diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-28 13:18:25 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-28 13:18:25 +0000 |
commit | 109be507377fe7f6e8819ac94041d3fdcdf6fd2f (patch) | |
tree | 2806a689f8fab4a2ec9fc949830ef270a91d667d /src/crypto/tls/conn.go | |
parent | Initial commit. (diff) | |
download | golang-1.19-109be507377fe7f6e8819ac94041d3fdcdf6fd2f.tar.xz golang-1.19-109be507377fe7f6e8819ac94041d3fdcdf6fd2f.zip |
Adding upstream version 1.19.8.upstream/1.19.8upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/crypto/tls/conn.go')
-rw-r--r-- | src/crypto/tls/conn.go | 1573 |
1 files changed, 1573 insertions, 0 deletions
diff --git a/src/crypto/tls/conn.go b/src/crypto/tls/conn.go new file mode 100644 index 0000000..73f0c17 --- /dev/null +++ b/src/crypto/tls/conn.go @@ -0,0 +1,1573 @@ +// Copyright 2010 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +// TLS low level connection and record layer + +package tls + +import ( + "bytes" + "context" + "crypto/cipher" + "crypto/subtle" + "crypto/x509" + "errors" + "fmt" + "hash" + "io" + "net" + "sync" + "sync/atomic" + "time" +) + +// A Conn represents a secured connection. +// It implements the net.Conn interface. +type Conn struct { + // constant + conn net.Conn + isClient bool + handshakeFn func(context.Context) error // (*Conn).clientHandshake or serverHandshake + + // handshakeStatus is 1 if the connection is currently transferring + // application data (i.e. is not currently processing a handshake). + // handshakeStatus == 1 implies handshakeErr == nil. + // This field is only to be accessed with sync/atomic. + handshakeStatus uint32 + // constant after handshake; protected by handshakeMutex + handshakeMutex sync.Mutex + handshakeErr error // error resulting from handshake + vers uint16 // TLS version + haveVers bool // version has been negotiated + config *Config // configuration passed to constructor + // handshakes counts the number of handshakes performed on the + // connection so far. If renegotiation is disabled then this is either + // zero or one. + handshakes int + didResume bool // whether this connection was a session resumption + cipherSuite uint16 + ocspResponse []byte // stapled OCSP response + scts [][]byte // signed certificate timestamps from server + peerCertificates []*x509.Certificate + // verifiedChains contains the certificate chains that we built, as + // opposed to the ones presented by the server. + verifiedChains [][]*x509.Certificate + // serverName contains the server name indicated by the client, if any. + serverName string + // secureRenegotiation is true if the server echoed the secure + // renegotiation extension. (This is meaningless as a server because + // renegotiation is not supported in that case.) + secureRenegotiation bool + // ekm is a closure for exporting keying material. + ekm func(label string, context []byte, length int) ([]byte, error) + // resumptionSecret is the resumption_master_secret for handling + // NewSessionTicket messages. nil if config.SessionTicketsDisabled. + resumptionSecret []byte + + // ticketKeys is the set of active session ticket keys for this + // connection. The first one is used to encrypt new tickets and + // all are tried to decrypt tickets. + ticketKeys []ticketKey + + // clientFinishedIsFirst is true if the client sent the first Finished + // message during the most recent handshake. This is recorded because + // the first transmitted Finished message is the tls-unique + // channel-binding value. + clientFinishedIsFirst bool + + // closeNotifyErr is any error from sending the alertCloseNotify record. + closeNotifyErr error + // closeNotifySent is true if the Conn attempted to send an + // alertCloseNotify record. + closeNotifySent bool + + // clientFinished and serverFinished contain the Finished message sent + // by the client or server in the most recent handshake. This is + // retained to support the renegotiation extension and tls-unique + // channel-binding. + clientFinished [12]byte + serverFinished [12]byte + + // clientProtocol is the negotiated ALPN protocol. + clientProtocol string + + // input/output + in, out halfConn + rawInput bytes.Buffer // raw input, starting with a record header + input bytes.Reader // application data waiting to be read, from rawInput.Next + hand bytes.Buffer // handshake data waiting to be read + buffering bool // whether records are buffered in sendBuf + sendBuf []byte // a buffer of records waiting to be sent + + // bytesSent counts the bytes of application data sent. + // packetsSent counts packets. + bytesSent int64 + packetsSent int64 + + // retryCount counts the number of consecutive non-advancing records + // received by Conn.readRecord. That is, records that neither advance the + // handshake, nor deliver application data. Protected by in.Mutex. + retryCount int + + // activeCall is an atomic int32; the low bit is whether Close has + // been called. the rest of the bits are the number of goroutines + // in Conn.Write. + activeCall int32 + + tmp [16]byte +} + +// Access to net.Conn methods. +// Cannot just embed net.Conn because that would +// export the struct field too. + +// LocalAddr returns the local network address. +func (c *Conn) LocalAddr() net.Addr { + return c.conn.LocalAddr() +} + +// RemoteAddr returns the remote network address. +func (c *Conn) RemoteAddr() net.Addr { + return c.conn.RemoteAddr() +} + +// SetDeadline sets the read and write deadlines associated with the connection. +// A zero value for t means Read and Write will not time out. +// After a Write has timed out, the TLS state is corrupt and all future writes will return the same error. +func (c *Conn) SetDeadline(t time.Time) error { + return c.conn.SetDeadline(t) +} + +// SetReadDeadline sets the read deadline on the underlying connection. +// A zero value for t means Read will not time out. +func (c *Conn) SetReadDeadline(t time.Time) error { + return c.conn.SetReadDeadline(t) +} + +// SetWriteDeadline sets the write deadline on the underlying connection. +// A zero value for t means Write will not time out. +// After a Write has timed out, the TLS state is corrupt and all future writes will return the same error. +func (c *Conn) SetWriteDeadline(t