diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-28 13:18:25 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-28 13:18:25 +0000 |
commit | 109be507377fe7f6e8819ac94041d3fdcdf6fd2f (patch) | |
tree | 2806a689f8fab4a2ec9fc949830ef270a91d667d /src/runtime/mheap.go | |
parent | Initial commit. (diff) | |
download | golang-1.19-upstream.tar.xz golang-1.19-upstream.zip |
Adding upstream version 1.19.8.upstream/1.19.8upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/runtime/mheap.go')
-rw-r--r-- | src/runtime/mheap.go | 2166 |
1 files changed, 2166 insertions, 0 deletions
diff --git a/src/runtime/mheap.go b/src/runtime/mheap.go new file mode 100644 index 0000000..d655f2d --- /dev/null +++ b/src/runtime/mheap.go @@ -0,0 +1,2166 @@ +// Copyright 2009 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +// Page heap. +// +// See malloc.go for overview. + +package runtime + +import ( + "internal/cpu" + "internal/goarch" + "runtime/internal/atomic" + "unsafe" +) + +const ( + // minPhysPageSize is a lower-bound on the physical page size. The + // true physical page size may be larger than this. In contrast, + // sys.PhysPageSize is an upper-bound on the physical page size. + minPhysPageSize = 4096 + + // maxPhysPageSize is the maximum page size the runtime supports. + maxPhysPageSize = 512 << 10 + + // maxPhysHugePageSize sets an upper-bound on the maximum huge page size + // that the runtime supports. + maxPhysHugePageSize = pallocChunkBytes + + // pagesPerReclaimerChunk indicates how many pages to scan from the + // pageInUse bitmap at a time. Used by the page reclaimer. + // + // Higher values reduce contention on scanning indexes (such as + // h.reclaimIndex), but increase the minimum latency of the + // operation. + // + // The time required to scan this many pages can vary a lot depending + // on how many spans are actually freed. Experimentally, it can + // scan for pages at ~300 GB/ms on a 2.6GHz Core i7, but can only + // free spans at ~32 MB/ms. Using 512 pages bounds this at + // roughly 100µs. + // + // Must be a multiple of the pageInUse bitmap element size and + // must also evenly divide pagesPerArena. + pagesPerReclaimerChunk = 512 + + // physPageAlignedStacks indicates whether stack allocations must be + // physical page aligned. This is a requirement for MAP_STACK on + // OpenBSD. + physPageAlignedStacks = GOOS == "openbsd" +) + +// Main malloc heap. +// The heap itself is the "free" and "scav" treaps, +// but all the other global data is here too. +// +// mheap must not be heap-allocated because it contains mSpanLists, +// which must not be heap-allocated. +// +//go:notinheap +type mheap struct { + // lock must only be acquired on the system stack, otherwise a g + // could self-deadlock if its stack grows with the lock held. + lock mutex + + _ uint32 // 8-byte align pages so its alignment is consistent with tests. + + pages pageAlloc // page allocation data structure + + sweepgen uint32 // sweep generation, see comment in mspan; written during STW + + // allspans is a slice of all mspans ever created. Each mspan + // appears exactly once. + // + // The memory for allspans is manually managed and can be + // reallocated and move as the heap grows. + // + // In general, allspans is protected by mheap_.lock, which + // prevents concurrent access as well as freeing the backing + // store. Accesses during STW might not hold the lock, but + // must ensure that allocation cannot happen around the + // access (since that may free the backing store). + allspans []*mspan // all spans out there + + // _ uint32 // align uint64 fields on 32-bit for atomics + + // Proportional sweep + // + // These parameters represent a linear function from gcController.heapLive + // to page sweep count. The proportional sweep system works to + // stay in the black by keeping the current page sweep count + // above this line at the current gcController.heapLive. + // + // The line has slope sweepPagesPerByte and passes through a + // basis point at (sweepHeapLiveBasis, pagesSweptBasis). At + // any given time, the system is at (gcController.heapLive, + // pagesSwept) in this space. + // + // It is important that the line pass through a point we + // control rather than simply starting at a 0,0 origin + // because that lets us adjust sweep pacing at any time while + // accounting for current progress. If we could only adjust + // the slope, it would create a discontinuity in debt if any + // progress has already been made. + pagesInUse atomic.Uint64 // pages of spans in stats mSpanInUse + pagesSwept atomic.Uint64 // pages swept this cycle + pagesSweptBasis atomic.Uint64 // pagesSwept to use as the origin of the sweep ratio + sweepHeapLiveBasis uint64 // value of gcController.heapLive to use as the origin of sweep ratio; written with lock, read without + sweepPagesPerByte float64 // proportional sweep ratio; written with lock, read without + // TODO(austin): pagesInUse should be a uintptr, but the 386 + // compiler can't 8-byte align fields. + + // Page reclaimer state + + // reclaimIndex is the page index in allArenas of next page to + // reclaim. Specifically, it refers to page (i % + // pagesPerArena) of arena allArenas[i / pagesPerArena]. + // + // If this is >= 1<<63, the page reclaimer is done scanning + // the page marks. + reclaimIndex atomic.Uint64 + + // reclaimCredit is spare credit for extra pages swept. Since + // the page reclaimer works in large chunks, it may reclaim + // more than requested. Any spare pages released go to this + // credit pool. + reclaimCredit atomic.Uintptr + + // arenas is the heap arena map. It points to the metadata for + // the heap for every arena frame of the entire usable virtual + // address space. + // + // Use arenaIndex to compute indexes into this array. + // + // For regions of the address space that are not backed by the + // Go heap, the arena map contains nil. + // + // Modifications are protected by mheap_.lock. Reads can be + // performed without locking; however, a given entry can + // transition from nil to non-nil at any time when the lock + // isn't held. (Entries never transitions back to nil.) + // + // In general, this is a two-level mapping consisting of an L1 + // map and possibly many L2 maps. This saves space when there + // are a huge number of arena frames. However, on many + // platforms (even 64-bit), arenaL1Bits is 0, making this + // effectively a single-level map. In this case, arenas[0] + // will never be nil. + arenas [1 << arenaL1Bits]*[1 << arenaL2Bits]*heapArena + + // heapArenaAlloc is pre-reserved space for allocating heapArena + // objects. This is only used on 32-bit, where we pre-reserve + // this space to avoid interleaving it with the heap itself. + heapArenaAlloc linearAlloc + + // arenaHints is a list of addresses at which to attempt to + // add more heap arenas. This is initially populated with a + // set of general hint addresses, and grown with the bounds of + // actual heap arena ranges. + arenaHints *arenaHint + + // arena is a pre-reserved space for allocating heap arenas + // (the actual arenas). This is only used on 32-bit. + arena linearAlloc + + // allArenas is the arenaIndex of every mapped arena. This can + // be used to iterate through the address space. + // + // Access is protected by mheap_.lock. However, since this is + // append-only and old backing arrays are never freed, it is + // safe to acquire mheap_.lock, copy the slice header, and + // then release mheap_.lock. + allArenas []arenaIdx + + // sweepArenas is a snapshot of allArenas taken at the + // beginning of the sweep cycle. This can be read safely by + // simply blocking GC (by disabling preemption). + sweepArenas []arenaIdx + + // markArenas