summaryrefslogtreecommitdiffstats
path: root/src/sync/poolqueue.go
blob: 631f2c15fda267d470e7ac90b88e9125cc071edc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package sync

import (
	"sync/atomic"
	"unsafe"
)

// poolDequeue is a lock-free fixed-size single-producer,
// multi-consumer queue. The single producer can both push and pop
// from the head, and consumers can pop from the tail.
//
// It has the added feature that it nils out unused slots to avoid
// unnecessary retention of objects. This is important for sync.Pool,
// but not typically a property considered in the literature.
type poolDequeue struct {
	// headTail packs together a 32-bit head index and a 32-bit
	// tail index. Both are indexes into vals modulo len(vals)-1.
	//
	// tail = index of oldest data in queue
	// head = index of next slot to fill
	//
	// Slots in the range [tail, head) are owned by consumers.
	// A consumer continues to own a slot outside this range until
	// it nils the slot, at which point ownership passes to the
	// producer.
	//
	// The head index is stored in the most-significant bits so
	// that we can atomically add to it and the overflow is
	// harmless.
	headTail uint64

	// vals is a ring buffer of interface{} values stored in this
	// dequeue. The size of this must be a power of 2.
	//
	// vals[i].typ is nil if the slot is empty and non-nil
	// otherwise. A slot is still in use until *both* the tail
	// index has moved beyond it and typ has been set to nil. This
	// is set to nil atomically by the consumer and read
	// atomically by the producer.
	vals []eface
}

type eface struct {
	typ, val unsafe.Pointer
}

const dequeueBits = 32

// dequeueLimit is the maximum size of a poolDequeue.
//
// This must be at most (1<<dequeueBits)/2 because detecting fullness
// depends on wrapping around the ring buffer without wrapping around
// the index. We divide by 4 so this fits in an int on 32-bit.
const dequeueLimit = (1 << dequeueBits) / 4

// dequeueNil is used in poolDequeue to represent interface{}(nil).
// Since we use nil to represent empty slots, we need a sentinel value
// to represent nil.
type dequeueNil *struct{}

func (d *poolDequeue) unpack(ptrs uint64) (head, tail uint32) {
	const mask = 1<<dequeueBits - 1
	head = uint32((ptrs >> dequeueBits) & mask)
	tail = uint32(ptrs & mask)
	return
}

func (d *poolDequeue) pack(head, tail uint32) uint64 {
	const mask = 1<<dequeueBits - 1
	return (uint64(head) << dequeueBits) |
		uint64(tail&mask)
}

// pushHead adds val at the head of the queue. It returns false if the
// queue is full. It must only be called by a single producer.
func (d *poolDequeue) pushHead(val any) bool {
	ptrs := atomic.LoadUint64(&d.headTail)
	head, tail := d.unpack(ptrs)
	if (tail+uint32(len(d.vals)))&(1<<dequeueBits-1) == head {
		// Queue is full.
		return false
	}
	slot := &d.vals[head&uint32(len(d.vals)-1)]

	// Check if the head slot has been released by popTail.
	typ := atomic.LoadPointer(&slot.typ)
	if typ != nil {
		// Another goroutine is still cleaning up the tail, so
		// the queue is actually still full.
		return false
	}

	// The head slot is free, so we own it.
	if val == nil {
		val = dequeueNil(nil)
	}
	*(*any)(unsafe.Pointer(slot)) = val

	// Increment head. This passes ownership of slot to popTail
	// and acts as a store barrier for writing the slot.
	atomic.AddUint64(&d.headTail, 1<<dequeueBits)
	return true
}

// popHead removes and returns the element at the head of the queue.
// It returns false if the queue is empty. It must only be called by a
// single producer.
func (d *poolDequeue) popHead() (any, bool) {
	var slot *eface
	for {
		ptrs := atomic.LoadUint64(&d.headTail)
		head, tail := d.unpack(ptrs)
		if tail == head {
			// Queue is empty.
			return nil, false
		}

		// Confirm tail and decrement head. We do this before
		// reading the value to take back ownership of this
		// slot.
		head--
		ptrs2 := d.pack(head, tail)
		if atomic.CompareAndSwapUint64(&d.headTail, ptrs, ptrs2) {
			// We successfully took back slot.
			slot = &d.vals[head&uint32(len(d.vals)-1)]
			break
		}
	}

	val := *(*any)(unsafe.Pointer(slot))
	if val == dequeueNil(nil) {
		val = nil
	}
	// Zero the slot. Unlike popTail, this isn't racing with
	// pushHead, so we don't need to be careful here.
	*slot = eface{}
	return val, true
}

// popTail removes and returns the element at the tail of the queue.
// It returns false if the queue is empty. It may be called by any
// number of consumers.
func (d *poolDequeue) popTail() (any, bool) {
	var slot *eface
	for {
		ptrs := atomic.LoadUint64(&d.headTail)
		head, tail := d.unpack(ptrs)
		if tail == head {
			// Queue is empty.
			return nil, false
		}

