summaryrefslogtreecommitdiffstats
path: root/src/crypto/tls/conn.go
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-28 13:18:25 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-28 13:18:25 +0000
commit109be507377fe7f6e8819ac94041d3fdcdf6fd2f (patch)
tree2806a689f8fab4a2ec9fc949830ef270a91d667d /src/crypto/tls/conn.go
parentInitial commit. (diff)
downloadgolang-1.19-109be507377fe7f6e8819ac94041d3fdcdf6fd2f.tar.xz
golang-1.19-109be507377fe7f6e8819ac94041d3fdcdf6fd2f.zip
Adding upstream version 1.19.8.upstream/1.19.8upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/crypto/tls/conn.go')
-rw-r--r--src/crypto/tls/conn.go1573
1 files changed, 1573 insertions, 0 deletions
diff --git a/src/crypto/tls/conn.go b/src/crypto/tls/conn.go
new file mode 100644
index 0000000..73f0c17
--- /dev/null
+++ b/src/crypto/tls/conn.go
@@ -0,0 +1,1573 @@
+// Copyright 2010 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// TLS low level connection and record layer
+
+package tls
+
+import (
+ "bytes"
+ "context"
+ "crypto/cipher"
+ "crypto/subtle"
+ "crypto/x509"
+ "errors"
+ "fmt"
+ "hash"
+ "io"
+ "net"
+ "sync"
+ "sync/atomic"
+ "time"
+)
+
+// A Conn represents a secured connection.
+// It implements the net.Conn interface.
+type Conn struct {
+ // constant
+ conn net.Conn
+ isClient bool
+ handshakeFn func(context.Context) error // (*Conn).clientHandshake or serverHandshake
+
+ // handshakeStatus is 1 if the connection is currently transferring
+ // application data (i.e. is not currently processing a handshake).
+ // handshakeStatus == 1 implies handshakeErr == nil.
+ // This field is only to be accessed with sync/atomic.
+ handshakeStatus uint32
+ // constant after handshake; protected by handshakeMutex
+ handshakeMutex sync.Mutex
+ handshakeErr error // error resulting from handshake
+ vers uint16 // TLS version
+ haveVers bool // version has been negotiated
+ config *Config // configuration passed to constructor
+ // handshakes counts the number of handshakes performed on the
+ // connection so far. If renegotiation is disabled then this is either
+ // zero or one.
+ handshakes int
+ didResume bool // whether this connection was a session resumption
+ cipherSuite uint16
+ ocspResponse []byte // stapled OCSP response
+ scts [][]byte // signed certificate timestamps from server
+ peerCertificates []*x509.Certificate
+ // verifiedChains contains the certificate chains that we built, as
+ // opposed to the ones presented by the server.
+ verifiedChains [][]*x509.Certificate
+ // serverName contains the server name indicated by the client, if any.
+ serverName string
+ // secureRenegotiation is true if the server echoed the secure
+ // renegotiation extension. (This is meaningless as a server because
+ // renegotiation is not supported in that case.)
+ secureRenegotiation bool
+ // ekm is a closure for exporting keying material.
+ ekm func(label string, context []byte, length int) ([]byte, error)
+ // resumptionSecret is the resumption_master_secret for handling
+ // NewSessionTicket messages. nil if config.SessionTicketsDisabled.
+ resumptionSecret []byte
+
+ // ticketKeys is the set of active session ticket keys for this
+ // connection. The first one is used to encrypt new tickets and
+ // all are tried to decrypt tickets.
+ ticketKeys []ticketKey
+
+ // clientFinishedIsFirst is true if the client sent the first Finished
+ // message during the most recent handshake. This is recorded because
+ // the first transmitted Finished message is the tls-unique
+ // channel-binding value.
+ clientFinishedIsFirst bool
+
+ // closeNotifyErr is any error from sending the alertCloseNotify record.
+ closeNotifyErr error
+ // closeNotifySent is true if the Conn attempted to send an
+ // alertCloseNotify record.
+ closeNotifySent bool
+
+ // clientFinished and serverFinished contain the Finished message sent
+ // by the client or server in the most recent handshake. This is
+ // retained to support the renegotiation extension and tls-unique
+ // channel-binding.
+ clientFinished [12]byte
+ serverFinished [12]byte
+
+ // clientProtocol is the negotiated ALPN protocol.
+ clientProtocol string
+
+ // input/output
+ in, out halfConn
+ rawInput bytes.Buffer // raw input, starting with a record header
+ input bytes.Reader // application data waiting to be read, from rawInput.Next
+ hand bytes.Buffer // handshake data waiting to be read
+ buffering bool // whether records are buffered in sendBuf
+ sendBuf []byte // a buffer of records waiting to be sent
+
+ // bytesSent counts the bytes of application data sent.
+ // packetsSent counts packets.
+ bytesSent int64
+ packetsSent int64
+
+ // retryCount counts the number of consecutive non-advancing records
+ // received by Conn.readRecord. That is, records that neither advance the
+ // handshake, nor deliver application data. Protected by in.Mutex.
+ retryCount int
+
+ // activeCall is an atomic int32; the low bit is whether Close has
+ // been called. the rest of the bits are the number of goroutines
+ // in Conn.Write.
+ activeCall int32
+
+ tmp [16]byte
+}
+
+// Access to net.Conn methods.
+// Cannot just embed net.Conn because that would
+// export the struct field too.
+
+// LocalAddr returns the local network address.
+func (c *Conn) LocalAddr() net.Addr {
+ return c.conn.LocalAddr()
+}
+
+// RemoteAddr returns the remote network address.
+func (c *Conn) RemoteAddr() net.Addr {
+ return c.conn.RemoteAddr()
+}
+
+// SetDeadline sets the read and write deadlines associated with the connection.
+// A zero value for t means Read and Write will not time out.
+// After a Write has timed out, the TLS state is corrupt and all future writes will return the same error.
+func (c *Conn) SetDeadline(t time.Time) error {
+ return c.conn.SetDeadline(t)
+}
+
+// SetReadDeadline sets the read deadline on the underlying connection.
+// A zero value for t means Read will not time out.
+func (c *Conn) SetReadDeadline(t time.Time) error {
+ return c.conn.SetReadDeadline(t)
+}
+
+// SetWriteDeadline sets the write deadline on the underlying connection.
+// A zero value for t means Write will not time out.
+// After a Write has timed out, the TLS state is corrupt and all future writes will return the same error.
+func (c *Conn) SetWriteDeadline(t time.Time) error {
+ return c.conn.SetWriteDeadline(t)
+}
+
+// NetConn returns the underlying connection that is wrapped by c.
+// Note that writing to or reading from this connection directly will corrupt the
+// TLS session.
+func (c *Conn) NetConn() net.Conn {
+ return c.conn
+}
+
+// A halfConn represents one direction of the record layer
+// connection, either sending or receiving.