is a snapshot of allArenas taken at the beginning + // of the mark cycle. Because allArenas is append-only, neither + // this slice nor its contents will change during the mark, so + // it can be read safely. + markArenas []arenaIdx + + // curArena is the arena that the heap is currently growing + // into. This should always be physPageSize-aligned. + curArena struct { + base, end uintptr + } + + _ uint32 // ensure 64-bit alignment of central + + // central free lists for small size classes. + // the padding makes sure that the mcentrals are + // spaced CacheLinePadSize bytes apart, so that each mcentral.lock + // gets its own cache line. + // central is indexed by spanClass. + central [numSpanClasses]struct { + mcentral mcentral + pad [cpu.CacheLinePadSize - unsafe.Sizeof(mcentral{})%cpu.CacheLinePadSize]byte + } + + spanalloc fixalloc // allocator for span* + cachealloc fixalloc // allocator for mcache* + specialfinalizeralloc fixalloc // allocator for specialfinalizer* + specialprofilealloc fixalloc // allocator for specialprofile* + specialReachableAlloc fixalloc // allocator for specialReachable + speciallock mutex // lock for special record allocators. + arenaHintAlloc fixalloc // allocator for arenaHints + + unused *specialfinalizer // never set, just here to force the specialfinalizer type into DWARF +} + +var mheap_ mheap + +// A heapArena stores metadata for a heap arena. heapArenas are stored +// outside of the Go heap and accessed via the mheap_.arenas index. +// +//go:notinheap +type heapArena struct { + // bitmap stores the pointer/scalar bitmap for the words in + // this arena. See mbitmap.go for a description. Use the + // heapBits type to access this. + bitmap [heapArenaBitmapBytes]byte + + // spans maps from virtual address page ID within this arena to *mspan. + // For allocated spans, their pages map to the span itself. + // For free spans, only the lowest and highest pages map to the span itself. + // Internal pages map to an arbitrary span. + // For pages that have never been allocated, spans entries are nil. + // + // Modifications are protected by mheap.lock. Reads can be + // performed without locking, but ONLY from indexes that are + // known to contain in-use or stack spans. This means there + // must not be a safe-point between establishing that an + // address is live and looking it up in the spans array. + spans [pagesPerArena]*mspan + + // pageInUse is a bitmap that indicates which spans are in + // state mSpanInUse. This bitmap is indexed by page number, + // but only the bit corresponding to the first page in each + // span is used. + // + // Reads and writes are atomic. + pageInUse [pagesPerArena / 8]uint8 + + // pageMarks is a bitmap that indicates which spans have any + // marked objects on them. Like pageInUse, only the bit + // corresponding to the first page in each span is used. + // + // Writes are done atomically during marking. Reads are + // non-atomic and lock-free since they only occur during + // sweeping (and hence never race with writes). + // + // This is used to quickly find whole spans that can be freed. + // + // TODO(austin): It would be nice if this was uint64 for + // faster scanning, but we don't have 64-bit atomic bit + // operations. + pageMarks [pagesPerArena / 8]uint8 + + // pageSpecials is a bitmap that indicates which spans have + // specials (finalizers or other). Like pageInUse, only the bit + // corresponding to the first page in each span is used. + // + // Writes are done atomically whenever a special is added to + // a span and whenever the last special is removed from a span. + // Reads are done atomically to find spans containing specials + // during marking. + pageSpecials [pagesPerArena / 8]uint8 + + // checkmarks stores the debug.gccheckmark state. It is only + // used if debug.gccheckmark > 0. + checkmarks *checkmarksMap + + // zeroedBase marks the first byte of the first page in this + // arena which hasn't been used yet and is therefore already + // zero. zeroedBase is relative to the arena base. + // Increases monotonically until it hits heapArenaBytes. + // + // This field is sufficient to determine if an allocation + // needs to be zeroed because the page allocator follows an + // address-ordered first-fit policy. + // + // Read atomically and written with an atomic CAS. + zeroedBase uintptr +} + +// arenaHint is a hint for where to grow the heap arenas. See +// mheap_.arenaHints. +// +//go:notinheap +type arenaHint struct { + addr uintptr + down bool + next *arenaHint +} + +// An mspan is a run of pages. +// +// When a mspan is in the heap free treap, state == mSpanFree +// and heapmap(s->start) == span, heapmap(s->start+s->npages-1) == span. +// If the mspan is in the heap scav treap, then in addition to the +// above scavenged == true. scavenged == false in all other cases. +// +// When a mspan is allocated, state == mSpanInUse or mSpanManual +// and heapmap(i) == span for all s->start <= i < s->start+s->npages. + +// Every mspan is in one doubly-linked list, either in the mheap's +// busy list or one of the mcentral's span lists. + +// An mspan representing actual memory has state mSpanInUse, +// mSpanManual, or mSpanFree. Transitions between these states are +// constrained as follows: +// +// - A span may transition from free to in-use or manual during any GC +// phase. +// +// - During sweeping (gcphase == _GCoff), a span may transition from +// in-use to free (as a result of sweeping) or manual to free (as a +// result of stacks being freed). +// +// - During GC (gcphase != _GCoff), a span *must not* transition from +// manual or in-use to free. Because concurrent GC may read a pointer +// and then look up its span, the span state must be monotonic. +// +// Setting mspan.state to mSpanInUse or mSpanManual must be done +// atomically and only after all other span fields are valid. +// Likewise, if inspecting a span is contingent on it being +// mSpanInUse, the state should be loaded atomically and checked +// before depending on other fields. This allows the garbage collector +// to safely deal with potentially invalid pointers, since resolving +// such pointers may race with a span being allocated. +type mSpanState uint8 + +const ( + mSpanDead mSpanState = iota + mSpanInUse // allocated for garbage collected heap + mSpanManual // allocated for manual management (e.g., stack allocator) +) + +// mSpanStateNames are the names of the span states, indexed by +// mSpanState. +var mSpanStateNames = []string{ + "mSpanDead", + "mSpanInUse", + "mSpanManual", + "mSpanFree", +} + +// mSpanStateBox holds an mSpanState and provides atomic operations on +// it. This is a separate type to disallow accidental comparison or +// assignment with mSpanState. +type mSpanStateBox struct { + s mSpanState +} + +func (b *mSpanStateBox) set(s mSpanState) { + atomic.Store8((*uint8)(&b.s), uint8(s)) +} + +func (b *mSpanStateBox) get() mSpanState { + return mSpanState(atomic.Load8((*uint8)(&b.s))) +} + +// mSpanList heads a linked list of spans. +// +//go:notinheap +type mSpanList struct { + first *mspan // first span in list, or nil if none + last *mspan // last span in list, or nil if none +} + +//go:notinheap +type mspan struct { + next *mspan // next span in list, or nil if none + prev *mspan // previous span in list, or nil if none + list *mSpanList // For debugging. TODO: Remove. + + startAddr uintptr // address of first byte of span aka s.base() + npages uintptr // number of pages in span + + manualFreeList gclinkptr // list of free objects in mSpanManual spans + + // freeindex is the slot index between 0 and nelems at which to begin scanning + // for the next free object in this span. + // Each allocation scans allocBits starting