time.Time) error { + return c.conn.SetWriteDeadline(t) +} + +// NetConn returns the underlying connection that is wrapped by c. +// Note that writing to or reading from this connection directly will corrupt the +// TLS session. +func (c *Conn) NetConn() net.Conn { + return c.conn +} + +// A halfConn represents one direction of the record layer +// connection, either sending or receiving. +type halfConn struct { + sync.Mutex + + err error // first permanent error + version uint16 // protocol version + cipher any // cipher algorithm + mac hash.Hash + seq [8]byte // 64-bit sequence number + + scratchBuf [13]byte // to avoid allocs; interface method args escape + + nextCipher any // next encryption state + nextMac hash.Hash // next MAC algorithm + + trafficSecret []byte // current TLS 1.3 traffic secret +} + +type permanentError struct { + err net.Error +} + +func (e *permanentError) Error() string { return e.err.Error() } +func (e *permanentError) Unwrap() error { return e.err } +func (e *permanentError) Timeout() bool { return e.err.Timeout() } +func (e *permanentError) Temporary() bool { return false } + +func (hc *halfConn) setErrorLocked(err error) error { + if e, ok := err.(net.Error); ok { + hc.err = &permanentError{err: e} + } else { + hc.err = err + } + return hc.err +} + +// prepareCipherSpec sets the encryption and MAC states +// that a subsequent changeCipherSpec will use. +func (hc *halfConn) prepareCipherSpec(version uint16, cipher any, mac hash.Hash) { + hc.version = version + hc.nextCipher = cipher + hc.nextMac = mac +} + +// changeCipherSpec changes the encryption and MAC states +// to the ones previously passed to prepareCipherSpec. +func (hc *halfConn) changeCipherSpec() error { + if hc.nextCipher == nil || hc.version == VersionTLS13 { + return alertInternalError + } + hc.cipher = hc.nextCipher + hc.mac = hc.nextMac + hc.nextCipher = nil + hc.nextMac = nil + for i := range hc.seq { + hc.seq[i] = 0 + } + return nil +} + +func (hc *halfConn) setTrafficSecret(suite *cipherSuiteTLS13, secret []byte) { + hc.trafficSecret = secret + key, iv := suite.trafficKey(secret) + hc.cipher = suite.aead(key, iv) + for i := range hc.seq { + hc.seq[i] = 0 + } +} + +// incSeq increments the sequence number. +func (hc *halfConn) incSeq() { + for i := 7; i >= 0; i-- { + hc.seq[i]++ + if hc.seq[i] != 0 { + return + } + } + + // Not allowed to let sequence number wrap. + // Instead, must renegotiate before it does. + // Not likely enough to bother. + panic("TLS: sequence number wraparound") +} + +// explicitNonceLen returns the number of bytes of explicit nonce or IV included +// in each record. Explicit nonces are present only in CBC modes after TLS 1.0 +// and in certain AEAD modes in TLS 1.2. +func (hc *halfConn) explicitNonceLen() int { + if hc.cipher == nil { + return 0 + } + + switch c := hc.cipher.(type) { + case cipher.Stream: + return 0 + case aead: + return c.explicitNonceLen() + case cbcMode: + // TLS 1.1 introduced a per-record explicit IV to fix the BEAST attack. + if hc.version >= VersionTLS11 { + return c.BlockSize() + } + return 0 + default: + panic("unknown cipher type") + } +} + +// extractPadding returns, in constant time, the length of the padding to remove +// from the end of payload. It also returns a byte which is equal to 255 if the +// padding was valid and 0 otherwise. See RFC 2246, Section 6.2.3.2. +func extractPadding(payload []byte) (toRemove int, good byte) { + if len(payload) < 1 { + return 0, 0 + } + + paddingLen := payload[len(payload)-1] + t := uint(len(payload)-1) - uint(paddingLen) + // if len(payload) >= (paddingLen - 1) then the MSB of t is zero + good = byte(int32(^t) >> 31) + + // The maximum possible padding length plus the actual length field + toCheck := 256 + // The length of the padded data is public, so we can use an if here + if toCheck > len(payload) { + toCheck = len(payload) + } + + for i := 0; i < toCheck; i++ { + t := uint(paddingLen) - uint(i) + // if i <= paddingLen then the MSB of t is zero + mask := byte(int32(^t) >> 31) + b := payload[len(payload)-1-i] + good &^= mask&paddingLen ^ mask&b + } + + // We AND together the bits of good and replicate the result across + // all the bits. + good &= good << 4 + good &= good << 2 + good &= good << 1 + good = uint8(int8(good) >> 7) + + // Zero the padding length on error. This ensures any unchecked bytes + // are included in the MAC. Otherwise, an attacker that could + // distinguish MAC failures from padding failures could mount an attack + // similar to POODLE in SSL 3.0: given a good ciphertext that uses a + // full block's worth of padding, replace the final block with another + // block. If the MAC check passed but the padding check failed, the + // last byte of that block decrypted to the block size. + // + // See also macAndPaddingGood logic below. + paddingLen &= good + + toRemove = int(paddingLen) + 1 + return +} + +func roundUp(a, b int) int { + return a + (b-a%b)%b +} + +// cbcMode is an interface for block ciphers using cipher block chaining. +type cbcMode interface { + cipher.BlockMode + SetIV([]byte) +} + +// decrypt authenticates and decrypts the record if protection is active at +// this stage. The returned plaintext might overlap with the input. +func (hc *halfConn) decrypt(record []byte) ([]byte, recordType, error) { + var plaintext []byte + typ := recordType(record[0]) + payload := record[recordHeaderLen:] + + // In TLS 1.3, change_cipher_spec messages are to be ignored without being + // decrypted. See RFC 8446, Appendix D.4. + if hc.version == VersionTLS13 && typ == recordTypeChangeCipherSpec { + return payload, typ, nil + } + + paddingGood := byte(255) + paddingLen := 0 + + explicitNonceLen := hc.explicitNonceLen() + + if hc.cipher != nil { + switch c := hc.cipher.