+type halfConn struct {
+ sync.Mutex
+
+ err error // first permanent error
+ version uint16 // protocol version
+ cipher any // cipher algorithm
+ mac hash.Hash
+ seq [8]byte // 64-bit sequence number
+
+ scratchBuf [13]byte // to avoid allocs; interface method args escape
+
+ nextCipher any // next encryption state
+ nextMac hash.Hash // next MAC algorithm
+
+ trafficSecret []byte // current TLS 1.3 traffic secret
+}
+
+type permanentError struct {
+ err net.Error
+}
+
+func (e *permanentError) Error() string { return e.err.Error() }
+func (e *permanentError) Unwrap() error { return e.err }
+func (e *permanentError) Timeout() bool { return e.err.Timeout() }
+func (e *permanentError) Temporary() bool { return false }
+
+func (hc *halfConn) setErrorLocked(err error) error {
+ if e, ok := err.(net.Error); ok {
+ hc.err = &permanentError{err: e}
+ } else {
+ hc.err = err
+ }
+ return hc.err
+}
+
+// prepareCipherSpec sets the encryption and MAC states
+// that a subsequent changeCipherSpec will use.
+func (hc *halfConn) prepareCipherSpec(version uint16, cipher any, mac hash.Hash) {
+ hc.version = version
+ hc.nextCipher = cipher
+ hc.nextMac = mac
+}
+
+// changeCipherSpec changes the encryption and MAC states
+// to the ones previously passed to prepareCipherSpec.
+func (hc *halfConn) changeCipherSpec() error {
+ if hc.nextCipher == nil || hc.version == VersionTLS13 {
+ return alertInternalError
+ }
+ hc.cipher = hc.nextCipher
+ hc.mac = hc.nextMac
+ hc.nextCipher = nil
+ hc.nextMac = nil
+ for i := range hc.seq {
+ hc.seq[i] = 0
+ }
+ return nil
+}
+
+func (hc *halfConn) setTrafficSecret(suite *cipherSuiteTLS13, secret []byte) {
+ hc.trafficSecret = secret
+ key, iv := suite.trafficKey(secret)
+ hc.cipher = suite.aead(key, iv)
+ for i := range hc.seq {
+ hc.seq[i] = 0
+ }
+}
+
+// incSeq increments the sequence number.
+func (hc *halfConn) incSeq() {
+ for i := 7; i >= 0; i-- {
+ hc.seq[i]++
+ if hc.seq[i] != 0 {
+ return
+ }
+ }
+
+ // Not allowed to let sequence number wrap.
+ // Instead, must renegotiate before it does.
+ // Not likely enough to bother.
+ panic("TLS: sequence number wraparound")
+}
+
+// explicitNonceLen returns the number of bytes of explicit nonce or IV included
+// in each record. Explicit nonces are present only in CBC modes after TLS 1.0
+// and in certain AEAD modes in TLS 1.2.
+func (hc *halfConn) explicitNonceLen() int {
+ if hc.cipher == nil {
+ return 0
+ }
+
+ switch c := hc.cipher.(type) {
+ case cipher.Stream:
+ return 0
+ case aead:
+ return c.explicitNonceLen()
+ case cbcMode:
+ // TLS 1.1 introduced a per-record explicit IV to fix the BEAST attack.
+ if hc.version >= VersionTLS11 {
+ return c.BlockSize()
+ }
+ return 0
+ default:
+ panic("unknown cipher type")
+ }
+}
+
+// extractPadding returns, in constant time, the length of the padding to remove
+// from the end of payload. It also returns a byte which is equal to 255 if the
+// padding was valid and 0 otherwise. See RFC 2246, Section 6.2.3.2.
+func extractPadding(payload []byte) (toRemove int, good byte) {
+ if len(payload) < 1 {
+ return 0, 0
+ }
+
+ paddingLen := payload[len(payload)-1]
+ t := uint(len(payload)-1) - uint(paddingLen)
+ // if len(payload) >= (paddingLen - 1) then the MSB of t is zero
+ good = byte(int32(^t) >> 31)
+
+ // The maximum possible padding length plus the actual length field
+ toCheck := 256
+ // The length of the padded data is public, so we can use an if here
+ if toCheck > len(payload) {
+ toCheck = len(payload)
+ }
+
+ for i := 0; i < toCheck; i++ {
+ t := uint(paddingLen) - uint(i)
+ // if i <= paddingLen then the MSB of t is zero
+ mask := byte(int32(^t) >> 31)
+ b := payload[len(payload)-1-i]
+ good &^= mask&paddingLen ^ mask&b
+ }
+
+ // We AND together the bits of good and replicate the result across
+ // all the bits.
+ good &= good << 4
+ good &= good << 2
+ good &= good << 1
+ good = uint8(int8(good) >> 7)
+
+ // Zero the padding length on error. This ensures any unchecked bytes
+ // are included in the MAC. Otherwise, an attacker that could
+ // distinguish MAC failures from padding failures could mount an attack
+ // similar to POODLE in SSL 3.0: given a good ciphertext that uses a
+ // full block's worth of padding, replace the final block with another
+ // block. If the MAC check passed but the padding check failed, the
+ // last byte of that block decrypted to the block size.
+ //
+ // See also macAndPaddingGood logic below.
+ paddingLen &= good
+
+ toRemove = int(paddingLen) + 1
+ return
+}
+
+func roundUp(a, b int) int {
+ return a + (b-a%b)%b
+}
+
+// cbcMode is an interface for block ciphers using cipher block chaining.
+type cbcMode interface {
+ cipher.BlockMode
+ SetIV([]byte)
+}
+
+// decrypt authenticates and decrypts the record if protection is active at
+// this stage. The returned plaintext might overlap with the input.
+func (hc *halfConn) decrypt(record []byte) ([]byte, recordType, error) {
+ var plaintext []byte
+ typ := recordType(record[0])
+ payload := record[recordHeaderLen:]
+
+ // In TLS 1.3, change_cipher_spec messages are to be ignored without being
+ // decrypted. See RFC 8446, Appendix D.4.
+ if hc.version == VersionTLS13 && typ == recordTypeChangeCipherSpec {
+ return payload, typ, nil
+ }
+
+ paddingGood := byte(255)
+ paddingLen := 0
+
+ explicitNonceLen := hc.explicitNonceLen()
+
+ if hc.cipher != nil {
+ switch c := hc.cipher.(type) {
+ case cipher.Stream:
+ c.XORKeyStream(payload, payload)
+ case aead:
+ if len(payload) < explicitNonceLen {
+ return nil, 0, alertBadRecordMAC
+ }
+ nonce := payload[:explicitNonceLen]
+ if len(nonce) == 0 {
+ nonce = hc.seq[:]
+ }
+ payload = payload[explicitNonceLen:]
+
+ var additionalData []byte
+ if hc.version == VersionTLS13 {
+ additionalData = record[:recordHeaderLen]
+ } else {
+ additionalData = append(hc.scratchBuf[:0], hc.seq[:]...)
+ additionalData = append(additionalData, record[:3]...)
+ n := len(payload) - c.Overhead()
+ additionalData = append(additionalData, byte(n>>8), byte(n))
+ }
+
+ var err error
+ plaintext, err = c.Open(payload[:0], nonce, payload, additionalData)
+ if err != nil {
+ return nil, 0, alertBadRecordMAC
+ }
+ case cbcMode:
+ blockSize := c.BlockSize()
+ minPayload := explicitNonceLen + roundUp(hc.mac.Size()+1, blockSize)
+ if len(payload)%blockSize != 0 || len(payload) < minPayload {
+ return nil, 0, alertBadRecordMAC
+ }
+
+ if explicitNonceLen > 0 {
+ c.SetIV(payload[:explicitNonceLen])
+ payload = payload[explicitNonceLen:]
+ }
+ c.CryptBlocks(payload, payload)
+
+ // In a limited attempt to protect against CBC padding oracles like
+ // Lucky13, the data past paddingLen (which is secret) is passed to
+ // the MAC function as extra data, to be fed into the HMAC after
+ // computing the digest. This makes the MAC roughly constant time as
+ // long as the digest computation is constant time and does not
+ // affect the subsequent write, modulo cache effects.
