all newly freed objects. This doesn't have to
		// efficient; allocfreetrace has massive overhead.
		mbits := s.markBitsForBase()
		abits := s.allocBitsForIndex(0)
		for i := uintptr(0); i < s.nelems; i++ {
			if !mbits.isMarked() && (abits.index < s.freeindex || abits.isMarked()) {
				x := s.base() + i*s.elemsize
				if debug.allocfreetrace != 0 {
					tracefree(unsafe.Pointer(x), size)
				}
				if debug.clobberfree != 0 {
					clobberfree(unsafe.Pointer(x), size)
				}
				if raceenabled {
					racefree(unsafe.Pointer(x), size)
				}
				if msanenabled {
					msanfree(unsafe.Pointer(x), size)
				}
				if asanenabled {
					asanpoison(unsafe.Pointer(x), size)
				}
			}
			mbits.advance()
			abits.advance()
		}
	}

	// Check for zombie objects.
	if s.freeindex < s.nelems {
		// Everything < freeindex is allocated and hence
		// cannot be zombies.
		//
		// Check the first bitmap byte, where we have to be
		// careful with freeindex.
		obj := s.freeindex
		if (*s.gcmarkBits.bytep(obj / 8)&^*s.allocBits.bytep(obj / 8))>>(obj%8) != 0 {
			s.reportZombies()
		}
		// Check remaining bytes.
		for i := obj/8 + 1; i < divRoundUp(s.nelems, 8); i++ {
			if *s.gcmarkBits.bytep(i)&^*s.allocBits.bytep(i) != 0 {
				s.reportZombies()
			}
		}
	}

	// Count the number of free objects in this span.
	nalloc := uint16(s.countAlloc())
	nfreed := s.allocCount - nalloc
	if nalloc > s.allocCount {
		// The zombie check above should have caught this in
		// more detail.
		print("runtime: nelems=", s.nelems, " nalloc=", nalloc, " previous allocCount=", s.allocCount, " nfreed=", nfreed, "\n")
		throw("sweep increased allocation count")
	}

	s.allocCount = nalloc
	s.freeindex = 0 // reset allocation index to start of span.
	s.freeIndexForScan = 0
	if trace.enabled {
		getg().m.p.ptr().traceReclaimed += uintptr(nfreed) * s.elemsize
	}

	// gcmarkBits becomes the allocBits.
	// get a fresh cleared gcmarkBits in preparation for next GC
	s.allocBits = s.gcmarkBits
	s.gcmarkBits = newMarkBits(s.nelems)

	// Initialize alloc bits cache.
	s.refillAllocCache(0)

	// The span must be in our exclusive ownership until we update sweepgen,
	// check for potential races.
	if state := s.state.get(); state != mSpanInUse || s.sweepgen != sweepgen-1 {
		print("mspan.sweep: state=", state, " sweepgen=", s.sweepgen, " mheap.sweepgen=", sweepgen, "\n")
		throw("mspan.sweep: bad span state after sweep")
	}
	if s.sweepgen == sweepgen+1 || s.sweepgen == sweepgen+3 {
		throw("swept cached span")
	}

	// We need to set s.sweepgen = h.sweepgen only when all blocks are swept,
	// because of the potential for a concurrent free/SetFinalizer.
	//
	// But we need to set it before we make the span available for allocation
	// (return it to heap or mcentral), because allocation code assumes that a
	// span is already swept if available for allocation.
	//
	// Serialization point.
	// At this point the mark bits are cleared and allocation ready
	// to go so release the span.
	atomic.Store(&s.sweepgen, sweepgen)