(type) { + case cipher.Stream: + c.XORKeyStream(payload, payload) + case aead: + if len(payload) < explicitNonceLen { + return nil, 0, alertBadRecordMAC + } + nonce := payload[:explicitNonceLen] + if len(nonce) == 0 { + nonce = hc.seq[:] + } + payload = payload[explicitNonceLen:] + + var additionalData []byte + if hc.version == VersionTLS13 { + additionalData = record[:recordHeaderLen] + } else { + additionalData = append(hc.scratchBuf[:0], hc.seq[:]...) + additionalData = append(additionalData, record[:3]...) + n := len(payload) - c.Overhead() + additionalData = append(additionalData, byte(n>>8), byte(n)) + } + + var err error + plaintext, err = c.Open(payload[:0], nonce, payload, additionalData) + if err != nil { + return nil, 0, alertBadRecordMAC + } + case cbcMode: + blockSize := c.BlockSize() + minPayload := explicitNonceLen + roundUp(hc.mac.Size()+1, blockSize) + if len(payload)%blockSize != 0 || len(payload) < minPayload { + return nil, 0, alertBadRecordMAC + } + + if explicitNonceLen > 0 { + c.SetIV(payload[:explicitNonceLen]) + payload = payload[explicitNonceLen:] + } + c.CryptBlocks(payload, payload) + + // In a limited attempt to protect against CBC padding oracles like + // Lucky13, the data past paddingLen (which is secret) is passed to + // the MAC function as extra data, to be fed into the HMAC after + // computing the digest. This makes the MAC roughly constant time as + // long as the digest computation is constant time and does not + // affect the subsequent write, modulo cache effects. + paddingLen, paddingGood = extractPadding(payload) + default: + panic("unknown cipher type") + } + + if hc.version == VersionTLS13 { + if typ != recordTypeApplicationData { + return nil, 0, alertUnexpectedMessage + } + if len(plaintext) > maxPlaintext+1 { + return nil, 0, alertRecordOverflow + } + // Remove padding and find the ContentType scanning from the end. + for i := len(plaintext) - 1; i >= 0; i-- { + if plaintext[i] != 0 { + typ = recordType(plaintext[i]) + plaintext = plaintext[:i] + break + } + if i == 0 { + return nil, 0, alertUnexpectedMessage + } + } + } + } else { + plaintext = payload + } + + if hc.mac != nil { + macSize := hc.mac.Size() + if len(payload) < macSize { + return nil, 0, alertBadRecordMAC + } + + n := len(payload) - macSize - paddingLen + n = subtle.ConstantTimeSelect(int(uint32(n)>>31), 0, n) // if n < 0 { n = 0 } + record[3] = byte(n >> 8) + record[4] = byte(n) + remoteMAC := payload[n : n+macSize] + localMAC := tls10MAC(hc.mac, hc.scratchBuf[:0], hc.seq[:], record[:recordHeaderLen], payload[:n], payload[n+macSize:]) + + // This is equivalent to checking the MACs and paddingGood + // separately, but in constant-time to prevent distinguishing + // padding failures from MAC failures. Depending on what value + // of paddingLen was returned on bad padding, distinguishing + // bad MAC from bad padding can lead to an attack. + // + // See also the logic at the end of extractPadding. + macAndPaddingGood := subtle.ConstantTimeCompare(localMAC, remoteMAC) & int(paddingGood) + if macAndPaddingGood != 1 { + return nil, 0, alertBadRecordMAC + } + + plaintext = payload[:n] + } + + hc.incSeq() + return plaintext, typ, nil +} + +// sliceForAppend extends the input slice by n bytes. head is the full extended +// slice, while tail is the appended part. If the original slice has sufficient +// capacity no allocation is performed. +func sliceForAppend(in []byte, n int) (head, tail []byte) { + if total := len(in) + n; cap(in) >= total { + head = in[:total] + } else { + head = make([]byte, total) + copy(head, in) + } + tail = head[len(in):] + return +} + +// encrypt encrypts payload, adding the appropriate nonce and/or MAC, and +// appends it to record, which must already contain the record header. +func (hc *halfConn) encrypt(record, payload []byte, rand io.Reader) ([]byte, error) { + if hc.cipher == nil { + return append(record, payload...), nil + } + + var explicitNonce []byte + if explicitNonceLen := hc.explicitNonceLen(); explicitNonceLen > 0 { + record, explicitNonce = sliceForAppend(record, explicitNonceLen) + if _, isCBC := hc.cipher.(cbcMode); !isCBC && explicitNonceLen < 16 { + // The AES-GCM construction in TLS has an explicit nonce so that the + // nonce can be random. However, the nonce is only 8 bytes which is + // too small for a secure, random nonce. Therefore we use the + // sequence number as the nonce. The 3DES-CBC construction also has + // an 8 bytes nonce but its nonces must be unpredictable (see RFC + // 5246, Appendix F.3), forcing us to use randomness. That's not + // 3DES' biggest problem anyway because the birthday bound on block + // collision is reached first due to its similarly small block size + // (see the Sweet32 attack). + copy(explicitNonce, hc.seq[:]) + } else { + if _, err := io.ReadFull(rand, explicitNonce); err != nil { + return nil, err + } + } + } + + var dst []byte + switch c := hc.cipher.(type) { + case cipher.Stream: + mac := tls10MAC(hc.mac, hc.scratchBuf[:0], hc.seq[:], record[:recordHeaderLen], payload, nil) + record, dst = sliceForAppend(record, len(payload)+len(mac)) + c.XORKeyStream(dst[:len(payload)], payload) + c.XORKeyStream(dst[len(payload):], mac) + case aead: + nonce := explicitNonce + if len(nonce) == 0 { + nonce = hc.seq[:] + } + + if hc.version == VersionTLS13 { + record = append(record, payload...) + + // Encrypt the actual ContentType and replace the plaintext one. + record = append(record, record[0]) + record[0] = byte(recordTypeApplicationData) + + n := len(payload) + 1 + c.Overhead() + record[3] = byte(n >> 8) + record[4] = byte(n) + + record = c.Seal(record[:recordHeaderLen], + nonce, record[recordHeaderLen:], record[:recordHeaderLen]) + } else { + additionalData := append(hc.scratchBuf[:0], hc.seq[:]...) + additionalData = append(additionalData, record[:recordHeaderLen]...) + record = c.Seal(record, nonce, payload, additionalData) + } + case cbcMode: + mac := tls10MAC(hc.mac, hc.scratchBuf[:0], hc.seq[:], record[:recordHeaderLen], payload, nil) + blockSize := c.BlockSize() + plaintextLen := len(payload) + len(mac) + paddingLen := blockSize - plaintextLen%blockSize + record, dst = sliceForAppend(record, plaintextLen+paddingLen) + copy(dst, payload) + copy(dst[len(payload):], mac) + for i := plaintextLen; i < len(dst); i++ { + dst[i] = byte(paddingLen - 1) + } + if len(explicitNonce) > 0 { + c.SetIV(explicitNonce) + } + c.CryptBlocks(dst, dst) + default: + panic("unknown cipher type") + } + + // Update length to include nonce, MAC and any block padding needed. + n := len(record) - recordHeaderLen + record[3] = byte(n >> 8) + record[4] = byte(n) + hc.incSeq() + + return record, nil +} + +// RecordHeaderError is returned when a TLS record header is invalid. +type RecordHeaderError struct { + // Msg contains a human readable string that describes the error. + Msg string + // RecordHeader contains the five bytes of TLS record header that + // triggered the error. + RecordHeader [5]byte + // Conn provides the underlying net.Conn in the case that a client + // sent an initial handshake that didn't look like TLS. + // It is nil if there's already been a handshake or a TLS alert has + // been written to the connection. + Conn net.Conn +} + +func (e RecordHeaderError) Error() string { return "tls: " + e.Msg } + +func (c *Conn) newRecordHeaderError(conn net.Conn, msg string) (err RecordHeaderError) { + err.Msg = msg + err.Conn = conn + copy(err.RecordHeader[:], c.rawInput.Bytes()) + return err +} + +func (c *Conn) readRecord() error { + return c.readRecordOrCCS(false) +} + +func (c *Conn) readChangeCipherSpec() error { + return c.readRecordOrCCS(true) +} + +// readRecordOrCCS reads one or more TLS records from the connection and +// updates the record layer state. Some invariants: +// - c.in must be locked +// - c.input must be empty +// +// During the handshake one and only one of the following will happen: +// - c.hand grows +// - c.in.changeCipherSpec is called +// - an error is returned +// +// After the handshake one and only one of the following will happen: +// - c.hand grows +// - c.input is set +// - an error is returned +func (c *Conn) readRecordOrCCS(expectChangeCipherSpec bool) error { + if c.in.err != nil { + return c.in.err + } + handshakeComplete := c.handshakeComplete() + + // This function modifies c.rawInput, which owns the c.input memory. + if c.input.Len() != 0 { + return c.in.setErrorLocked(errors.New("tls: internal error: attempted to read record with pending application data")) + } + c.input.Reset(nil) + + // Read header, payload. + if err := c.readFromUntil(c.conn, recordHeaderLen); err != nil { + // RFC 8446, Section 6.1 suggests that EOF without an alertCloseNotify + // is an error, but popular web sites seem to do this, so we accept it + // if and only if at the record boundary. + if err == io.ErrUnexpectedEOF && c.rawInput.Len() == 0 { + err = io.EOF + } + if e, ok := err.(net.Error); !ok || !e.Temporary() { + c.in.setErrorLocked(err) + } + return err + } + hdr := c.rawInput.Bytes()[:recordHeaderLen] + typ := recordType(hdr[0]) + + // No valid TLS record has a type of 0x80, however SSLv2 handshakes + // start with a uint16 length where the MSB is set and the first record + // is always < 256 bytes long. Therefore typ == 0x80 strongly suggests + // an SSLv2 client. + if !handshakeComplete && typ == 0x80 { + c.sendAlert(alertProtocolVersion) + return c.in.setErrorLocked(c.newRecordHeaderError(nil, "unsupported SSLv2 handshake received")) + } + + vers := uint16(hdr[1])<<8 | uint16(hdr[2]) + n := int(hdr[3])<<8 | int(hdr[4]) + if c.haveVers && c.vers != VersionTLS13 && vers != c.vers { + c.sendAlert(alertProtocolVersion) + msg := fmt.Sprintf("received record with version %x when expecting version %x", vers, c.vers) + return c.in.setErrorLocked(c.newRecordHeaderError(nil, msg)) + } + if !c.haveVers { + // First message, be extra suspicious: this might not be a TLS + // client. Bail out before reading a full 'body', if possible. + // The current max version is 3.3 so if the version is >= 16.0, + // it's probably not real. + if (typ != recordTypeAlert && typ != recordTypeHandshake) || vers >= 0x1000 { + return c.in.setErrorLocked(c.newRecordHeaderError(c.conn, "first record does not look like a TLS handshake")) + } + } + if c.vers == VersionTLS13 && n > maxCiphertextTLS13 || n > maxCiphertext { + c.sendAlert(alertRecordOverflow) + msg := fmt.Sprintf("oversized record received with length %d", n) + return c.in.setErrorLocked(c.newRecordHeaderError(nil, msg)) + } + if err := c.readFromUntil(c.conn, recordHeaderLen+n); err != nil { + if e, ok := err.(net.Error); !ok || !e.Temporary() { + c.in.setErrorLocked(err) + } + return err + } + + // Process message. + record := c.rawInput.Next(recordHeaderLen + n) + data, typ, err := c.in.decrypt(record) + if err != nil { + return c.in.setErrorLocked(c.sendAlert(err.(alert))) + } + if len(data) > maxPlaintext { + return c.in.setErrorLocked(c.sendAlert(alertRecordOverflow)) + } + + // Application Data messages are always protected. + if c.in.cipher == nil && typ == recordTypeApplicationData { + return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) + } + + if typ != recordTypeAlert && typ != recordTypeChangeCipherSpec && len(data) > 0 { + // This is a state-advancing message: reset the retry count. + c.retryCount = 0 + } + + // Handshake messages MUST NOT be interleaved with other record types in TLS 1.3. + if c.vers == VersionTLS13 && typ != recordTypeHandshake && c.hand.Len() > 0 { + return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) + } + + switch typ { + default: + return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) + + case recordTypeAlert: + if len(data) != 2 { + return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) + } + if alert(data[1]) == alertCloseNotify { + return c.in.setErrorLocked(io.EOF) + } + if c.vers == VersionTLS13 { + return c.in.setErrorLocked(&net.OpError{Op: "remote error", Err: alert(data[1])}) + } + switch data[0] { + case alertLevelWarning: + // Drop the record on the floor and retry. + return c.retryReadRecord(expectChangeCipherSpec) + case alertLevelError: + return c.in.setErrorLocked(&net.OpError{Op: "remote error", Err: alert(data[1])}) + default: + return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) + } + + case recordTypeChangeCipherSpec: + if len(data) != 1 || data[0] != 1 { + return c.in.setErrorLocked(c.sendAlert(alertDecodeError)) + } + // Handshake messages are not allowed to fragment across the CCS. + if c.hand.Len() > 0 { + return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) + } + // In TLS 1.3, change_cipher_spec records are ignored until the + // Finished. See RFC 8446, Appendix D.4. Note that according to Section + // 5, a server can send a ChangeCipherSpec before its ServerHello, when + // c.vers is still unset. That's not useful though and suspicious if the + // server then selects a lower protocol version, so don't allow that. + if c.vers == VersionTLS13 { + return c.retryReadRecord(expectChangeCipherSpec) + } + if !expectChangeCipherSpec { + return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) + } + if err := c.in.changeCipherSpec(); err != nil { + return c.in.setErrorLocked(c.sendAlert(err.