+ paddingLen, paddingGood = extractPadding(payload)
+ default:
+ panic("unknown cipher type")
+ }
+
+ if hc.version == VersionTLS13 {
+ if typ != recordTypeApplicationData {
+ return nil, 0, alertUnexpectedMessage
+ }
+ if len(plaintext) > maxPlaintext+1 {
+ return nil, 0, alertRecordOverflow
+ }
+ // Remove padding and find the ContentType scanning from the end.
+ for i := len(plaintext) - 1; i >= 0; i-- {
+ if plaintext[i] != 0 {
+ typ = recordType(plaintext[i])
+ plaintext = plaintext[:i]
+ break
+ }
+ if i == 0 {
+ return nil, 0, alertUnexpectedMessage
+ }
+ }
+ }
+ } else {
+ plaintext = payload
+ }
+
+ if hc.mac != nil {
+ macSize := hc.mac.Size()
+ if len(payload) < macSize {
+ return nil, 0, alertBadRecordMAC
+ }
+
+ n := len(payload) - macSize - paddingLen
+ n = subtle.ConstantTimeSelect(int(uint32(n)>>31), 0, n) // if n < 0 { n = 0 }
+ record[3] = byte(n >> 8)
+ record[4] = byte(n)
+ remoteMAC := payload[n : n+macSize]
+ localMAC := tls10MAC(hc.mac, hc.scratchBuf[:0], hc.seq[:], record[:recordHeaderLen], payload[:n], payload[n+macSize:])
+
+ // This is equivalent to checking the MACs and paddingGood
+ // separately, but in constant-time to prevent distinguishing
+ // padding failures from MAC failures. Depending on what value
+ // of paddingLen was returned on bad padding, distinguishing
+ // bad MAC from bad padding can lead to an attack.
+ //
+ // See also the logic at the end of extractPadding.
+ macAndPaddingGood := subtle.ConstantTimeCompare(localMAC, remoteMAC) & int(paddingGood)
+ if macAndPaddingGood != 1 {
+ return nil, 0, alertBadRecordMAC
+ }
+
+ plaintext = payload[:n]
+ }
+
+ hc.incSeq()
+ return plaintext, typ, nil
+}
+
+// sliceForAppend extends the input slice by n bytes. head is the full extended
+// slice, while tail is the appended part. If the original slice has sufficient
+// capacity no allocation is performed.
+func sliceForAppend(in []byte, n int) (head, tail []byte) {
+ if total := len(in) + n; cap(in) >= total {
+ head = in[:total]
+ } else {
+ head = make([]byte, total)
+ copy(head, in)
+ }
+ tail = head[len(in):]
+ return
+}
+
+// encrypt encrypts payload, adding the appropriate nonce and/or MAC, and
+// appends it to record, which must already contain the record header.
+func (hc *halfConn) encrypt(record, payload []byte, rand io.Reader) ([]byte, error) {
+ if hc.cipher == nil {
+ return append(record, payload...), nil
+ }
+
+ var explicitNonce []byte
+ if explicitNonceLen := hc.explicitNonceLen(); explicitNonceLen > 0 {
+ record, explicitNonce = sliceForAppend(record, explicitNonceLen)
+ if _, isCBC := hc.cipher.(cbcMode); !isCBC && explicitNonceLen < 16 {
+ // The AES-GCM construction in TLS has an explicit nonce so that the
+ // nonce can be random. However, the nonce is only 8 bytes which is
+ // too small for a secure, random nonce. Therefore we use the
+ // sequence number as the nonce. The 3DES-CBC construction also has
+ // an 8 bytes nonce but its nonces must be unpredictable (see RFC
+ // 5246, Appendix F.3), forcing us to use randomness. That's not
+ // 3DES' biggest problem anyway because the birthday bound on block
+ // collision is reached first due to its similarly small block size
+ // (see the Sweet32 attack).
+ copy(explicitNonce, hc.seq[:])
+ } else {
+ if _, err := io.ReadFull(rand, explicitNonce); err != nil {
+ return nil, err
+ }
+ }
+ }
+
+ var dst []byte
+ switch c := hc.cipher.(type) {
+ case cipher.Stream:
+ mac := tls10MAC(hc.mac, hc.scratchBuf[:0], hc.seq[:], record[:recordHeaderLen], payload, nil)
+ record, dst = sliceForAppend(record, len(payload)+len(mac))
+ c.XORKeyStream(dst[:len(payload)], payload)
+ c.XORKeyStream(dst[len(payload):], mac)
+ case aead:
+ nonce := explicitNonce
+ if len(nonce) == 0 {
+ nonce = hc.seq[:]
+ }
+
+ if hc.version == VersionTLS13 {
+ record = append(record, payload...)
+
+ // Encrypt the actual ContentType and replace the plaintext one.
+ record = append(record, record[0])
+ record[0] = byte(recordTypeApplicationData)
+
+ n := len(payload) + 1 + c.Overhead()
+ record[3] = byte(n >> 8)
+ record[4] = byte(n)
+
+ record = c.Seal(record[:recordHeaderLen],
+ nonce, record[recordHeaderLen:], record[:recordHeaderLen])
+ } else {
+ additionalData := append(hc.scratchBuf[:0], hc.seq[:]...)
+ additionalData = append(additionalData, record[:recordHeaderLen]...)
+ record = c.Seal(record, nonce, payload, additionalData)
+ }
+ case cbcMode:
+ mac := tls10MAC(hc.mac, hc.scratchBuf[:0], hc.seq[:], record[:recordHeaderLen], payload, nil)
+ blockSize := c.BlockSize()
+ plaintextLen := len(payload) + len(mac)
+ paddingLen := blockSize - plaintextLen%blockSize
+ record, dst = sliceForAppend(record, plaintextLen+paddingLen)
+ copy(dst, payload)
+ copy(dst[len(payload):], mac)
+ for i := plaintextLen; i < len(dst); i++ {
+ dst[i] = byte(paddingLen - 1)
+ }
+ if len(explicitNonce) > 0 {
+ c.SetIV(explicitNonce)
+ }
+ c.CryptBlocks(dst, dst)
+ default:
+ panic("unknown cipher type")
+ }
+
+ // Update length to include nonce, MAC and any block padding needed.
+ n := len(record) - recordHeaderLen
+ record[3] = byte(n >> 8)
+ record[4] = byte(n)
+ hc.incSeq()
+
+ return record, nil
+}
+
+// RecordHeaderError is returned when a TLS record header is invalid.
+type RecordHeaderError struct {
+ // Msg contains a human readable string that describes the error.
+ Msg string
+ // RecordHeader contains the five bytes of TLS record header that
+ // triggered the error.
+ RecordHeader [5]byte
+ // Conn provides the underlying net.Conn in the case that a client
+ // sent an initial handshake that didn't look like TLS.