at freeindex until it encounters a 0 + // indicating a free object. freeindex is then adjusted so that subsequent scans begin + // just past the newly discovered free object. + // + // If freeindex == nelem, this span has no free objects. + // + // allocBits is a bitmap of objects in this span. + // If n >= freeindex and allocBits[n/8] & (1<<(n%8)) is 0 + // then object n is free; + // otherwise, object n is allocated. Bits starting at nelem are + // undefined and should never be referenced. + // + // Object n starts at address n*elemsize + (start << pageShift). + freeindex uintptr + // TODO: Look up nelems from sizeclass and remove this field if it + // helps performance. + nelems uintptr // number of object in the span. + + // Cache of the allocBits at freeindex. allocCache is shifted + // such that the lowest bit corresponds to the bit freeindex. + // allocCache holds the complement of allocBits, thus allowing + // ctz (count trailing zero) to use it directly. + // allocCache may contain bits beyond s.nelems; the caller must ignore + // these. + allocCache uint64 + + // allocBits and gcmarkBits hold pointers to a span's mark and + // allocation bits. The pointers are 8 byte aligned. + // There are three arenas where this data is held. + // free: Dirty arenas that are no longer accessed + // and can be reused. + // next: Holds information to be used in the next GC cycle. + // current: Information being used during this GC cycle. + // previous: Information being used during the last GC cycle. + // A new GC cycle starts with the call to finishsweep_m. + // finishsweep_m moves the previous arena to the free arena, + // the current arena to the previous arena, and + // the next arena to the current arena. + // The next arena is populated as the spans request + // memory to hold gcmarkBits for the next GC cycle as well + // as allocBits for newly allocated spans. + // + // The pointer arithmetic is done "by hand" instead of using + // arrays to avoid bounds checks along critical performance + // paths. + // The sweep will free the old allocBits and set allocBits to the + // gcmarkBits. The gcmarkBits are replaced with a fresh zeroed + // out memory. + allocBits *gcBits + gcmarkBits *gcBits + + // sweep generation: + // if sweepgen == h->sweepgen - 2, the span needs sweeping + // if sweepgen == h->sweepgen - 1, the span is currently being swept + // if sweepgen == h->sweepgen, the span is swept and ready to use + // if sweepgen == h->sweepgen + 1, the span was cached before sweep began and is still cached, and needs sweeping + // if sweepgen == h->sweepgen + 3, the span was swept and then cached and is still cached + // h->sweepgen is incremented by 2 after every GC + + sweepgen uint32 + divMul uint32 // for divide by elemsize + allocCount uint16 // number of allocated objects + spanclass spanClass // size class and noscan (uint8) + state mSpanStateBox // mSpanInUse etc; accessed atomically (get/set methods) + needzero uint8 // needs to be zeroed before allocation + allocCountBeforeCache uint16 // a copy of allocCount that is stored just before this span is cached + elemsize uintptr // computed from sizeclass or from npages + limit uintptr // end of data in span + speciallock mutex // guards specials list + specials *special // linked list of special records sorted by offset. + + // freeIndexForScan is like freeindex, except that freeindex is + // used by the allocator whereas freeIndexForScan is used by the + // GC scanner. They are two fields so that the GC sees the object + // is allocated only when the object and the heap bits are + // initialized (see also the assignment of freeIndexForScan in + // mallocgc, and issue 54596). + freeIndexForScan uintptr +} + +func (s *mspan) base() uintptr { + return s.startAddr +} + +func (s *mspan) layout() (size, n, total uintptr) { + total = s.npages << _PageShift + size = s.elemsize + if size > 0 { + n = total / size + } + return +} + +// recordspan adds a newly allocated span to h.allspans. +// +// This only happens the first time a span is allocated from +// mheap.spanalloc (it is not called when a span is reused). +// +// Write barriers are disallowed here because it can be called from +// gcWork when allocating new workbufs. However, because it's an +// indirect call from the fixalloc initializer, the compiler can't see +// this. +// +// The heap lock must be held. +// +//go:nowritebarrierrec +func recordspan(vh unsafe.Pointer, p unsafe.Pointer) { + h := (*mheap)(vh) + s := (*mspan)(p) + + assertLockHeld(&h.lock) + + if len(h.allspans) >= cap(h.allspans) { + n := 64 * 1024 / goarch.PtrSize + if n < cap(h.allspans)*3/2 { + n = cap(h.allspans) * 3 / 2 + } + var new []*mspan + sp := (*slice)(unsafe.Pointer(&new)) + sp.array = sysAlloc(uintptr(n)*goarch.PtrSize, &memstats.other_sys) + if sp.array == nil { + throw("runtime: cannot allocate memory") + } + sp.len = len(h.allspans) + sp.cap = n + if len(h.allspans) > 0 { + copy(new, h.allspans) + } + oldAllspans := h.allspans + *(*notInHeapSlice)(unsafe.Pointer(&h.allspans)) = *(*notInHeapSlice)(unsafe.Pointer(&new)) + if len(oldAllspans) != 0 { + sysFree(unsafe.Pointer(&oldAllspans[0]), uintptr(cap(oldAllspans))*unsafe.Sizeof(oldAllspans[0]), &memstats.other_sys) + } + } + h.allspans = h.allspans[:len(h.allspans)+1] + h.allspans[len(h.allspans)-1] = s +} + +// A spanClass represents the size class and noscan-ness of a span. +// +// Each size class has a noscan spanClass and a scan spanClass. The +// noscan spanClass contains only noscan objects, which do not contain +// pointers and thus do not need to be scanned by the garbage +// collector. +type spanClass uint8 + +const ( + numSpanClasses = _NumSizeClasses << 1 + tinySpanClass = spanClass(tinySizeClass<<1 | 1) +) + +func makeSpanClass(sizeclass uint8, noscan bool) spanClass { + return spanClass(sizeclass<<1) | spanClass(bool2int(noscan)) +} + +func (sc spanClass) sizeclass() int8 { + return int8(sc >> 1) +} + +func (sc spanClass) noscan() bool { + return sc&1 != 0 +} + +// arenaIndex returns the index into mheap_.arenas of the arena +// containing metadata for p. This index combines of an index into the +// L1 map and an index into the L2 map and should be used as +// mheap_.arenas[ai.l1()][ai.l2()]. +// +// If p is outside the range of valid heap addresses, either l1() or +// l2() will be out of bounds. +// +// It is nosplit because it's called by spanOf and several other +// nosplit functions. +// +//go:nosplit +func arenaIndex(p uintptr) arenaIdx { + return arenaIdx((p - arenaBaseOffset) / heapArenaBytes) +} + +// arenaBase returns the low address of the region covered by heap +// arena i. +func arenaBase(i arenaIdx) uintptr { + return uintptr(i)*heapArenaBytes + arenaBaseOffset +} + +type arenaIdx uint + +func (i arenaIdx) l1() uint { + if arenaL1Bits == 0 { + // Let the compiler optimize this away if there's no + // L1 map. + return 0 + } else { + return uint(i) >> arenaL1Shift + } +} + +func (i arenaIdx) l2() uint { + if arenaL1Bits == 0 { + return uint(i) + } else { + return uint(i) & (1<<arenaL2Bits - 1) + } +} + +// inheap reports whether b is a pointer into a (potentially dead) heap object. +// It returns false for pointers into mSpanManual spans. +// Non-preemptible because it is used by write barriers. +// +//go:nowritebarrier +//go:nosplit +func inheap(b uintptr) bool { + return spanOfHeap(b) != nil +} + +// inHeapOrStack is a variant of inheap that returns true for pointers +// into any allocated heap span. +// +//go:nowritebarrier +//go:nosplit +func inHeapOrStack(b uintptr) bool { + s := spanOf(b) + if s == nil || b < s.base() { + return false + } + switch s.state.get() { + case mSpanInUse, mSpanManual: + return b < s.limit + default: + return false + } +} + +// spanOf returns the span of p. If p does not point into the heap +// arena or no span has ever contained p, spanOf returns nil. +// +// If p does not point to allocated memory, this may return a non-nil +// span that does *not* contain p. If this is a possibility, the +// caller should either call spanOfHeap or check the span bounds +// explicitly. +// +// Must be nosplit because it has callers that are nosplit. +// +//go:nosplit +func spanOf(p uintptr) *mspan { + // This function looks big, but we use a lot of constant + // folding around arenaL1Bits to get it under the inlining + // budget. Also, many of the checks here are safety checks + // that Go needs to do anyway, so the generated code is quite + // short. + ri := arenaIndex(p) + if arenaL1Bits == 0 { + // If there's no L1, then ri.l1() can't be out of bounds but ri.l2() can. + if ri.l2() >= uint(len(mheap_.arenas[0])) { + return nil + } + } else { + // If there's an L1, then ri.l1() can be out of bounds but ri.l2() can't. + if ri.l1() >= uint(len(mheap_.arenas)) { + return nil + } + } + l2 := mheap_.arenas[ri.l1()] + if arenaL1Bits != 0 && l2 == nil { // Should never happen if there's no L1. + return nil + } + ha := l2[ri.l2()] + if ha == nil { + return nil + } + return ha.spans[(p/pageSize)%pagesPerArena] +} + +// spanOfUnchecked is equivalent to spanOf, but the caller must ensure +// that p points into an allocated heap arena. +// +// Must be nosplit because it has callers that are nosplit. +// +//go:nosplit +func spanOfUnchecked(p uintptr) *mspan { + ai := arenaIndex(p) + return mheap_.arenas[ai.l1()][ai.l2()].spans[(p/pageSize)%pagesPerArena] +} + +// spanOfHeap is like spanOf, but returns nil if p does not point to a +// heap object. +// +// Must be nosplit because it has callers that are nosplit. +// +//go:nosplit +func spanOfHeap(p uintptr) *mspan { + s := spanOf(p) + // s is nil if it's never been allocated. Otherwise, we check + // its state first because we don't trust this pointer, so we + // have to synchronize with span initialization. Then, it's + // still possible we picked up a stale span pointer, so we + // have to check the span's bounds. + if s == nil || s.state.get() != mSpanInUse || p < s.base() || p >= s.limit { + return nil + } + return s +} + +// pageIndexOf returns the arena, page index, and page mask for pointer p. +// The caller must ensure p is in the heap. +func pageIndexOf(p uintptr) (arena *heapArena, pageIdx uintptr, pageMask uint8) { + ai := arenaIndex(p) + arena = mheap_.arenas[ai.l1()][ai.l2()] + pageIdx = ((p / pageSize) / 8) % uintptr(len(arena.pageInUse)) + pageMask = byte(1 << ((p / pageSize) % 8)) + return +} + +// Initialize the heap. +func (h *mheap) init() { + lockInit(&h.lock, lockRankMheap) + lockInit(&h.speciallock, lockRankMheapSpecial) + + h.spanalloc.init(unsafe.Sizeof(mspan{}), recordspan, unsafe.Pointer(h), &memstats.mspan_sys) + h.cachealloc.init(unsafe.Sizeof(mcache{}), nil, nil, &memstats.mcache_sys) + h.specialfinalizeralloc.init(unsafe.Sizeof(specialfinalizer{}), nil, nil, &memstats.other_sys) + h.specialprofilealloc.init(unsafe.Sizeof(specialprofile{}), nil, nil, &memstats.other_sys) + h.specialReachableAlloc.init(unsafe.Sizeof(specialReachable{}), nil, nil, &memstats.other_sys) + h.arenaHintAlloc.init(unsafe.Sizeof(arenaHint{}), nil, nil, &memstats.other_sys) + + // Don't zero mspan allocations. Background sweeping can + // inspect a span concurrently with allocating it, so it's + // important that the span's sweepgen survive across freeing + // and re-allocating a span to prevent background sweeping + // from improperly cas'ing it from 0. + // + // This is safe because mspan contains no heap pointers. + h.spanalloc.zero = false + + // h->mapcache needs no init + + for i := range h.central { + h.central[i].mcentral.init(spanClass(i)) + } + + h.pages.init(&h.lock, &memstats.gcMiscSys) +} + +// reclaim sweeps and reclaims at least npage pages into the heap. +// It is called before allocating npage pages to keep growth in check. +// +// reclaim implements the page-reclaimer half of the sweeper. +// +// h.lock must NOT be held. +func (h *mheap) reclaim(npage uintptr) { + // TODO(austin): Half of the time spent freeing spans is in + // locking/unlocking the heap (even with low contention). We + // could make the slow path here several times faster by + // batching heap frees. + + // Bail early if there's no more reclaim work. + if h.reclaimIndex.Load() >= 1<<63 { + return + } + + // Disable preemption so the GC can't start while we're + // sweeping, so we can read h.sweepArenas, and so + // traceGCSweepStart/Done pair on the P. + mp := acquirem() + + if trace.enabled { + traceGCSweepStart() + } + + arenas := h.sweepArenas + locked := false + for npage > 0 { + // Pull from accumulated credit first. + if credit := h.reclaimCredit.Load(); credit > 0 { + take := credit + if take > npage { + // Take only what we need. + take = npage + } + if h.reclaimCredit.CompareAndSwap(credit, credit-take) { + npage -= take + } + continue + } + + // Claim a chunk of work. + idx := uintptr(h.reclaimIndex.Add(pagesPerReclaimerChunk) - pagesPerReclaimerChunk) + if idx/pagesPerArena >= uintptr(len(arenas)) { + // Page reclaiming is done. + h.reclaimIndex.Store(1 << 63) + break + } + + if !locked { + // Lock the heap for reclaimChunk. + lock(&h.lock) + locked = true + } + + // Scan this chunk. + nfound := h.reclaimChunk(arenas, idx, pagesPerReclaimerChunk) + if nfound <= npage { + npage -= nfound + } else { + // Put spare pages toward global credit. + h.reclaimCredit.Add(nfound - npage) + npage = 0 + } + } + if locked { + unlock(&h.lock) + } + + if trace.enabled { + traceGCSweepDone() + } + releasem(mp) +} + +// reclaimChunk sweeps unmarked spans that start at page indexes [pageIdx, pageIdx+n). +// It returns the number of pages returned to the heap. +// +// h.lock must be held and the caller must be non-preemptible. Note: h.lock may be +// temporarily unlocked and re-locked in order to do sweeping or if tracing is +// enabled. +func (h *mheap) reclaimChunk(arenas []arenaIdx, pageIdx, n uintptr) uintptr { + // The heap lock must be held because this accesses the + // heapArena.spans arrays using potentially non-live pointers. + // In particular, if a span were freed and merged concurrently + // with this probing heapArena.spans, it would be possible to + // observe arbitrary, stale span pointers. + assertLockHeld(&h.lock) + + n0 := n + var nFreed uintptr + sl := sweep.active.begin() + if !sl.valid { + return 0 + } + for n > 0 { + ai := arenas[pageIdx/pagesPerArena] + ha := h.arenas[ai.l1()][ai.l2()] + + // Get a chunk of the bitmap to work on. + arenaPage := uint(pageIdx % pagesPerArena) + inUse := ha.pageInUse[arenaPage/8:] + marked := ha.pageMarks[arenaPage/8:] + if uintptr(len(inUse)) > n/8 { + inUse = inUse[:n/8] + marked = marked[:n/8] + } + + // Scan this bitmap chunk for spans that are in-use + // but have no marked objects on them. + for i := range inUse { + inUseUnmarked := atomic.Load8(&inUse[i]) &^ marked[i] + if inUseUnmarked == 0 { + continue + } + + for j := uint(0); j < 8; j++ { + if inUseUnmarked&(1<<j) != 0 { + s := ha.spans[arenaPage+uint(i)*8+j] + if s, ok := sl.tryAcquire(s); ok { + npages := s.npages + unlock(&h.lock) + if s.sweep(false) { + nFreed += npages + } + lock(&h.lock) + // Reload inUse. It's possible nearby + // spans were freed when we dropped the + // lock and we don't want to get stale + // pointers from the spans array. + inUseUnmarked = atomic.Load8(&inUse[i]) &^ marked[i] + } + } + } + } + + // Advance. + pageIdx += uintptr(len(inUse) * 8) + n -= uintptr(len(inUse) * 8) + } + sweep.active.end(sl) + if trace.enabled { + unlock(&h.lock) + // Account