(alert))) + } + + case recordTypeApplicationData: + if !handshakeComplete || expectChangeCipherSpec { + return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) + } + // Some OpenSSL servers send empty records in order to randomize the + // CBC IV. Ignore a limited number of empty records. + if len(data) == 0 { + return c.retryReadRecord(expectChangeCipherSpec) + } + // Note that data is owned by c.rawInput, following the Next call above, + // to avoid copying the plaintext. This is safe because c.rawInput is + // not read from or written to until c.input is drained. + c.input.Reset(data) + + case recordTypeHandshake: + if len(data) == 0 || expectChangeCipherSpec { + return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) + } + c.hand.Write(data) + } + + return nil +} + +// retryReadRecord recurs into readRecordOrCCS to drop a non-advancing record, like +// a warning alert, empty application_data, or a change_cipher_spec in TLS 1.3. +func (c *Conn) retryReadRecord(expectChangeCipherSpec bool) error { + c.retryCount++ + if c.retryCount > maxUselessRecords { + c.sendAlert(alertUnexpectedMessage) + return c.in.setErrorLocked(errors.New("tls: too many ignored records")) + } + return c.readRecordOrCCS(expectChangeCipherSpec) +} + +// atLeastReader reads from R, stopping with EOF once at least N bytes have been +// read. It is different from an io.LimitedReader in that it doesn't cut short +// the last Read call, and in that it considers an early EOF an error. +type atLeastReader struct { + R io.Reader + N int64 +} + +func (r *atLeastReader) Read(p []byte) (int, error) { + if r.N <= 0 { + return 0, io.EOF + } + n, err := r.R.Read(p) + r.N -= int64(n) // won't underflow unless len(p) >= n > 9223372036854775809 + if r.N > 0 && err == io.EOF { + return n, io.ErrUnexpectedEOF + } + if r.N <= 0 && err == nil { + return n, io.EOF + } + return n, err +} + +// readFromUntil reads from r into c.rawInput until c.rawInput contains +// at least n bytes or else returns an error. +func (c *Conn) readFromUntil(r io.Reader, n int) error { + if c.rawInput.Len() >= n { + return nil + } + needs := n - c.rawInput.Len() + // There might be extra input waiting on the wire. Make a best effort + // attempt to fetch it so that it can be used in (*Conn).Read to + // "predict" closeNotify alerts. + c.rawInput.Grow(needs + bytes.MinRead) + _, err := c.rawInput.ReadFrom(&atLeastReader{r, int64(needs)}) + return err +} + +// sendAlert sends a TLS alert message. +func (c *Conn) sendAlertLocked(err alert) error { + switch err { + case alertNoRenegotiation, alertCloseNotify: + c.tmp[0] = alertLevelWarning + default: + c.tmp[0] = alertLevelError + } + c.tmp[1] = byte(err) + + _, writeErr := c.writeRecordLocked(recordTypeAlert, c.tmp[0:2]) + if err == alertCloseNotify { + // closeNotify is a special case in that it isn't an error. + return writeErr + } + + return c.out.setErrorLocked(&net.OpError{Op: "local error", Err: err}) +} + +// sendAlert sends a TLS alert message. +func (c *Conn) sendAlert(err alert) error { + c.out.Lock() + defer c.out.Unlock() + return c.sendAlertLocked(err) +} + +const ( + // tcpMSSEstimate is a conservative estimate of the TCP maximum segment + // size (MSS). A constant is used, rather than querying the kernel for + // the actual MSS, to avoid complexity. The value here is the IPv6 + // minimum MTU (1280 bytes) minus the overhead of an IPv6 header (40 + // bytes) and a TCP header with timestamps (32 bytes). + tcpMSSEstimate = 1208 + + // recordSizeBoostThreshold is the number of bytes of application data + // sent after which the TLS record size will be increased to the + // maximum. + recordSizeBoostThreshold = 128 * 1024 +) + +// maxPayloadSizeForWrite returns the maximum TLS payload size to use for the +// next application data record. There is the following trade-off: +// +// - For latency-sensitive applications, such as web browsing, each TLS +// record should fit in one TCP segment. +// - For throughput-sensitive applications, such as large file transfers, +// larger TLS records better amortize framing and encryption overheads. +// +// A simple heuristic that works well in practice is to use small records for +// the first 1MB of data, then use larger records for subsequent data, and +// reset back to smaller records after the connection becomes idle. See "High +// Performance Web Networking", Chapter 4, or: +// https://www.igvita.com/2013/10/24/optimizing-tls-record-size-and-buffering-latency/ +// +// In the interests of simplicity and determinism, this code does not attempt +// to reset the record size once the connection is idle, however. +func (c *Conn) maxPayloadSizeForWrite(typ recordType) int { + if c.config.DynamicRecordSizingDisabled || typ != recordTypeApplicationData { + return maxPlaintext + } + + if c.bytesSent >= recordSizeBoostThreshold { + return maxPlaintext + } + + // Subtract TLS overheads to get the maximum payload size. + payloadBytes := tcpMSSEstimate - recordHeaderLen - c.out.explicitNonceLen() + if c.out.cipher != nil { + switch ciph := c.out.cipher.