+ // It is nil if there's already been a handshake or a TLS alert has
+ // been written to the connection.
+ Conn net.Conn
+}
+
+func (e RecordHeaderError) Error() string { return "tls: " + e.Msg }
+
+func (c *Conn) newRecordHeaderError(conn net.Conn, msg string) (err RecordHeaderError) {
+ err.Msg = msg
+ err.Conn = conn
+ copy(err.RecordHeader[:], c.rawInput.Bytes())
+ return err
+}
+
+func (c *Conn) readRecord() error {
+ return c.readRecordOrCCS(false)
+}
+
+func (c *Conn) readChangeCipherSpec() error {
+ return c.readRecordOrCCS(true)
+}
+
+// readRecordOrCCS reads one or more TLS records from the connection and
+// updates the record layer state. Some invariants:
+// - c.in must be locked
+// - c.input must be empty
+//
+// During the handshake one and only one of the following will happen:
+// - c.hand grows
+// - c.in.changeCipherSpec is called
+// - an error is returned
+//
+// After the handshake one and only one of the following will happen:
+// - c.hand grows
+// - c.input is set
+// - an error is returned
+func (c *Conn) readRecordOrCCS(expectChangeCipherSpec bool) error {
+ if c.in.err != nil {
+ return c.in.err
+ }
+ handshakeComplete := c.handshakeComplete()
+
+ // This function modifies c.rawInput, which owns the c.input memory.
+ if c.input.Len() != 0 {
+ return c.in.setErrorLocked(errors.New("tls: internal error: attempted to read record with pending application data"))
+ }
+ c.input.Reset(nil)
+
+ // Read header, payload.
+ if err := c.readFromUntil(c.conn, recordHeaderLen); err != nil {
+ // RFC 8446, Section 6.1 suggests that EOF without an alertCloseNotify
+ // is an error, but popular web sites seem to do this, so we accept it
+ // if and only if at the record boundary.
+ if err == io.ErrUnexpectedEOF && c.rawInput.Len() == 0 {
+ err = io.EOF
+ }
+ if e, ok := err.(net.Error); !ok || !e.Temporary() {
+ c.in.setErrorLocked(err)
+ }
+ return err
+ }
+ hdr := c.rawInput.Bytes()[:recordHeaderLen]
+ typ := recordType(hdr[0])
+
+ // No valid TLS record has a type of 0x80, however SSLv2 handshakes
+ // start with a uint16 length where the MSB is set and the first record
+ // is always < 256 bytes long. Therefore typ == 0x80 strongly suggests
+ // an SSLv2 client.
+ if !handshakeComplete && typ == 0x80 {
+ c.sendAlert(alertProtocolVersion)
+ return c.in.setErrorLocked(c.newRecordHeaderError(nil, "unsupported SSLv2 handshake received"))
+ }
+
+ vers := uint16(hdr[1])<<8 | uint16(hdr[2])
+ n := int(hdr[3])<<8 | int(hdr[4])
+ if c.haveVers && c.vers != VersionTLS13 && vers != c.vers {
+ c.sendAlert(alertProtocolVersion)
+ msg := fmt.Sprintf("received record with version %x when expecting version %x", vers, c.vers)
+ return c.in.setErrorLocked(c.newRecordHeaderError(nil, msg))
+ }
+ if !c.haveVers {
+ // First message, be extra suspicious: this might not be a TLS
+ // client. Bail out before reading a full 'body', if possible.
+ // The current max version is 3.3 so if the version is >= 16.0,
+ // it's probably not real.
+ if (typ != recordTypeAlert && typ != recordTypeHandshake) || vers >= 0x1000 {
+ return c.in.setErrorLocked(c.newRecordHeaderError(c.conn, "first record does not look like a TLS handshake"))
+ }
+ }
+ if c.vers == VersionTLS13 && n > maxCiphertextTLS13 || n > maxCiphertext {
+ c.sendAlert(alertRecordOverflow)
+ msg := fmt.Sprintf("oversized record received with length %d", n)
+ return c.in.setErrorLocked(c.newRecordHeaderError(nil, msg))
+ }
+ if err := c.readFromUntil(c.conn, recordHeaderLen+n); err != nil {
+ if e, ok := err.(net.Error); !ok || !e.Temporary() {
+ c.in.setErrorLocked(err)
+ }
+ return err
+ }
+
+ // Process message.
+ record := c.rawInput.Next(recordHeaderLen + n)
+ data, typ, err := c.in.decrypt(record)
+ if err != nil {
+ return c.in.setErrorLocked(c.sendAlert(err.(alert)))
+ }
+ if len(data) > maxPlaintext {
+ return c.in.setErrorLocked(c.sendAlert(alertRecordOverflow))
+ }
+
+ // Application Data messages are always protected.
+ if c.in.cipher == nil && typ == recordTypeApplicationData {
+ return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
+ }
+
+ if typ != recordTypeAlert && typ != recordTypeChangeCipherSpec && len(data) > 0 {
+ // This is a state-advancing message: reset the retry count.
+ c.retryCount = 0
+ }
+
+ // Handshake messages MUST NOT be interleaved with other record types in TLS 1.3.
+ if c.vers == VersionTLS13 && typ != recordTypeHandshake && c.hand.Len() > 0 {
+ return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
+ }
+
+ switch typ {
+ default:
+ return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
+
+ case recordTypeAlert:
+ if len(data) != 2 {
+ return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
+ }
+ if alert(data[1]) == alertCloseNotify {
+ return c.in.setErrorLocked(io.EOF)
+ }
+ if c.vers == VersionTLS13 {
+ return c.in.setErrorLocked(&net.OpError{Op: "remote error", Err: alert(data[1])})
+ }
+ switch data[0] {
+ case alertLevelWarning:
+ // Drop the record on the floor and retry.
+ return c.retryReadRecord(expectChangeCipherSpec)
+ case alertLevelError:
+ return c.in.setErrorLocked(&net.OpError{Op: "remote error", Err: alert(data[1])})
+ default:
+ return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
+ }
+
+ case recordTypeChangeCipherSpec:
+ if len(data) != 1 || data[0] != 1 {
+ return c.in.setErrorLocked(c.sendAlert(alertDecodeError))
+ }
+ // Handshake messages are not allowed to fragment across the CCS.
+ if c.hand.Len() > 0 {
+ return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
+ }
+ // In TLS 1.3, change_cipher_spec records are ignored until the
+ // Finished. See RFC 8446, Appendix D.4. Note that according to Section
+ // 5, a server can send a ChangeCipherSpec before its ServerHello, when
+ // c.vers is still unset. That's not useful though and suspicious if the
+ // server then selects a lower protocol version, so don't allow that.
+ if c.vers == VersionTLS13 {
+ return c.retryReadRecord(expectChangeCipherSpec)
+ }
+ if !expectChangeCipherSpec {
+ return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
+ }
+ if err := c.in.changeCipherSpec(); err != nil {
+ return c.in.setErrorLocked(c.sendAlert(err.(alert)))
+ }
+
+ case recordTypeApplicationData:
+ if !handshakeComplete || expectChangeCipherSpec {
+ return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
+ }
+ // Some OpenSSL servers send empty records in order to randomize the
+ // CBC IV. Ignore a limited number of empty records.