for pages scanned but not reclaimed. + traceGCSweepSpan((n0 - nFreed) * pageSize) + lock(&h.lock) + } + + assertLockHeld(&h.lock) // Must be locked on return. + return nFreed +} + +// spanAllocType represents the type of allocation to make, or +// the type of allocation to be freed. +type spanAllocType uint8 + +const ( + spanAllocHeap spanAllocType = iota // heap span + spanAllocStack // stack span + spanAllocPtrScalarBits // unrolled GC prog bitmap span + spanAllocWorkBuf // work buf span +) + +// manual returns true if the span allocation is manually managed. +func (s spanAllocType) manual() bool { + return s != spanAllocHeap +} + +// alloc allocates a new span of npage pages from the GC'd heap. +// +// spanclass indicates the span's size class and scannability. +// +// Returns a span that has been fully initialized. span.needzero indicates +// whether the span has been zeroed. Note that it may not be. +func (h *mheap) alloc(npages uintptr, spanclass spanClass) *mspan { + // Don't do any operations that lock the heap on the G stack. + // It might trigger stack growth, and the stack growth code needs + // to be able to allocate heap. + var s *mspan + systemstack(func() { + // To prevent excessive heap growth, before allocating n pages + // we need to sweep and reclaim at least n pages. + if !isSweepDone() { + h.reclaim(npages) + } + s = h.allocSpan(npages, spanAllocHeap, spanclass) + }) + return s +} + +// allocManual allocates a manually-managed span of npage pages. +// allocManual returns nil if allocation fails. +// +// allocManual adds the bytes used to *stat, which should be a +// memstats in-use field. Unlike allocations in the GC'd heap, the +// allocation does *not* count toward heapInUse. +// +// The memory backing the returned span may not be zeroed if +// span.needzero is set. +// +// allocManual must be called on the system stack because it may +// acquire the heap lock via allocSpan. See mheap for details. +// +// If new code is written to call allocManual, do NOT use an +// existing spanAllocType value and instead declare a new one. +// +//go:systemstack +func (h *mheap) allocManual(npages uintptr, typ spanAllocType) *mspan { + if !typ.manual() { + throw("manual span allocation called with non-manually-managed type") + } + return h.allocSpan(npages, typ, 0) +} + +// setSpans modifies the span map so [spanOf(base), spanOf(base+npage*pageSize)) +// is s. +func (h *mheap) setSpans(base, npage uintptr, s *mspan) { + p := base / pageSize + ai := arenaIndex(base) + ha := h.arenas[ai.l1()][ai.l2()] + for n := uintptr(0); n < npage; n++ { + i := (p + n) % pagesPerArena + if i == 0 { + ai = arenaIndex(base + n*pageSize) + ha = h.arenas[ai.l1()][ai.l2()] + } + ha.spans[i] = s + } +} + +// allocNeedsZero checks if the region of address space [base, base+npage*pageSize), +// assumed to be allocated, needs to be zeroed, updating heap arena metadata for +// future allocations. +// +// This must be called each time pages are allocated from the heap, even if the page +// allocator can otherwise prove the memory it's allocating is already zero because +// they're fresh from the operating system. It updates heapArena metadata that is +// critical for future page allocations. +// +// There are no locking constraints on this method. +func (h *mheap) allocNeedsZero(base, npage uintptr) (needZero bool) { + for npage > 0 { + ai := arenaIndex(base) + ha := h.arenas[ai.l1()][ai.l2()] + + zeroedBase := atomic.Loaduintptr(&ha.zeroedBase) + arenaBase := base % heapArenaBytes + if arenaBase < zeroedBase { + // We extended into the non-zeroed part of the + // arena, so this region needs to be zeroed before use. + // + // zeroedBase is monotonically increasing, so if we see this now then + // we can be sure we need to zero this memory region. + // + // We still need to update zeroedBase for this arena, and + // potentially more arenas. + needZero = true + } + // We may observe arenaBase > zeroedBase if we're racing with one or more + // allocations which are acquiring memory directly before us in the address + // space. But, because we know no one else is acquiring *this* memory, it's + // still safe to not zero. + + // Compute how far into the arena we extend into, capped + // at heapArenaBytes. + arenaLimit := arenaBase + npage*pageSize + if arenaLimit > heapArenaBytes { + arenaLimit = heapArenaBytes + } + // Increase ha.zeroedBase so it's >= arenaLimit. + // We may be racing with other updates. + for arenaLimit > zeroedBase { + if atomic.Casuintptr(&ha.zeroedBase, zeroedBase, arenaLimit) { + break + } + zeroedBase = atomic.Loaduintptr(&ha.zeroedBase) + // Double check basic conditions of zeroedBase. + if zeroedBase <= arenaLimit && zeroedBase > arenaBase { + // The zeroedBase moved into the space we were trying to + // claim. That's very bad, and indicates someone allocated + // the same region we did. + throw("potentially overlapping in-use allocations detected") + } + } + + // Move base forward and subtract from npage to move into + // the next arena, or finish. + base += arenaLimit - arenaBase + npage -= (arenaLimit - arenaBase) / pageSize + } + return +} + +// tryAllocMSpan attempts to allocate an mspan object from +// the P-local cache, but may fail. +// +// h.lock need not be held. +// +// This caller must ensure that its P won't change underneath +// it during this function. Currently to ensure that we enforce +// that the function is run on the system stack, because that's +// the only place it is used now. In the future, this requirement +// may be relaxed if its use is necessary elsewhere. +// +//go:systemstack +func (h *mheap) tryAllocMSpan() *mspan { + pp := getg().m.p.ptr() + // If we don't have a p or the cache is empty, we can't do + // anything here. + if pp == nil || pp.mspancache.len == 0 { + return nil + } + // Pull off the last entry in the cache. + s := pp.mspancache.buf[pp.mspancache.len-1] + pp.mspancache.len-- + return s +} + +// allocMSpanLocked allocates an mspan object. +// +// h.lock must be held. +// +// allocMSpanLocked must be called on the system stack because +// its caller holds the heap lock. See mheap for details. +// Running on the system stack also ensures that we won't +// switch Ps during this function. See tryAllocMSpan for details. +// +//go:systemstack +func (h *mheap) allocMSpanLocked() *mspan { + assertLockHeld(&h.lock) + + pp := getg().m.p.ptr() + if pp == nil { + // We don't have a p so just do the normal thing. + return (*mspan)(h.spanalloc.alloc()) + } + // Refill the cache if necessary. + if pp.mspancache.len == 0 { + const refillCount = len(pp.mspancache.buf) / 2 + for i := 0; i < refillCount; i++ { + pp.mspancache.buf[i] = (*mspan)(h.spanalloc.alloc()) + } + pp.mspancache.len = refillCount + } + // Pull off the last entry in the cache. + s := pp.mspancache.buf[pp.mspancache.len-1] + pp.mspancache.len-- + return s +} + +// freeMSpanLocked free an mspan object. +// +// h.lock must be held. +// +// freeMSpanLocked must be called on the system stack because +// its caller holds the heap lock. See mheap for details. +// Running on the system stack also ensures that we won't +// switch Ps during this function. See tryAllocMSpan for details. +// +//go:systemstack +func (h *mheap) freeMSpanLocked(s *mspan) { + assertLockHeld(&h.lock) + + pp := getg().m.p.ptr() + // First try to free the mspan directly to the cache. + if pp != nil && pp.mspancache.len < len(pp.mspancache.buf) { + pp.mspancache.buf[pp.mspancache.len] = s + pp.mspancache.len++ + return + } + // Failing that (or if we don't have a p), just free it to + // the heap. + h.spanalloc.free(unsafe.Pointer(s)) +} + +// allocSpan allocates an mspan which owns npages worth of memory. +// +// If