	if spc.sizeclass() != 0 {
		// Handle spans for small objects.
		if nfreed > 0 {
			// Only mark the span as needing zeroing if we've freed any
			// objects, because a fresh span that had been allocated into,
			// wasn't totally filled, but then swept, still has all of its
			// free slots zeroed.
			s.needzero = 1
			stats := memstats.heapStats.acquire()
			atomic.Xadd64(&stats.smallFreeCount[spc.sizeclass()], int64(nfreed))
			memstats.heapStats.release()
		}
		if !preserve {
			// The caller may not have removed this span from whatever
			// unswept set its on but taken ownership of the span for
			// sweeping by updating sweepgen. If this span still is in
			// an unswept set, then the mcentral will pop it off the
			// set, check its sweepgen, and ignore it.
			if nalloc == 0 {
				// Free totally free span directly back to the heap.
				mheap_.freeSpan(s)
				return true
			}
			// Return span back to the right mcentral list.
			if uintptr(nalloc) == s.nelems {
				mheap_.central[spc].mcentral.fullSwept(sweepgen).push(s)
			} else {
				mheap_.central[spc].mcentral.partialSwept(sweepgen).push(s)
			}
		}
	} else if !preserve {
		// Handle spans for large objects.
		if nfreed != 0 {
			// Free large object span to heap.

			// NOTE(rsc,dvyukov): The original implementation of efence
			// in CL 22060046 used sysFree instead of sysFault, so that
			// the operating system would eventually give the memory
			// back to us again, so that an efence program could run
			// longer without running out of memory. Unfortunately,
			// calling sysFree here without any kind of adjustment of the
			// heap data structures means that when the memory does
			// come back to us, we have the wrong metadata for it, either in
			// the mspan structures or in the garbage collection bitmap.
			// Using sysFault here means that the program will run out of
			// memory fairly quickly in efence mode, but at least it won't
			// have mysterious crashes due to confused memory reuse.
			// It should be possible to switch back to sysFree if we also
			// implement and then call some kind of mheap.deleteSpan.
			if debug.efence > 0 {
				s.limit = 0 // prevent mlookup from finding this span
				sysFault(unsafe.Pointer(s.base()), size)
			} else {
				mheap_.freeSpan(s)
			}
			stats := memstats.heapStats.acquire()
			atomic.Xadd64(&stats.largeFreeCount, 1)
			atomic.Xadd64(&stats.largeFree, int64(size))
			memstats.heapStats.release()
			return true
		}

		// Add a large span directly onto the full+swept list.
		mheap_.central[spc].mcentral.fullSwept(sweepgen).push(s)
	}
	return false
}

// reportZombies reports any marked but free objects in s and throws.
//
// This generally means one of the following:
//
// 1. User code converted a pointer to a uintptr and then back
// unsafely, and a GC ran while the uintptr was the only reference to
// an object.
//
// 2. User code (or a compiler bug) constructed a bad pointer that
// points to a free slot, often a past-the-end pointer.
//
// 3. The GC two cycles ago missed a pointer and freed a live object,
// but it was still live in the last cycle, so this GC cycle found a
// pointer to that object and marked it.
func (s *mspan) reportZombies() {
	printlock()
	print("runtime: marked free object in span ", s, ", elemsize=", s.elemsize, " freeindex=", s.freeindex, " (bad use of unsafe.Pointer? try -d=checkptr)\n")
	mbits := s.markBitsForBase()
	abits := s.allocBitsForIndex(0)
	for i := uintptr(0); i < s.nelems; i++ {
		addr := s.base() + i*s.elemsize
		print(hex(addr))
		alloc := i < s.freeindex || abits.isMarked()
		if alloc {
			print(" alloc")
		} else {
			print(" free ")
		}
		if mbits.isMarked() {
			print(" marked  ")
		} else {
			print(" unmarked")
		}
		zombie := mbits.isMarked() && !alloc
		if zombie {
			print(" zombie")
		}
		print("\n")
		if zombie {
			length := s.elemsize
			if length > 1024 {
				length = 1024
			}
			hexdumpWords(addr, addr+length, nil)
		}
		mbits.advance()
		abits.advance()
	}
	throw("found pointer to free object")
}