+ if len(data) == 0 {
+ return c.retryReadRecord(expectChangeCipherSpec)
+ }
+ // Note that data is owned by c.rawInput, following the Next call above,
+ // to avoid copying the plaintext. This is safe because c.rawInput is
+ // not read from or written to until c.input is drained.
+ c.input.Reset(data)
+
+ case recordTypeHandshake:
+ if len(data) == 0 || expectChangeCipherSpec {
+ return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
+ }
+ c.hand.Write(data)
+ }
+
+ return nil
+}
+
+// retryReadRecord recurs into readRecordOrCCS to drop a non-advancing record, like
+// a warning alert, empty application_data, or a change_cipher_spec in TLS 1.3.
+func (c *Conn) retryReadRecord(expectChangeCipherSpec bool) error {
+ c.retryCount++
+ if c.retryCount > maxUselessRecords {
+ c.sendAlert(alertUnexpectedMessage)
+ return c.in.setErrorLocked(errors.New("tls: too many ignored records"))
+ }
+ return c.readRecordOrCCS(expectChangeCipherSpec)
+}
+
+// atLeastReader reads from R, stopping with EOF once at least N bytes have been
+// read. It is different from an io.LimitedReader in that it doesn't cut short
+// the last Read call, and in that it considers an early EOF an error.
+type atLeastReader struct {
+ R io.Reader
+ N int64
+}
+
+func (r *atLeastReader) Read(p []byte) (int, error) {
+ if r.N <= 0 {
+ return 0, io.EOF
+ }
+ n, err := r.R.Read(p)
+ r.N -= int64(n) // won't underflow unless len(p) >= n > 9223372036854775809
+ if r.N > 0 && err == io.EOF {
+ return n, io.ErrUnexpectedEOF
+ }
+ if r.N <= 0 && err == nil {
+ return n, io.EOF
+ }
+ return n, err
+}
+
+// readFromUntil reads from r into c.rawInput until c.rawInput contains
+// at least n bytes or else returns an error.
+func (c *Conn) readFromUntil(r io.Reader, n int) error {
+ if c.rawInput.Len() >= n {
+ return nil
+ }
+ needs := n - c.rawInput.Len()
+ // There might be extra input waiting on the wire. Make a best effort
+ // attempt to fetch it so that it can be used in (*Conn).Read to
+ // "predict" closeNotify alerts.
+ c.rawInput.Grow(needs + bytes.MinRead)
+ _, err := c.rawInput.ReadFrom(&atLeastReader{r, int64(needs)})
+ return err
+}
+
+// sendAlert sends a TLS alert message.
+func (c *Conn) sendAlertLocked(err alert) error {
+ switch err {
+ case alertNoRenegotiation, alertCloseNotify:
+ c.tmp[0] = alertLevelWarning
+ default:
+ c.tmp[0] = alertLevelError
+ }
+ c.tmp[1] = byte(err)
+
+ _, writeErr := c.writeRecordLocked(recordTypeAlert, c.tmp[0:2])
+ if err == alertCloseNotify {
+ // closeNotify is a special case in that it isn't an error.
+ return writeErr
+ }
+
+ return c.out.setErrorLocked(&net.OpError{Op: "local error", Err: err})
+}
+
+// sendAlert sends a TLS alert message.
+func (c *Conn) sendAlert(err alert) error {
+ c.out.Lock()
+ defer c.out.Unlock()
+ return c.sendAlertLocked(err)
+}
+
+const (
+ // tcpMSSEstimate is a conservative estimate of the TCP maximum segment
+ // size (MSS). A constant is used, rather than querying the kernel for
+ // the actual MSS, to avoid complexity. The value here is the IPv6
+ // minimum MTU (1280 bytes) minus the overhead of an IPv6 header (40
+ // bytes) and a TCP header with timestamps (32 bytes).
+ tcpMSSEstimate = 1208
+
+ // recordSizeBoostThreshold is the number of bytes of application data
+ // sent after which the TLS record size will be increased to the
+ // maximum.
+ recordSizeBoostThreshold = 128 * 1024
+)
+
+// maxPayloadSizeForWrite returns the maximum TLS payload size to use for the
+// next application data record. There is the following trade-off:
+//
+// - For latency-sensitive applications, such as web browsing, each TLS
+// record should fit in one TCP segment.
+// - For throughput-sensitive applications, such as large file transfers,
+// larger TLS records better amortize framing and encryption overheads.
+//
+// A simple heuristic that works well in practice is to use small records for
+// the first 1MB of data, then use larger records for subsequent data, and
+// reset back to smaller records after the connection becomes idle. See "High
+// Performance Web Networking", Chapter 4, or:
+// https://www.igvita.com/2013/10/24/optimizing-tls-record-size-and-buffering-latency/
+//
+// In the interests of simplicity and determinism, this code does not attempt
+// to reset the record size once the connection is idle, however.
+func (c *Conn) maxPayloadSizeForWrite(typ recordType) int {
+ if c.config.DynamicRecordSizingDisabled || typ != recordTypeApplicationData {
+ return maxPlaintext
+ }
+
+ if c.bytesSent >= recordSizeBoostThreshold {
+ return maxPlaintext
+ }
+
+ // Subtract TLS overheads to get the maximum payload size.
+ payloadBytes := tcpMSSEstimate - recordHeaderLen - c.out.explicitNonceLen()
+ if c.out.cipher != nil {
+ switch ciph := c.out.cipher.(type) {
+ case cipher.Stream:
+ payloadBytes -= c.out.mac.Size()
+ case cipher.AEAD:
+ payloadBytes -= ciph.Overhead()
+ case cbcMode:
+ blockSize := ciph.BlockSize()
+ // The payload must fit in a multiple of blockSize, with
+ // room for at least one padding byte.
+ payloadBytes = (payloadBytes & ^(blockSize - 1)) - 1
+ // The MAC is appended before padding so affects the
+ // payload size directly.
+ payloadBytes -= c.out.mac.Size()
+ default:
+ panic("unknown cipher type")
+ }
+ }
+ if c.vers == VersionTLS13 {
+ payloadBytes-- // encrypted ContentType
+ }
+
+ // Allow packet growth in arithmetic progression up to max.
+ pkt := c.packetsSent
+ c.packetsSent++
+ if pkt > 1000 {
+ return maxPlaintext // avoid overflow in multiply below
+ }
+
+ n := payloadBytes * int(pkt+1)
+ if n > maxPlaintext {
+ n = maxPlaintext
+ }
+ return n
+}
+
+func (c *Conn) write(data []byte) (int, error) {
+ if c.buffering {
+ c.sendBuf = append(c.sendBuf, data...)
+ return len(data), nil
+ }
+
+ n, err := c.conn.Write(data)
+ c.bytesSent += int64(n)
+ return n, err
+}
+
+func (c *Conn) flush() (int, error) {
+ if len(c.sendBuf) == 0 {
+ return 0, nil
+ }
+
+ n, err := c.conn.Write(c.sendBuf)
+ c.bytesSent += int64(n)
+ c.sendBuf = nil
+ c.buffering = false
+ return n, err
+}
+
+// outBufPool pools the record-sized scratch buffers used by writeRecordLocked.