typ.manual() == false, allocSpan allocates a heap span of class spanclass +// and updates heap accounting. If manual == true, allocSpan allocates a +// manually-managed span (spanclass is ignored), and the caller is +// responsible for any accounting related to its use of the span. Either +// way, allocSpan will atomically add the bytes in the newly allocated +// span to *sysStat. +// +// The returned span is fully initialized. +// +// h.lock must not be held. +// +// allocSpan must be called on the system stack both because it acquires +// the heap lock and because it must block GC transitions. +// +//go:systemstack +func (h *mheap) allocSpan(npages uintptr, typ spanAllocType, spanclass spanClass) (s *mspan) { + // Function-global state. + gp := getg() + base, scav := uintptr(0), uintptr(0) + growth := uintptr(0) + + // On some platforms we need to provide physical page aligned stack + // allocations. Where the page size is less than the physical page + // size, we already manage to do this by default. + needPhysPageAlign := physPageAlignedStacks && typ == spanAllocStack && pageSize < physPageSize + + // If the allocation is small enough, try the page cache! + // The page cache does not support aligned allocations, so we cannot use + // it if we need to provide a physical page aligned stack allocation. + pp := gp.m.p.ptr() + if !needPhysPageAlign && pp != nil && npages < pageCachePages/4 { + c := &pp.pcache + + // If the cache is empty, refill it. + if c.empty() { + lock(&h.lock) + *c = h.pages.allocToCache() + unlock(&h.lock) + } + + // Try to allocate from the cache. + base, scav = c.alloc(npages) + if base != 0 { + s = h.tryAllocMSpan() + if s != nil { + goto HaveSpan + } + // We have a base but no mspan, so we need + // to lock the heap. + } + } + + // For one reason or another, we couldn't get the + // whole job done without the heap lock. + lock(&h.lock) + + if needPhysPageAlign { + // Overallocate by a physical page to allow for later alignment. + extraPages := physPageSize / pageSize + + // Find a big enough region first, but then only allocate the + // aligned portion. We can't just allocate and then free the + // edges because we need to account for scavenged memory, and + // that's difficult with alloc. + // + // Note that we skip updates to searchAddr here. It's OK if + // it's stale and higher than normal; it'll operate correctly, + // just come with a performance cost. + base, _ = h.pages.find(npages + extraPages) + if base == 0 { + var ok bool + growth, ok = h.grow(npages + extraPages) + if !ok { + unlock(&h.lock) + return nil + } + base, _ = h.pages.find(npages + extraPages) + if base == 0 { + throw("grew heap, but no adequate free space found") + } + } + base = alignUp(base, physPageSize) + scav = h.pages.allocRange(base, npages) + } + if base == 0 { + // Try to acquire a base address. + base, scav = h.pages.alloc(npages) + if base == 0 { + var ok bool + growth, ok = h.grow(npages) + if !ok { + unlock(&h.lock) + return nil + } + base, scav = h.pages.alloc(npages) + if base == 0 { + throw("grew heap, but no adequate free space found") + } + } + } + if s == nil { + // We failed to get an mspan earlier, so grab + // one now that we have the heap lock. + s = h.allocMSpanLocked() + } + unlock(&h.lock) + +HaveSpan: + // At this point, both s != nil and base != 0, and the heap + // lock is no longer held. Initialize the span. + s.init(base, npages) + if h.allocNeedsZero(base, npages) { + s.needzero = 1 + } + nbytes := npages * pageSize + if typ.manual() { + s.manualFreeList = 0 + s.nelems = 0 + s.limit = s.base() + s.npages*pageSize + s.state.set(mSpanManual) + } else { + // We must set span properties before the span is published anywhere + // since we're not holding the heap lock. + s.spanclass = spanclass + if sizeclass := spanclass.sizeclass(); sizeclass == 0 { + s.elemsize = nbytes + s.nelems = 1 + s.divMul = 0 + } else { + s.elemsize = uintptr(class_to_size[sizeclass]) + s.nelems = nbytes / s.elemsize + s.divMul = class_to_divmagic[sizeclass] + } + + // Initialize mark and allocation structures. + s.freeindex = 0 + s.freeIndexForScan = 0 + s.allocCache = ^uint64(0) // all 1s indicating all free. + s.gcmarkBits = newMarkBits(s.nelems) + s.allocBits = newAllocBits(s.nelems) + + // It's safe to access h.sweepgen without the heap lock because it's + // only ever updated with the world stopped and we run on the + // systemstack which blocks a STW transition. + atomic.Store(&s.sweepgen, h.sweepgen) + + // Now that the span is filled in, set its state. This + // is a publication barrier for the other fields in + // the span. While valid pointers into this span + // should never be visible until the span is returned, + // if the garbage collector finds an invalid pointer, + // access to the span may race with initialization of + // the span. We resolve this race by atomically + // setting the state after the span is fully + // initialized, and atomically checking the state in + // any situation where a pointer is suspect. + s.state.set(mSpanInUse) + } + + // Decide if we need to scavenge in response to what we just allocated. + // Specifically, we track the maximum amount of memory to scavenge of all + // the alternatives below, assuming that the maximum satisfies *all* + // conditions we check (e.g. if we need to scavenge X to satisfy the + // memory limit and Y to satisfy heap-growth scavenging, and Y > X, then + // it's fine to pick Y, because the memory limit is still satisfied). + // + // It's fine to do this after allocating because we expect any scavenged + // pages not to get touched until we return. Simultaneously, it's important + // to do this before calling sysUsed because that may commit address space. + bytesToScavenge := uintptr(0) + if limit := gcController.memoryLimit.Load(); go119MemoryLimitSupport && !gcCPULimiter.limiting() { + // Assist with scavenging to maintain the memory limit by the amount + // that we expect to page in. + inuse := gcController.mappedReady.Load() + // Be careful about overflow, especially with uintptrs. Even on 32-bit platforms + // someone can set a really big memory limit that isn't maxInt64. + if uint64(scav)+inuse > uint64(limit) { + bytesToScavenge = uintptr(uint64(scav) + inuse - uint64(limit)) + } + } + if goal := scavenge.gcPercentGoal.Load(); goal != ^uint64(0) && growth > 0 { + // We just caused a heap growth, so scavenge down what will soon be used. + // By scavenging inline we deal with the failure to allocate out of + // memory fragments by scavenging the memory fragments that are least + // likely to be re-used. + // + // Only bother with this because we're not using a memory limit. We don't + // care about heap growths as long as we're under the memory limit, and the + // previous check for scaving already handles that. + if retained := heapRetained(); retained+uint64(growth) > goal { + // The scavenging algorithm requires the heap lock to be dropped so it + // can acquire it only sparingly. This is a potentially expensive operation + // so it frees up other goroutines to allocate in the meanwhile. In fact, + // they can make use of the growth we just created. + todo := growth + if overage := uintptr(retained + uint64(growth) - goal); todo > overage { + todo = overage + } + if todo > bytesToScavenge { + bytesToScavenge = todo + } + } + } + // There are a few very limited cirumstances where we won't have a P here. + // It's OK to simply skip scavenging in these cases. Something else will notice + // and pick up the tab. + if pp != nil && bytesToScavenge > 0 { + // Measure how long we spent scavenging and add that measurement to the assist + // time so we can track it for the GC CPU limiter. + // + // Limiter event tracking might be disabled if we