(type) { + case cipher.Stream: + payloadBytes -= c.out.mac.Size() + case cipher.AEAD: + payloadBytes -= ciph.Overhead() + case cbcMode: + blockSize := ciph.BlockSize() + // The payload must fit in a multiple of blockSize, with + // room for at least one padding byte. + payloadBytes = (payloadBytes & ^(blockSize - 1)) - 1 + // The MAC is appended before padding so affects the + // payload size directly. + payloadBytes -= c.out.mac.Size() + default: + panic("unknown cipher type") + } + } + if c.vers == VersionTLS13 { + payloadBytes-- // encrypted ContentType + } + + // Allow packet growth in arithmetic progression up to max. + pkt := c.packetsSent + c.packetsSent++ + if pkt > 1000 { + return maxPlaintext // avoid overflow in multiply below + } + + n := payloadBytes * int(pkt+1) + if n > maxPlaintext { + n = maxPlaintext + } + return n +} + +func (c *Conn) write(data []byte) (int, error) { + if c.buffering { + c.sendBuf = append(c.sendBuf, data...) + return len(data), nil + } + + n, err := c.conn.Write(data) + c.bytesSent += int64(n) + return n, err +} + +func (c *Conn) flush() (int, error) { + if len(c.sendBuf) == 0 { + return 0, nil + } + + n, err := c.conn.Write(c.sendBuf) + c.bytesSent += int64(n) + c.sendBuf = nil + c.buffering = false + return n, err +} + +// outBufPool pools the record-sized scratch buffers used by writeRecordLocked. +var outBufPool = sync.Pool{ + New: func() any { + return new([]byte) + }, +} + +// writeRecordLocked writes a TLS record with the given type and payload to the +// connection and updates the record layer state. +func (c *Conn) writeRecordLocked(typ recordType, data []byte) (int, error) { + outBufPtr := outBufPool.Get().(*[]byte) + outBuf := *outBufPtr + defer func() { + // You might be tempted to simplify this by just passing &outBuf to Put, + // but that would make the local copy of the outBuf slice header escape + // to the heap, causing an allocation. Instead, we keep around the + // pointer to the slice header returned by Get, which is already on the + // heap, and overwrite and return that. + *outBufPtr = outBuf + outBufPool.Put(outBufPtr) + }() + + var n int + for len(data) > 0 { + m := len(data) + if maxPayload := c.maxPayloadSizeForWrite(typ); m > maxPayload { + m = maxPayload + } + + _, outBuf = sliceForAppend(outBuf[:0], recordHeaderLen) + outBuf[0] = byte(typ) + vers := c.vers + if vers == 0 { + // Some TLS servers fail if the record version is + // greater than TLS 1.0 for the initial ClientHello. + vers = VersionTLS10 + } else if vers == VersionTLS13 { + // TLS 1.3 froze the record layer version to 1.2. + // See RFC 8446, Section 5.1. + vers = VersionTLS12 + } + outBuf[1] = byte(vers >> 8) + outBuf[2] = byte(vers) + outBuf[3] = byte(m >> 8) + outBuf[4] = byte(m) + + var err error + outBuf, err = c.out.encrypt(outBuf, data[:m], c.config.rand()) + if err != nil { + return n, err + } + if _, err := c.write(outBuf); err != nil { + return n, err + } + n += m + data = data[m:] + } + + if typ == recordTypeChangeCipherSpec && c.vers != VersionTLS13 { + if err := c.out.changeCipherSpec(); err != nil { + return n, c.sendAlertLocked(err.(alert)) + } + } + + return n, nil +} + +// writeHandshakeRecord writes a handshake message to the connection and updates +// the record layer state. If transcript is non-nil the marshalled message is +// written to it. +func (c *Conn) writeHandshakeRecord(msg handshakeMessage, transcript transcriptHash) (int, error) { + c.out.Lock() + defer c.out.Unlock() + + data, err := msg.marshal() + if err != nil { + return 0, err + } + if transcript != nil { + transcript.Write(data) + } + + return c.writeRecordLocked(recordTypeHandshake, data) +} + +// writeChangeCipherRecord writes a ChangeCipherSpec message to the connection and +// updates the record layer state. +func (c *Conn) writeChangeCipherRecord() error { + c.out.Lock() + defer c.out.Unlock() + _, err := c.writeRecordLocked(recordTypeChangeCipherSpec, []byte{1}) + return err +} + +// readHandshake reads the next handshake message from +// the record layer. If transcript is non-nil, the message +// is written to the passed transcriptHash. +func (c *Conn) readHandshake(transcript transcriptHash) (any, error) { + for c.hand.Len() < 4 { + if err := c.readRecord(); err != nil { + return nil, err + } + } + + data := c.hand.Bytes() + n := int(data[1])<<16 | int(data[2])<<8 | int(data[3]) + if n > maxHandshake { + c.sendAlertLocked(alertInternalError) + return nil, c.in.setErrorLocked(fmt.Errorf("tls: handshake message of length %d bytes exceeds maximum of %d bytes", n, maxHandshake)) + } + for c.hand.Len() < 4+n { + if err := c.readRecord(); err != nil { + return nil, err + } + } + data = c.hand.Next(4 + n) + var m handshakeMessage + switch data[0] { + case typeHelloRequest: + m = new(helloRequestMsg) + case typeClientHello: + m = new(clientHelloMsg) + case typeServerHello: + m = new(serverHelloMsg) + case typeNewSessionTicket: + if c.vers == VersionTLS13 { + m = new(newSessionTicketMsgTLS13) + } else { + m = new(newSessionTicketMsg) + } + case typeCertificate: + if c.vers == VersionTLS13 { + m = new(certificateMsgTLS13) + } else { + m = new(certificateMsg) + } + case typeCertificateRequest: + if c.vers == VersionTLS13 { + m = new(certificateRequestMsgTLS13) + } else { + m = &certificateRequestMsg{ + hasSignatureAlgorithm: c.vers >= VersionTLS12, + } + } + case typeCertificateStatus: + m = new(certificateStatusMsg) + case typeServerKeyExchange: + m = new(serverKeyExchangeMsg) + case typeServerHelloDone: + m = new(serverHelloDoneMsg) + case typeClientKeyExchange: + m = new(clientKeyExchangeMsg) + case typeCertificateVerify: + m = &certificateVerifyMsg{ + hasSignatureAlgorithm: c.vers >= VersionTLS12, + } + case typeFinished: + m = new(finishedMsg) + case typeEncryptedExtensions: + m = new(encryptedExtensionsMsg) + case typeEndOfEarlyData: + m = new(endOfEarlyDataMsg) + case typeKeyUpdate: + m = new(keyUpdateMsg) + default: + return nil, c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) + } + + // The handshake message unmarshalers + // expect to be able to keep references to data, + // so pass in a fresh copy that won't be overwritten. + data = append([]byte(nil), data...) + + if !m.unmarshal(data) { + return nil, c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) + } + + if transcript != nil { + transcript.Write(data) + } + + return m, nil +} + +var ( + errShutdown = errors.New("tls: protocol is shutdown") +) + +// Write writes data to the connection. +// +// As Write calls Handshake, in order to prevent indefinite blocking a deadline +// must be set for both Read and Write before Write is called when the handshake +// has not yet completed. See SetDeadline, SetReadDeadline, and +// SetWriteDeadline. +func (c *Conn) Write(b []byte) (int, error) { + // interlock with Close below + for { + x := atomic.LoadInt32(&c.activeCall) + if x&1 != 0 { + return 0, net.ErrClosed + } + if atomic.CompareAndSwapInt32(&c.activeCall, x, x+2) { + break + } + } + defer atomic.AddInt32(&c.activeCall, -2) + + if err := c.Handshake(); err != nil { + return 0, err + } + + c.out.Lock() + defer c.out.Unlock() + + if err := c.out.err; err != nil { + return 0, err + } + + if !c.handshakeComplete() { + return 0, alertInternalError + } + + if c.closeNotifySent { + return 0, errShutdown + } + + // TLS 1.0 is susceptible to a chosen-plaintext + // attack when using block mode ciphers due to predictable IVs. + // This can be prevented by splitting each Application Data + // record into two records, effectively randomizing the IV. + // + // https://www.openssl.org/~bodo/tls-cbc.txt + // https://bugzilla.mozilla.org/show_bug.cgi?id=665814 + // https://www.imperialviolet.org/2012/01/15/beastfollowup.html + + var m int + if len(b) > 1 && c.vers == VersionTLS10 { + if _, ok := c.out.cipher.