+var outBufPool = sync.Pool{
+ New: func() any {
+ return new([]byte)
+ },
+}
+
+// writeRecordLocked writes a TLS record with the given type and payload to the
+// connection and updates the record layer state.
+func (c *Conn) writeRecordLocked(typ recordType, data []byte) (int, error) {
+ outBufPtr := outBufPool.Get().(*[]byte)
+ outBuf := *outBufPtr
+ defer func() {
+ // You might be tempted to simplify this by just passing &outBuf to Put,
+ // but that would make the local copy of the outBuf slice header escape
+ // to the heap, causing an allocation. Instead, we keep around the
+ // pointer to the slice header returned by Get, which is already on the
+ // heap, and overwrite and return that.
+ *outBufPtr = outBuf
+ outBufPool.Put(outBufPtr)
+ }()
+
+ var n int
+ for len(data) > 0 {
+ m := len(data)
+ if maxPayload := c.maxPayloadSizeForWrite(typ); m > maxPayload {
+ m = maxPayload
+ }
+
+ _, outBuf = sliceForAppend(outBuf[:0], recordHeaderLen)
+ outBuf[0] = byte(typ)
+ vers := c.vers
+ if vers == 0 {
+ // Some TLS servers fail if the record version is
+ // greater than TLS 1.0 for the initial ClientHello.
+ vers = VersionTLS10
+ } else if vers == VersionTLS13 {
+ // TLS 1.3 froze the record layer version to 1.2.
+ // See RFC 8446, Section 5.1.
+ vers = VersionTLS12
+ }
+ outBuf[1] = byte(vers >> 8)
+ outBuf[2] = byte(vers)
+ outBuf[3] = byte(m >> 8)
+ outBuf[4] = byte(m)
+
+ var err error
+ outBuf, err = c.out.encrypt(outBuf, data[:m], c.config.rand())
+ if err != nil {
+ return n, err
+ }
+ if _, err := c.write(outBuf); err != nil {
+ return n, err
+ }
+ n += m
+ data = data[m:]
+ }
+
+ if typ == recordTypeChangeCipherSpec && c.vers != VersionTLS13 {
+ if err := c.out.changeCipherSpec(); err != nil {
+ return n, c.sendAlertLocked(err.(alert))
+ }
+ }
+
+ return n, nil
+}
+
+// writeHandshakeRecord writes a handshake message to the connection and updates
+// the record layer state. If transcript is non-nil the marshalled message is
+// written to it.
+func (c *Conn) writeHandshakeRecord(msg handshakeMessage, transcript transcriptHash) (int, error) {
+ c.out.Lock()
+ defer c.out.Unlock()
+
+ data, err := msg.marshal()
+ if err != nil {
+ return 0, err
+ }
+ if transcript != nil {
+ transcript.Write(data)
+ }
+
+ return c.writeRecordLocked(recordTypeHandshake, data)
+}
+
+// writeChangeCipherRecord writes a ChangeCipherSpec message to the connection and
+// updates the record layer state.
+func (c *Conn) writeChangeCipherRecord() error {
+ c.out.Lock()
+ defer c.out.Unlock()
+ _, err := c.writeRecordLocked(recordTypeChangeCipherSpec, []byte{1})
+ return err
+}
+
+// readHandshake reads the next handshake message from
+// the record layer. If transcript is non-nil, the message
+// is written to the passed transcriptHash.
+func (c *Conn) readHandshake(transcript transcriptHash) (any, error) {
+ for c.hand.Len() < 4 {
+ if err := c.readRecord(); err != nil {
+ return nil, err
+ }
+ }
+
+ data := c.hand.Bytes()
+ n := int(data[1])<<16 | int(data[2])<<8 | int(data[3])
+ if n > maxHandshake {
+ c.sendAlertLocked(alertInternalError)
+ return nil, c.in.setErrorLocked(fmt.Errorf("tls: handshake message of length %d bytes exceeds maximum of %d bytes", n, maxHandshake))
+ }
+ for c.hand.Len() < 4+n {
+ if err := c.readRecord(); err != nil {
+ return nil, err
+ }
+ }
+ data = c.hand.Next(4 + n)
+ var m handshakeMessage
+ switch data[0] {
+ case typeHelloRequest:
+ m = new(helloRequestMsg)
+ case typeClientHello:
+ m = new(clientHelloMsg)
+ case typeServerHello:
+ m = new(serverHelloMsg)
+ case typeNewSessionTicket:
+ if c.vers == VersionTLS13 {
+ m = new(newSessionTicketMsgTLS13)
+ } else {
+ m = new(newSessionTicketMsg)
+ }
+ case typeCertificate:
+ if c.vers == VersionTLS13 {
+ m = new(certificateMsgTLS13)
+ } else {
+ m = new(certificateMsg)
+ }
+ case typeCertificateRequest:
+ if c.vers == VersionTLS13 {
+ m = new(certificateRequestMsgTLS13)
+ } else {
+ m = &certificateRequestMsg{
+ hasSignatureAlgorithm: c.vers >= VersionTLS12,
+ }
+ }
+ case typeCertificateStatus:
+ m = new(certificateStatusMsg)
+ case typeServerKeyExchange:
+ m = new(serverKeyExchangeMsg)
+ case typeServerHelloDone:
+ m = new(serverHelloDoneMsg)
+ case typeClientKeyExchange:
+ m = new(clientKeyExchangeMsg)
+ case typeCertificateVerify:
+ m = &certificateVerifyMsg{
+ hasSignatureAlgorithm: c.vers >= VersionTLS12,
+ }
+ case typeFinished:
+ m = new(finishedMsg)
+ case typeEncryptedExtensions:
+ m = new(encryptedExtensionsMsg)
+ case typeEndOfEarlyData:
+ m = new(endOfEarlyDataMsg)
+ case typeKeyUpdate:
+ m = new(keyUpdateMsg)
+ default:
+ return nil, c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
+ }
+
+ // The handshake message unmarshalers
+ // expect to be able to keep references to data,
+ // so pass in a fresh copy that won't be overwritten.
+ data = append([]byte(nil), data...)
+
+ if !m.unmarshal(data) {
+ return nil, c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
+ }
+
+ if transcript != nil {
+ transcript.Write(data)
+ }
+
+ return m, nil
+}
+
+var (
+ errShutdown = errors.New("tls: protocol is shutdown")
+)
+
+// Write writes data to the connection.
+//
+// As Write calls Handshake, in order to prevent indefinite blocking a deadline
+// must be set for both Read and Write before Write is called when the handshake
+// has not yet completed. See SetDeadline, SetReadDeadline, and
+// SetWriteDeadline.
+func (c *Conn) Write(b []byte) (int, error) {
+ // interlock with Close below
+ for {
+ x := atomic.LoadInt32(&c.activeCall)
+ if x&1 != 0 {
+ return 0, net.ErrClosed
+ }
+ if atomic.CompareAndSwapInt32(&c.activeCall, x, x+2) {
+ break
+ }
+ }
+ defer atomic.AddInt32(&c.activeCall, -2)
+
+ if err := c.Handshake(); err != nil {
+ return 0, err
+ }
+
+ c.out.Lock()
+ defer c.out.Unlock()
+
+ if err := c.out.err; err != nil {
+ return 0, err
+ }
+
+ if !c.handshakeComplete() {
+ return 0, alertInternalError
+ }
+
+ if c.closeNotifySent {
+ return 0, errShutdown
+ }
+
+ // TLS 1.0 is susceptible to a chosen-plaintext
+ // attack when using block mode ciphers due to predictable IVs.