end up here + // while on a mark worker. + start := nanotime() + track := pp.limiterEvent.start(limiterEventScavengeAssist, start) + + // Scavenge, but back out if the limiter turns on. + h.pages.scavenge(bytesToScavenge, func() bool { + return gcCPULimiter.limiting() + }) + + // Finish up accounting. + now := nanotime() + if track { + pp.limiterEvent.stop(limiterEventScavengeAssist, now) + } + h.pages.scav.assistTime.Add(now - start) + } + + // Commit and account for any scavenged memory that the span now owns. + if scav != 0 { + // sysUsed all the pages that are actually available + // in the span since some of them might be scavenged. + sysUsed(unsafe.Pointer(base), nbytes, scav) + gcController.heapReleased.add(-int64(scav)) + } + // Update stats. + gcController.heapFree.add(-int64(nbytes - scav)) + if typ == spanAllocHeap { + gcController.heapInUse.add(int64(nbytes)) + } + // Update consistent stats. + stats := memstats.heapStats.acquire() + atomic.Xaddint64(&stats.committed, int64(scav)) + atomic.Xaddint64(&stats.released, -int64(scav)) + switch typ { + case spanAllocHeap: + atomic.Xaddint64(&stats.inHeap, int64(nbytes)) + case spanAllocStack: + atomic.Xaddint64(&stats.inStacks, int64(nbytes)) + case spanAllocPtrScalarBits: + atomic.Xaddint64(&stats.inPtrScalarBits, int64(nbytes)) + case spanAllocWorkBuf: + atomic.Xaddint64(&stats.inWorkBufs, int64(nbytes)) + } + memstats.heapStats.release() + + // Publish the span in various locations. + + // This is safe to call without the lock held because the slots + // related to this span will only ever be read or modified by + // this thread until pointers into the span are published (and + // we execute a publication barrier at the end of this function + // before that happens) or pageInUse is updated. + h.setSpans(s.base(), npages, s) + + if !typ.manual() { + // Mark in-use span in arena page bitmap. + // + // This publishes the span to the page sweeper, so + // it's imperative that the span be completely initialized + // prior to this line. + arena, pageIdx, pageMask := pageIndexOf(s.base()) + atomic.Or8(&arena.pageInUse[pageIdx], pageMask) + + // Update related page sweeper stats. + h.pagesInUse.Add(int64(npages)) + } + + // Make sure the newly allocated span will be observed + // by the GC before pointers into the span are published. + publicationBarrier() + + return s +} + +// Try to add at least npage pages of memory to the heap, +// returning how much the heap grew by and whether it worked. +// +// h.lock must be held. +func (h *mheap) grow(npage uintptr) (uintptr, bool) { + assertLockHeld(&h.lock) + + // We must grow the heap in whole palloc chunks. + // We call sysMap below but note that because we + // round up to pallocChunkPages which is on the order + // of MiB (generally >= to the huge page size) we + // won't be calling it too much. + ask := alignUp(npage, pallocChunkPages) * pageSize + + totalGrowth := uintptr(0) + // This may overflow because ask could be very large + // and is otherwise unrelated to h.curArena.base. + end := h.curArena.base + ask + nBase := alignUp(end, physPageSize) + if nBase > h.curArena.end || /* overflow */ end < h.curArena.base { + // Not enough room in the current arena. Allocate more + // arena space. This may not be contiguous with the + // current arena, so we have to request the full ask. + av, asize := h.sysAlloc(ask) + if av == nil { + inUse := gcController.heapFree.load() + gcController.heapReleased.load() + gcController.heapInUse.load() + print("runtime: out of memory: cannot allocate ", ask, "-byte block (", inUse, " in use)\n") + return 0, false + } + + if uintptr(av) == h.curArena.end { + // The new space is contiguous with the old + // space, so just extend the current space. + h.curArena.end = uintptr(av) + asize + } else { + // The new space is discontiguous. Track what + // remains of the current space and switch to + // the new space. This should be rare. + if size := h.curArena.end - h.curArena.base; size != 0 { + // Transition this space from Reserved to Prepared and mark it + // as released since we'll be able to start using it after updating + // the page allocator and releasing the lock at any time. + sysMap(unsafe.Pointer(h.curArena.base), size, &gcController.heapReleased) + // Update stats. + stats := memstats.heapStats.acquire() + atomic.Xaddint64(&stats.released, int64(size)) + memstats.heapStats.release() + // Update the page allocator's structures to make this + // space ready for allocation. + h.pages.grow(h.curArena.base, size) + totalGrowth += size + } + // Switch to the new space. + h.curArena.base = uintptr(av) + h.curArena.end = uintptr(av) + asize + } + + // Recalculate nBase. + // We know this won't overflow, because sysAlloc returned + // a valid region starting at h.curArena.base which is at + // least ask bytes in size. + nBase = alignUp(h.curArena.base+ask, physPageSize) + } + + // Grow into the current arena. + v := h.curArena.base + h.curArena.base = nBase + + // Transition the space we're going to use from Reserved to Prepared. + // + // The allocation is always aligned to the heap arena + // size which is always > physPageSize, so its safe to + // just add directly to heapReleased. + sysMap(unsafe.Pointer(v), nBase-v, &gcController.heapReleased) + + // The memory just allocated counts as both released + // and idle, even though it's not yet backed by spans. + stats := memstats.heapStats.acquire() + atomic.Xaddint64(&stats.released, int64(nBase-v)) + memstats.heapStats.release() + + // Update the page allocator's structures to make this + // space ready for allocation. + h.pages.grow(v, nBase-v) + totalGrowth += nBase - v + return totalGrowth, true +} + +// Free the span back into the heap. +func (h *mheap) freeSpan(s *mspan) { + systemstack(func() { + lock(&h.lock) + if msanenabled { + // Tell msan that this entire span is no longer in use. + base := unsafe.Pointer(s.base()) + bytes := s.npages << _PageShift + msanfree(base, bytes) + } + if asanenabled { + // Tell asan that this entire span is no longer in use. + base := unsafe.Pointer(s.base()) + bytes := s.npages << _PageShift + asanpoison(base, bytes) + } + h.freeSpanLocked(s, spanAllocHeap) + unlock(&h.lock) + }) +} + +// freeManual frees a manually-managed span returned by allocManual. +// typ must be the same as the spanAllocType passed to the allocManual that +// allocated s. +// +// This must only be called when gcphase == _GCoff. See mSpanState for +// an explanation. +// +// freeManual must be called on the system stack because it acquires +// the heap lock. See mheap for details. +// +//go:systemstack +func (h *mheap) freeManual(s *mspan, typ spanAllocType) { + s.needzero = 1 + lock(&h.lock) + h.freeSpanLocked(s, typ) + unlock(&h.lock) +} + +func (h *mheap) freeSpanLocked(s *mspan, typ spanAllocType) { + assertLockHeld(&h.lock) + + switch s.state.get() { + case mSpanManual: + if s.allocCount != 0 { + throw("mheap.freeSpanLocked - invalid stack free") + } + case mSpanInUse: + if s.allocCount != 0 || s.sweepgen != h.sweepgen { + print("mheap.freeSpanLocked - span ", s, " ptr ", hex(s.base()), " allocCount ", s.allocCount, " sweepgen ", s.sweepgen, "/", h.sweepgen, "\n") + throw("mheap.freeSpanLocked - invalid free") + } + h.pagesInUse.Add(-int64(s.npages)) + + // Clear in-use bit in arena page bitmap. + arena, pageIdx, pageMask := pageIndexOf(s.base()) + atomic.And8(&arena.pageInUse[pageIdx], ^pageMask) + default: + throw("mheap.freeSpanLocked - invalid span state") + } + + // Update stats. + // + // Mirrors the code in allocSpan. + nbytes := s.npages * pageSize + gcController.heapFree.add(int64(nbytes)) + if typ == spanAllocHeap { + gcController.heapInUse.add(-int64(nbytes)) + } + // Update consistent