(cipher.BlockMode); ok { + n, err := c.writeRecordLocked(recordTypeApplicationData, b[:1]) + if err != nil { + return n, c.out.setErrorLocked(err) + } + m, b = 1, b[1:] + } + } + + n, err := c.writeRecordLocked(recordTypeApplicationData, b) + return n + m, c.out.setErrorLocked(err) +} + +// handleRenegotiation processes a HelloRequest handshake message. +func (c *Conn) handleRenegotiation() error { + if c.vers == VersionTLS13 { + return errors.New("tls: internal error: unexpected renegotiation") + } + + msg, err := c.readHandshake(nil) + if err != nil { + return err + } + + helloReq, ok := msg.(*helloRequestMsg) + if !ok { + c.sendAlert(alertUnexpectedMessage) + return unexpectedMessageError(helloReq, msg) + } + + if !c.isClient { + return c.sendAlert(alertNoRenegotiation) + } + + switch c.config.Renegotiation { + case RenegotiateNever: + return c.sendAlert(alertNoRenegotiation) + case RenegotiateOnceAsClient: + if c.handshakes > 1 { + return c.sendAlert(alertNoRenegotiation) + } + case RenegotiateFreelyAsClient: + // Ok. + default: + c.sendAlert(alertInternalError) + return errors.New("tls: unknown Renegotiation value") + } + + c.handshakeMutex.Lock() + defer c.handshakeMutex.Unlock() + + atomic.StoreUint32(&c.handshakeStatus, 0) + if c.handshakeErr = c.clientHandshake(context.Background()); c.handshakeErr == nil { + c.handshakes++ + } + return c.handshakeErr +} + +// handlePostHandshakeMessage processes a handshake message arrived after the +// handshake is complete. Up to TLS 1.2, it indicates the start of a renegotiation. +func (c *Conn) handlePostHandshakeMessage() error { + if c.vers != VersionTLS13 { + return c.handleRenegotiation() + } + + msg, err := c.readHandshake(nil) + if err != nil { + return err + } + + c.retryCount++ + if c.retryCount > maxUselessRecords { + c.sendAlert(alertUnexpectedMessage) + return c.in.setErrorLocked(errors.New("tls: too many non-advancing records")) + } + + switch msg := msg.(type) { + case *newSessionTicketMsgTLS13: + return c.handleNewSessionTicket(msg) + case *keyUpdateMsg: + return c.handleKeyUpdate(msg) + default: + c.sendAlert(alertUnexpectedMessage) + return fmt.Errorf("tls: received unexpected handshake message of type %T", msg) + } +} + +func (c *Conn) handleKeyUpdate(keyUpdate *keyUpdateMsg) error { + cipherSuite := cipherSuiteTLS13ByID(c.cipherSuite) + if cipherSuite == nil { + return c.in.setErrorLocked(c.sendAlert(alertInternalError)) + } + + newSecret := cipherSuite.nextTrafficSecret(c.in.trafficSecret) + c.in.setTrafficSecret(cipherSuite, newSecret) + + if keyUpdate.updateRequested { + c.out.Lock() + defer c.out.Unlock() + + msg := &keyUpdateMsg{} + msgBytes, err := msg.marshal() + if err != nil { + return err + } + _, err = c.writeRecordLocked(recordTypeHandshake, msgBytes) + if err != nil { + // Surface the error at the next write. + c.out.setErrorLocked(err) + return nil + } + + newSecret := cipherSuite.nextTrafficSecret(c.out.trafficSecret) + c.out.setTrafficSecret(cipherSuite, newSecret) + } + + return nil +} + +// Read reads data from the connection. +// +// As Read calls Handshake, in order to prevent indefinite blocking a deadline +// must be set for both Read and Write before Read is called when the handshake +// has not yet completed. See SetDeadline, SetReadDeadline, and +// SetWriteDeadline. +func (c *Conn) Read(b []byte) (int, error) { + if err := c.Handshake(); err != nil { + return 0, err + } + if len(b) == 0 { + // Put this after Handshake, in case people were calling + // Read(nil) for the side effect of the Handshake. + return 0, nil + } + + c.in.Lock() + defer c.in.Unlock() + + for c.input.Len() == 0 { + if err := c.readRecord(); err != nil { + return 0, err + } + for c.hand.Len() > 0 { + if err := c.handlePostHandshakeMessage(); err != nil { + return 0, err + } + } + } + + n, _ := c.input.Read(b) + + // If a close-notify alert is waiting, read it so that we can return (n, + // EOF) instead of (n, nil), to signal to the HTTP response reading + // goroutine that the connection is now closed. This eliminates a race + // where the HTTP response reading goroutine would otherwise not observe + // the EOF until its next read, by which time a client goroutine might + // have already tried to reuse the HTTP connection for a new request. + // See https://golang.org/cl/76400046 and https://golang.org/issue/3514 + if n != 0 && c.input.Len() == 0 && c.rawInput.Len() > 0 && + recordType(c.rawInput.Bytes()[0]) == recordTypeAlert { + if err := c.readRecord(); err != nil { + return n, err // will be io.EOF on closeNotify + } + } + + return n, nil +} + +// Close closes the connection. +func (c *Conn) Close() error { + // Interlock with Conn.Write above. + var x int32 + for { + x = atomic.LoadInt32(&c.activeCall) + if x&1 != 0 { + return net.ErrClosed + } + if atomic.CompareAndSwapInt32(&c.activeCall, x, x|1) { + break + } + } + if x != 0 { + // io.Writer and io.Closer should not be used concurrently. + // If Close is called while a Write is currently in-flight, + // interpret that as a sign that this Close is really just + // being used to break the Write and/or clean up resources and + // avoid sending the alertCloseNotify, which may block + // waiting on handshakeMutex or the c.out mutex. + return c.conn.Close() + } + + var alertErr error + if c.handshakeComplete() { + if err := c.closeNotify(); err != nil { + alertErr = fmt.Errorf("tls: failed to send closeNotify alert (but connection was closed