+ // This can be prevented by splitting each Application Data
+ // record into two records, effectively randomizing the IV.
+ //
+ // https://www.openssl.org/~bodo/tls-cbc.txt
+ // https://bugzilla.mozilla.org/show_bug.cgi?id=665814
+ // https://www.imperialviolet.org/2012/01/15/beastfollowup.html
+
+ var m int
+ if len(b) > 1 && c.vers == VersionTLS10 {
+ if _, ok := c.out.cipher.(cipher.BlockMode); ok {
+ n, err := c.writeRecordLocked(recordTypeApplicationData, b[:1])
+ if err != nil {
+ return n, c.out.setErrorLocked(err)
+ }
+ m, b = 1, b[1:]
+ }
+ }
+
+ n, err := c.writeRecordLocked(recordTypeApplicationData, b)
+ return n + m, c.out.setErrorLocked(err)
+}
+
+// handleRenegotiation processes a HelloRequest handshake message.
+func (c *Conn) handleRenegotiation() error {
+ if c.vers == VersionTLS13 {
+ return errors.New("tls: internal error: unexpected renegotiation")
+ }
+
+ msg, err := c.readHandshake(nil)
+ if err != nil {
+ return err
+ }
+
+ helloReq, ok := msg.(*helloRequestMsg)
+ if !ok {
+ c.sendAlert(alertUnexpectedMessage)
+ return unexpectedMessageError(helloReq, msg)
+ }
+
+ if !c.isClient {
+ return c.sendAlert(alertNoRenegotiation)
+ }
+
+ switch c.config.Renegotiation {
+ case RenegotiateNever:
+ return c.sendAlert(alertNoRenegotiation)
+ case RenegotiateOnceAsClient:
+ if c.handshakes > 1 {
+ return c.sendAlert(alertNoRenegotiation)
+ }
+ case RenegotiateFreelyAsClient:
+ // Ok.
+ default:
+ c.sendAlert(alertInternalError)
+ return errors.New("tls: unknown Renegotiation value")
+ }
+
+ c.handshakeMutex.Lock()
+ defer c.handshakeMutex.Unlock()
+
+ atomic.StoreUint32(&c.handshakeStatus, 0)
+ if c.handshakeErr = c.clientHandshake(context.Background()); c.handshakeErr == nil {
+ c.handshakes++
+ }
+ return c.handshakeErr
+}
+
+// handlePostHandshakeMessage processes a handshake message arrived after the
+// handshake is complete. Up to TLS 1.2, it indicates the start of a renegotiation.
+func (c *Conn) handlePostHandshakeMessage() error {
+ if c.vers != VersionTLS13 {
+ return c.handleRenegotiation()
+ }
+
+ msg, err := c.readHandshake(nil)
+ if err != nil {
+ return err
+ }
+
+ c.retryCount++
+ if c.retryCount > maxUselessRecords {
+ c.sendAlert(alertUnexpectedMessage)
+ return c.in.setErrorLocked(errors.New("tls: too many non-advancing records"))
+ }
+
+ switch msg := msg.(type) {
+ case *newSessionTicketMsgTLS13:
+ return c.handleNewSessionTicket(msg)
+ case *keyUpdateMsg:
+ return c.handleKeyUpdate(msg)
+ default:
+ c.sendAlert(alertUnexpectedMessage)
+ return fmt.Errorf("tls: received unexpected handshake message of type %T", msg)
+ }
+}
+
+func (c *Conn) handleKeyUpdate(keyUpdate *keyUpdateMsg) error {
+ cipherSuite := cipherSuiteTLS13ByID(c.cipherSuite)
+ if cipherSuite == nil {
+ return c.in.setErrorLocked(c.sendAlert(alertInternalError))
+ }
+
+ newSecret := cipherSuite.nextTrafficSecret(c.in.trafficSecret)
+ c.in.setTrafficSecret(cipherSuite, newSecret)
+
+ if keyUpdate.updateRequested {
+ c.out.Lock()
+ defer c.out.Unlock()
+
+ msg := &keyUpdateMsg{}
+ msgBytes, err := msg.marshal()
+ if err != nil {
+ return err
+ }
+ _, err = c.writeRecordLocked(recordTypeHandshake, msgBytes)
+ if err != nil {
+ // Surface the error at the next write.
+ c.out.setErrorLocked(err)
+ return nil
+ }
+
+ newSecret := cipherSuite.nextTrafficSecret(c.out.trafficSecret)
+ c.out.setTrafficSecret(cipherSuite, newSecret)
+ }
+
+ return nil
+}
+
+// Read reads data from the connection.
+//
+// As Read calls Handshake, in order to prevent indefinite blocking a deadline
+// must be set for both Read and Write before Read is called when the handshake
+// has not yet completed. See SetDeadline, SetReadDeadline, and
+// SetWriteDeadline.
+func (c *Conn) Read(b []byte) (int, error) {
+ if err := c.Handshake(); err != nil {
+ return 0, err
+ }
+ if len(b) == 0 {
+ // Put this after Handshake, in case people were calling
+ // Read(nil) for the side effect of the Handshake.
+ return 0, nil
+ }
+
+ c.in.Lock()
+ defer c.in.Unlock()
+
+ for c.input.Len() == 0 {
+ if err := c.readRecord(); err != nil {
+ return 0, err
+ }
+ for c.hand.Len() > 0 {
+ if err := c.handlePostHandshakeMessage(); err != nil {
+ return 0, err
+ }
+ }
+ }
+
+ n, _ := c.input.Read(b)
+
+ // If a close-notify alert is waiting, read it so that we can return (n,
+ // EOF) instead of (n, nil), to signal to the HTTP response reading
+ // goroutine that the connection is now closed. This eliminates a race
+ // where the HTTP response reading goroutine would otherwise not observe
+ // the EOF until its next read, by which time a client goroutine might
+ // have already tried to reuse the HTTP connection for a new request.
+ // See https://golang.org/cl/76400046 and https://golang.org/issue/3514
+ if n != 0 && c.input.Len() == 0 && c.rawInput.Len() > 0 &&
+ recordType(c.rawInput.Bytes()[0]) == recordTypeAlert {
+ if err := c.readRecord(); err != nil {
+ return n, err // will be io.EOF on closeNotify
+ }
+ }
+
+ return n, nil
+}
+
+// Close closes the connection.
+func (c *Conn) Close() error {
+ // Interlock with Conn.Write above.
+ var x int32
+ for {
+ x = atomic.LoadInt32(&c.activeCall)
+ if x&1 != 0 {
+ return net.ErrClosed
+ }
+ if atomic.CompareAndSwapInt32(&c.activeCall, x, x|1) {
+ break
+ }
+ }
+ if x != 0 {
+ // io.Writer and io.Closer should not be used concurrently.
+ // If Close is called while a Write is currently in-flight,
+ // interpret that as a sign that this Close is really just
+ // being used to break the Write and/or clean up resources and
+ // avoid sending the alertCloseNotify, which may block
+ // waiting on handshakeMutex or the c.out mutex.