		// Confirm head and tail (for our speculative check
		// above) and increment tail. If this succeeds, then
		// we own the slot at tail.
		ptrs2 := d.pack(head, tail+1)
		if atomic.CompareAndSwapUint64(&d.headTail, ptrs, ptrs2) {
			// Success.
			slot = &d.vals[tail&uint32(len(d.vals)-1)]
			break
		}
	}

	// We now own slot.
	val := *(*any)(unsafe.Pointer(slot))
	if val == dequeueNil(nil) {
		val = nil
	}

	// Tell pushHead that we're done with this slot. Zeroing the
	// slot is also important so we don't leave behind references
	// that could keep this object live longer than necessary.
	//
	// We write to val first and then publish that we're done with
	// this slot by atomically writing to typ.
	slot.val = nil
	atomic.StorePointer(&slot.typ, nil)
	// At this point pushHead owns the slot.

	return val, true
}

// poolChain is a dynamically-sized version of poolDequeue.
//
// This is implemented as a doubly-linked list queue of poolDequeues
// where each dequeue is double the size of the previous one. Once a
// dequeue fills up, this allocates a new one and only ever pushes to
// the latest dequeue. Pops happen from the other end of the list and
// once a dequeue is exhausted, it gets removed from the list.
type poolChain struct {
	// head is the poolDequeue to push to. This is only accessed
	// by the producer, so doesn't need to be synchronized.
	head *poolChainElt

	// tail is the poolDequeue to popTail from. This is accessed
	// by consumers, so reads and writes must be atomic.
	tail *poolChainElt
}

type poolChainElt struct {
	poolDequeue

	// next and prev link to the adjacent poolChainElts in this
	// poolChain.
	//
	// next is written atomically by the producer and read
	// atomically by the consumer. It only transitions from nil to
	// non-nil.
	//
	// prev is written atomically by the consumer and read
	// atomically by the producer. It only transitions from
	// non-nil to nil.
	next, prev *poolChainElt
}

func storePoolChainElt(pp **poolChainElt, v *poolChainElt) {
	atomic.StorePointer((*unsafe.Pointer)(unsafe.Pointer(pp)), unsafe.Pointer(v))
}

func loadPoolChainElt(pp **poolChainElt) *poolChainElt {
	return (*poolChainElt)(atomic.LoadPointer((*unsafe.Pointer)(unsafe.Pointer(pp))))
}

func (c *poolChain) pushHead(val any) {
	d := c.head
	if d == nil {
		// Initialize the chain.
		const initSize = 8 // Must be a power of 2
		d = new(poolChainElt)
		d.vals = make([]eface, initSize)
		c.head = d
		storePoolChainElt(&c.tail, d)
	}

	if d.pushHead(val) {
		return
	}

	// The current dequeue is full. Allocate a new one of twice
	// the size.
	newSize := len(d.vals) * 2
	if newSize >= dequeueLimit {
		// Can't make it any bigger.
		newSize = dequeueLimit
	}

	d2 := &poolChainElt{prev: d}
	d2.vals = make([]eface, newSize)
	c.head = d2
	storePoolChainElt(&d.next, d2)
	d2.pushHead(val)
}

func (c *poolChain) popHead() (any, bool) {
	d := c.head
	for d != nil {
		if val, ok := d.popHead(); ok {
			return val, ok
		}
		// There may still be unconsumed elements in the
		// previous dequeue, so try backing up.
		d = loadPoolChainElt(&d.prev)
	}
	return nil, false
}

func (c *poolChain) popTail() (any, bool) {
	d := loadPoolChainElt(&c.tail)
	if d == nil {
		return nil, false
	}

	for {
		// It's important that we load the next pointer
		// *before* popping the tail. In general, d may be
		// transiently empty, but if next is non-nil before
		// the pop and the pop fails, then d is permanently
		// empty, which is the only condition under which it's
		// safe to drop d from the chain.
		d2 := loadPoolChainElt(&d.next)

		if val, ok := d.popTail(); ok {
			return val, ok
		}

		if d2 == nil {
			// This is the only dequeue. It's empty right
			// now, but could be pushed to in the future.
			return nil, false
		}

		// The tail of the chain has been drained, so move on
		// to the next dequeue. Try to drop it from the chain
		// so the next pop doesn't have to look at the empty
		// dequeue again.
		if atomic.CompareAndSwapPointer((*unsafe.Pointer)(unsafe.Pointer(&c.tail)), unsafe.Pointer(d), unsafe.Pointer(d2)) {
			// We won the race. Clear the prev pointer so
			// the garbage collector can collect the empty
			// dequeue and so popHead doesn't back up
			// further than necessary.
			storePoolChainElt(&d2.prev, nil)
		}
		d = d2
	}
}