anyway): %w", err) + } + } + + if err := c.conn.Close(); err != nil { + return err + } + return alertErr +} + +var errEarlyCloseWrite = errors.New("tls: CloseWrite called before handshake complete") + +// CloseWrite shuts down the writing side of the connection. It should only be +// called once the handshake has completed and does not call CloseWrite on the +// underlying connection. Most callers should just use Close. +func (c *Conn) CloseWrite() error { + if !c.handshakeComplete() { + return errEarlyCloseWrite + } + + return c.closeNotify() +} + +func (c *Conn) closeNotify() error { + c.out.Lock() + defer c.out.Unlock() + + if !c.closeNotifySent { + // Set a Write Deadline to prevent possibly blocking forever. + c.SetWriteDeadline(time.Now().Add(time.Second * 5)) + c.closeNotifyErr = c.sendAlertLocked(alertCloseNotify) + c.closeNotifySent = true + // Any subsequent writes will fail. + c.SetWriteDeadline(time.Now()) + } + return c.closeNotifyErr +} + +// Handshake runs the client or server handshake +// protocol if it has not yet been run. +// +// Most uses of this package need not call Handshake explicitly: the +// first Read or Write will call it automatically. +// +// For control over canceling or setting a timeout on a handshake, use +// HandshakeContext or the Dialer's DialContext method instead. +func (c *Conn) Handshake() error { + return c.HandshakeContext(context.Background()) +} + +// HandshakeContext runs the client or server handshake +// protocol if it has not yet been run. +// +// The provided Context must be non-nil. If the context is canceled before +// the handshake is complete, the handshake is interrupted and an error is returned. +// Once the handshake has completed, cancellation of the context will not affect the +// connection. +// +// Most uses of this package need not call HandshakeContext explicitly: the +// first Read or Write will call it automatically. +func (c *Conn) HandshakeContext(ctx context.Context) error { + // Delegate to unexported method for named return + // without confusing documented signature. + return c.handshakeContext(ctx) +} + +func (c *Conn) handshakeContext(ctx context.Context) (ret error) { + // Fast sync/atomic-based exit if there is no handshake in flight and the + // last one succeeded without an error. Avoids the expensive context setup + // and mutex for most Read and Write calls. + if c.handshakeComplete() { + return nil + } + + handshakeCtx, cancel := context.WithCancel(ctx) + // Note: defer this before starting the "interrupter" goroutine + // so that we can tell the difference between the input being canceled and + // this cancellation. In the former case, we need to close the connection. + defer cancel() + + // Start the "interrupter" goroutine, if this context might be canceled. + // (The background context cannot). + // + // The interrupter goroutine waits for the input context to be done and + // closes the connection if this happens before the function returns. + if ctx.Done() != nil { + done := make(chan struct{}) + interruptRes := make(chan error, 1) + defer func() { + close(done) + if ctxErr := <-interruptRes; ctxErr != nil { + // Return context error to user. + ret = ctxErr + } + }() + go func() { + select { + case <-handshakeCtx.Done(): + // Close the connection, discarding the error + _ = c.conn.Close() + interruptRes <- handshakeCtx.Err() + case <-done: + interruptRes <- nil + } + }() + } + + c.handshakeMutex.Lock() + defer c.handshakeMutex.Unlock() + + if err := c.handshakeErr; err != nil { + return err + } + if c.handshakeComplete() { + return nil + } + + c.in.Lock() + defer c.in.Unlock() + + c.handshakeErr = c.handshakeFn(handshakeCtx) + if c.handshakeErr == nil { + c.handshakes++ + } else { + // If an error occurred during the handshake try to flush the + // alert that might be left in the buffer. + c.flush() + } + + if c.handshakeErr == nil && !c.handshakeComplete() { + c.handshakeErr = errors.New("tls: internal error: handshake should have had a result") + } + if c.handshakeErr != nil && c.handshakeComplete() { + panic("tls: internal error: handshake returned an error but is marked successful") + } + + return c.handshakeErr +} + +// ConnectionState returns basic TLS details about the connection. +func (c *Conn) ConnectionState() ConnectionState { + c.handshakeMutex.Lock() + defer c.handshakeMutex.Unlock() + return c.connectionStateLocked() +} + +func (c *Conn) connectionStateLocked() ConnectionState { + var state ConnectionState + state.HandshakeComplete = c.handshakeComplete() + state.Version = c.vers + state.NegotiatedProtocol = c.clientProtocol + state.DidResume = c.didResume + state.NegotiatedProtocolIsMutual = true + state.ServerName = c.serverName + state.CipherSuite = c.cipherSuite + state.PeerCertificates = c.peerCertificates + state.VerifiedChains = c.verifiedChains + state.SignedCertificateTimestamps = c.scts + state.OCSPResponse = c.ocspResponse + if !c.didResume && c.vers != VersionTLS13 { + if c.clientFinishedIsFirst { + state.TLSUnique = c.clientFinished[:] + } else { + state.TLSUnique = c.serverFinished[:] + } + } + if c.config.Renegotiation != RenegotiateNever { + state.ekm = noExportedKeyingMaterial + } else { + state.ekm = c.ekm + } + return state +} + +// OCSPResponse returns the stapled OCSP response from the TLS server, if +// any. (Only valid for client connections.) +func (c *Conn) OCSPResponse() []byte { + c.handshakeMutex.Lock() + defer c.handshakeMutex.Unlock() + + return c.ocspResponse +} + +// VerifyHostname checks that the peer certificate chain is valid for +// connecting to host. If so, it returns nil; if not, it returns an error +// describing the problem. +func (c *Conn) VerifyHostname(host string) error { + c.handshakeMutex.Lock() + defer c.handshakeMutex.Unlock() + if !c.isClient { + return errors.New("tls: VerifyHostname called on TLS server connection") + } + if !c.handshakeComplete() { + return errors.New("tls: handshake has not yet been performed") + } + if len(c.verifiedChains) == 0 { + return errors.New("tls: handshake did not verify certificate chain") + } + return c.peerCertificates[0].VerifyHostname(host) +} + +func (c *Conn) handshakeComplete() bool { + return atomic.LoadUint32(&c.handshakeStatus) == 1 +} |