+ return c.conn.Close()
+ }
+
+ var alertErr error
+ if c.handshakeComplete() {
+ if err := c.closeNotify(); err != nil {
+ alertErr = fmt.Errorf("tls: failed to send closeNotify alert (but connection was closed anyway): %w", err)
+ }
+ }
+
+ if err := c.conn.Close(); err != nil {
+ return err
+ }
+ return alertErr
+}
+
+var errEarlyCloseWrite = errors.New("tls: CloseWrite called before handshake complete")
+
+// CloseWrite shuts down the writing side of the connection. It should only be
+// called once the handshake has completed and does not call CloseWrite on the
+// underlying connection. Most callers should just use Close.
+func (c *Conn) CloseWrite() error {
+ if !c.handshakeComplete() {
+ return errEarlyCloseWrite
+ }
+
+ return c.closeNotify()
+}
+
+func (c *Conn) closeNotify() error {
+ c.out.Lock()
+ defer c.out.Unlock()
+
+ if !c.closeNotifySent {
+ // Set a Write Deadline to prevent possibly blocking forever.
+ c.SetWriteDeadline(time.Now().Add(time.Second * 5))
+ c.closeNotifyErr = c.sendAlertLocked(alertCloseNotify)
+ c.closeNotifySent = true
+ // Any subsequent writes will fail.
+ c.SetWriteDeadline(time.Now())
+ }
+ return c.closeNotifyErr
+}
+
+// Handshake runs the client or server handshake
+// protocol if it has not yet been run.
+//
+// Most uses of this package need not call Handshake explicitly: the
+// first Read or Write will call it automatically.
+//
+// For control over canceling or setting a timeout on a handshake, use
+// HandshakeContext or the Dialer's DialContext method instead.
+func (c *Conn) Handshake() error {
+ return c.HandshakeContext(context.Background())
+}
+
+// HandshakeContext runs the client or server handshake
+// protocol if it has not yet been run.
+//
+// The provided Context must be non-nil. If the context is canceled before
+// the handshake is complete, the handshake is interrupted and an error is returned.
+// Once the handshake has completed, cancellation of the context will not affect the
+// connection.
+//
+// Most uses of this package need not call HandshakeContext explicitly: the
+// first Read or Write will call it automatically.
+func (c *Conn) HandshakeContext(ctx context.Context) error {
+ // Delegate to unexported method for named return
+ // without confusing documented signature.
+ return c.handshakeContext(ctx)
+}
+
+func (c *Conn) handshakeContext(ctx context.Context) (ret error) {
+ // Fast sync/atomic-based exit if there is no handshake in flight and the
+ // last one succeeded without an error. Avoids the expensive context setup
+ // and mutex for most Read and Write calls.
+ if c.handshakeComplete() {
+ return nil
+ }
+
+ handshakeCtx, cancel := context.WithCancel(ctx)
+ // Note: defer this before starting the "interrupter" goroutine
+ // so that we can tell the difference between the input being canceled and
+ // this cancellation. In the former case, we need to close the connection.
+ defer cancel()
+
+ // Start the "interrupter" goroutine, if this context might be canceled.
+ // (The background context cannot).
+ //
+ // The interrupter goroutine waits for the input context to be done and
+ // closes the connection if this happens before the function returns.
+ if ctx.Done() != nil {
+ done := make(chan struct{})
+ interruptRes := make(chan error, 1)
+ defer func() {
+ close(done)
+ if ctxErr := <-interruptRes; ctxErr != nil {
+ // Return context error to user.
+ ret = ctxErr
+ }
+ }()
+ go func() {
+ select {
+ case <-handshakeCtx.Done():
+ // Close the connection, discarding the error
+ _ = c.conn.Close()
+ interruptRes <- handshakeCtx.Err()
+ case <-done:
+ interruptRes <- nil
+ }
+ }()
+ }
+
+ c.handshakeMutex.Lock()
+ defer c.handshakeMutex.Unlock()
+
+ if err := c.handshakeErr; err != nil {
+ return err
+ }
+ if c.handshakeComplete() {
+ return nil
+ }
+
+ c.in.Lock()
+ defer c.in.Unlock()
+
+ c.handshakeErr = c.handshakeFn(handshakeCtx)
+ if c.handshakeErr == nil {
+ c.handshakes++
+ } else {
+ // If an error occurred during the handshake try to flush the
+ // alert that might be left in the buffer.
+ c.flush()
+ }
+
+ if c.handshakeErr == nil && !c.handshakeComplete() {
+ c.handshakeErr = errors.New("tls: internal error: handshake should have had a result")
+ }
+ if c.handshakeErr != nil && c.handshakeComplete() {
+ panic("tls: internal error: handshake returned an error but is marked successful")
+ }
+
+ return c.handshakeErr
+}
+
+// ConnectionState returns basic TLS details about the connection.
+func (c *Conn) ConnectionState() ConnectionState {
+ c.handshakeMutex.Lock()
+ defer c.handshakeMutex.Unlock()
+ return c.connectionStateLocked()
+}
+
+func (c *Conn) connectionStateLocked() ConnectionState {
+ var state ConnectionState
+ state.HandshakeComplete = c.handshakeComplete()
+ state.Version = c.vers
+ state.NegotiatedProtocol = c.clientProtocol
+ state.DidResume = c.didResume
+ state.NegotiatedProtocolIsMutual = true
+ state.ServerName = c.serverName
+ state.CipherSuite = c.cipherSuite
+ state.PeerCertificates = c.peerCertificates
+ state.VerifiedChains = c.verifiedChains
+ state.SignedCertificateTimestamps = c.scts
+ state.OCSPResponse = c.ocspResponse
+ if !c.didResume && c.vers != VersionTLS13 {
+ if c.clientFinishedIsFirst {
+ state.TLSUnique = c.clientFinished[:]
+ } else {
+ state.TLSUnique = c.serverFinished[:]
+ }
+ }
+ if c.config.Renegotiation != RenegotiateNever {
+ state.ekm = noExportedKeyingMaterial
+ } else {
+ state.ekm = c.ekm
+ }
+ return state
+}
+
+// OCSPResponse returns the stapled OCSP response from the TLS server, if
+// any. (Only valid for client connections.)
+func (c *Conn) OCSPResponse() []byte {
+ c.handshakeMutex.Lock()
+ defer c.handshakeMutex.Unlock()
+
+ return c.ocspResponse
+}
+
+// VerifyHostname checks that the peer certificate chain is valid for
+// connecting to host. If so, it returns nil; if not, it returns an error
+// describing the problem.
+func (c *Conn) VerifyHostname(host string) error {
+ c.handshakeMutex.Lock()
+ defer c.handshakeMutex.Unlock()
+ if !c.isClient {
+ return errors.New("tls: VerifyHostname called on TLS server connection")
+ }
+ if !c.handshakeComplete() {
+ return errors.New("tls: handshake has not yet been performed")
+ }
+ if len(c.verifiedChains) == 0 {
+ return errors.New("tls: handshake did not verify certificate chain")
+ }
+ return c.peerCertificates[0].VerifyHostname(host)
+}
+
+func (c *Conn) handshakeComplete() bool {
+ return atomic.LoadUint32(&c.handshakeStatus) == 1
+}