// deductSweepCredit deducts sweep credit for allocating a span of
// size spanBytes. This must be performed *before* the span is
// allocated to ensure the system has enough credit. If necessary, it
// performs sweeping to prevent going in to debt. If the caller will
// also sweep pages (e.g., for a large allocation), it can pass a
// non-zero callerSweepPages to leave that many pages unswept.
//
// deductSweepCredit makes a worst-case assumption that all spanBytes
// bytes of the ultimately allocated span will be available for object
// allocation.
//
// deductSweepCredit is the core of the "proportional sweep" system.
// It uses statistics gathered by the garbage collector to perform
// enough sweeping so that all pages are swept during the concurrent
// sweep phase between GC cycles.
//
// mheap_ must NOT be locked.
func deductSweepCredit(spanBytes uintptr, callerSweepPages uintptr) {
	if mheap_.sweepPagesPerByte == 0 {
		// Proportional sweep is done or disabled.
		return
	}

	if trace.enabled {
		traceGCSweepStart()
	}

retry:
	sweptBasis := mheap_.pagesSweptBasis.Load()

	// Fix debt if necessary.
	newHeapLive := uintptr(atomic.Load64(&gcController.heapLive)-mheap_.sweepHeapLiveBasis) + spanBytes
	pagesTarget := int64(mheap_.sweepPagesPerByte*float64(newHeapLive)) - int64(callerSweepPages)
	for pagesTarget > int64(mheap_.pagesSwept.Load()-sweptBasis) {
		if sweepone() == ^uintptr(0) {
			mheap_.sweepPagesPerByte = 0
			break
		}
		if mheap_.pagesSweptBasis.Load() != sweptBasis {
			// Sweep pacing changed. Recompute debt.
			goto retry
		}
	}

	if trace.enabled {
		traceGCSweepDone()
	}
}

// clobberfree sets the memory content at x to bad content, for debugging
// purposes.
func clobberfree(x unsafe.Pointer, size uintptr) {
	// size (span.elemsize) is always a multiple of 4.
	for i := uintptr(0); i < size; i += 4 {
		*(*uint32)(add(x, i)) = 0xdeadbeef
	}
}

// gcPaceSweeper updates the sweeper's pacing parameters.
//
// Must be called whenever the GC's pacing is updated.
//
// The world must be stopped, or mheap_.lock must be held.
func gcPaceSweeper(trigger uint64) {
	assertWorldStoppedOrLockHeld(&mheap_.lock)

	// Update sweep pacing.
	if isSweepDone() {
		mheap_.sweepPagesPerByte = 0
	} else {
		// Concurrent sweep needs to sweep all of the in-use
		// pages by the time the allocated heap reaches the GC
		// trigger. Compute the ratio of in-use pages to sweep
		// per byte allocated, accounting for the fact that
		// some might already be swept.
		heapLiveBasis := atomic.Load64(&gcController.heapLive)
		heapDistance := int64(trigger) - int64(heapLiveBasis)
		// Add a little margin so rounding errors and
		// concurrent sweep are less likely to leave pages
		// unswept when GC starts.
		heapDistance -= 1024 * 1024
		if heapDistance < _PageSize {
			// Avoid setting the sweep ratio extremely high
			heapDistance = _PageSize
		}
		pagesSwept := mheap_.pagesSwept.Load()
		pagesInUse := mheap_.pagesInUse.Load()
		sweepDistancePages := int64(pagesInUse) - int64(pagesSwept)
		if sweepDistancePages <= 0 {
			mheap_.sweepPagesPerByte = 0
		} else {
			mheap_.sweepPagesPerByte = float64(sweepDistancePages) / float64(heapDistance)
			mheap_.sweepHeapLiveBasis = heapLiveBasis
			// Write pagesSweptBasis last, since this
			// signals concurrent sweeps to recompute
			// their debt.
			mheap_.pagesSweptBasis.Store(pagesSwept)
		}
	}
}