stats. + stats := memstats.heapStats.acquire() + switch typ { + case spanAllocHeap: + atomic.Xaddint64(&stats.inHeap, -int64(nbytes)) + case spanAllocStack: + atomic.Xaddint64(&stats.inStacks, -int64(nbytes)) + case spanAllocPtrScalarBits: + atomic.Xaddint64(&stats.inPtrScalarBits, -int64(nbytes)) + case spanAllocWorkBuf: + atomic.Xaddint64(&stats.inWorkBufs, -int64(nbytes)) + } + memstats.heapStats.release() + + // Mark the space as free. + h.pages.free(s.base(), s.npages, false) + + // Free the span structure. We no longer have a use for it. + s.state.set(mSpanDead) + h.freeMSpanLocked(s) +} + +// scavengeAll acquires the heap lock (blocking any additional +// manipulation of the page allocator) and iterates over the whole +// heap, scavenging every free page available. +func (h *mheap) scavengeAll() { + // Disallow malloc or panic while holding the heap lock. We do + // this here because this is a non-mallocgc entry-point to + // the mheap API. + gp := getg() + gp.m.mallocing++ + + released := h.pages.scavenge(^uintptr(0), nil) + + gp.m.mallocing-- + + if debug.scavtrace > 0 { + printScavTrace(released, true) + } +} + +//go:linkname runtime_debug_freeOSMemory runtime/debug.freeOSMemory +func runtime_debug_freeOSMemory() { + GC() + systemstack(func() { mheap_.scavengeAll() }) +} + +// Initialize a new span with the given start and npages. +func (span *mspan) init(base uintptr, npages uintptr) { + // span is *not* zeroed. + span.next = nil + span.prev = nil + span.list = nil + span.startAddr = base + span.npages = npages + span.allocCount = 0 + span.spanclass = 0 + span.elemsize = 0 + span.speciallock.key = 0 + span.specials = nil + span.needzero = 0 + span.freeindex = 0 + span.freeIndexForScan = 0 + span.allocBits = nil + span.gcmarkBits = nil + span.state.set(mSpanDead) + lockInit(&span.speciallock, lockRankMspanSpecial) +} + +func (span *mspan) inList() bool { + return span.list != nil +} + +// Initialize an empty doubly-linked list. +func (list *mSpanList) init() { + list.first = nil + list.last = nil +} + +func (list *mSpanList) remove(span *mspan) { + if span.list != list { + print("runtime: failed mSpanList.remove span.npages=", span.npages, + " span=", span, " prev=", span.prev, " span.list=", span.list, " list=", list, "\n") + throw("mSpanList.remove") + } + if list.first == span { + list.first = span.next + } else { + span.prev.next = span.next + } + if list.last == span { + list.last = span.prev + } else { + span.next.prev = span.prev + } + span.next = nil + span.prev = nil + span.list = nil +} + +func (list *mSpanList) isEmpty() bool { + return list.first == nil +} + +func (list *mSpanList) insert(span *mspan) { + if span.next != nil || span.prev != nil || span.list != nil { + println("runtime: failed mSpanList.insert", span, span.next, span.prev, span.list) + throw("mSpanList.insert") + } + span.next = list.first + if list.first != nil { + // The list contains at least one span; link it in. + // The last span in the list doesn't change. + list.first.prev = span + } else { + // The list contains no spans, so this is also the last span. + list.last = span + } + list.first = span + span.list = list +} + +func (list *mSpanList) insertBack(span *mspan) { + if span.next != nil || span.prev != nil || span.list != nil { + println("runtime: failed mSpanList.insertBack", span, span.next, span.prev, span.list) + throw("mSpanList.insertBack") + } + span.prev = list.last + if list.last != nil { + // The list contains at least one span. + list.last.next = span + } else { + // The list contains no spans, so this is also the first span. + list.first = span + } + list.last = span + span.list = list +} + +// takeAll removes all spans from other and inserts them at the front +// of list. +func (list *mSpanList) takeAll(other *mSpanList) { + if other.isEmpty() { + return + } + + // Reparent everything in other to list. + for s := other.first; s != nil; s = s.next { + s.list = list + } + + // Concatenate the lists. + if list.isEmpty() { + *list = *other + } else { + // Neither list is empty. Put other before list. + other.last.next = list.first + list.first.prev = other.last + list.first = other.first + } + + other.first, other.last = nil, nil +} + +const ( + _KindSpecialFinalizer = 1 + _KindSpecialProfile = 2 + // _KindSpecialReachable is a special used for tracking + // reachability during testing. + _KindSpecialReachable = 3 + // Note: The finalizer special must be first because if we're freeing + // an object, a finalizer special will cause the freeing operation + // to abort, and we want to keep the other special records around + // if that happens. +) + +//go:notinheap +type special struct { + next *special // linked list in span + offset uint16 // span offset of object + kind byte // kind of special +} + +// spanHasSpecials marks a span as having specials in the arena bitmap. +func spanHasSpecials(s *mspan) { + arenaPage := (s.base() / pageSize) % pagesPerArena + ai := arenaIndex(s.base()) + ha := mheap_.arenas[ai.l1()][ai.l2()] + atomic.Or8(&ha.pageSpecials[arenaPage/8], uint8(1)<<(arenaPage%8)) +} + +// spanHasNoSpecials marks a span as having no specials in the arena bitmap. +func spanHasNoSpecials(s *mspan) { + arenaPage := (s.base() / pageSize) % pagesPerArena + ai := arenaIndex(s.base()) + ha := mheap_.arenas[ai.l1()][ai.l2()] + atomic.And8(&ha.pageSpecials[arenaPage/8], ^(uint8(1) << (arenaPage % 8))) +} + +// Adds the special record s to the list of special records for +// the object p. All fields of s should be filled in except for +// offset & next, which this routine will fill in. +// Returns true if the special was successfully added, false otherwise. +// (The add will fail only if a record with the same p and s->kind +// already exists.) +func addspecial(p unsafe.Pointer, s *special) bool { + span := spanOfHeap(uintptr(p)) + if span == nil { + throw("addspecial on invalid pointer") + } + + // Ensure that the span is swept. + // Sweeping accesses the specials list w/o locks, so we have + // to synchronize with it. And it's just much safer. + mp := acquirem() + span.ensureSwept() + + offset := uintptr(p) - span.base() + kind := s.kind + + lock(&span.speciallock) + + // Find splice point, check for existing record. + t := &span.specials + for { + x := *t + if x == nil { + break + } + if offset == uintptr(x.offset) && kind == x.kind { + unlock(&span.speciallock) + releasem(mp) + return false // already exists + } + if offset < uintptr(x.offset) || (offset == uintptr(x.offset) && kind < x.kind) { + break + } + t = &x.next + } + + // Splice in record, fill in offset. + s.offset = uint16(offset) + s.next = *t + *t = s + spanHasSpecials(span) + unlock(&span.speciallock) + releasem(mp) + + return true +} + +// Removes the Special record of the given kind for the object p. +// Returns the record if the record existed, nil otherwise. +// The caller must FixAlloc_Free the result. +func removespecial(p unsafe.Pointer, kind uint8) *special { + span := spanOfHeap(uintptr(p)) + if span == nil { + throw("removespecial on invalid pointer") + } + + // Ensure that the span is swept. + // Sweeping accesses the specials list w/o locks, so we have + // to synchronize with it. And it's just much safer. + mp := acquirem() + span.ensureSwept() + + offset := uintptr(p) - span.base() + + var result *special + lock(&span.speciallock) + t := &span.specials + for { + s := *t + if s == nil { + break + } + // This function is used for finalizers only, so we don't check for + // "interior" specials (p must be exactly equal to s->offset). + if offset == uintptr(s.offset) && kind == s.kind { + *t = s.next + result = s + break + } + t = &s.next + } + if span.specials == nil { + spanHasNoSpecials(span) + } + unlock(&span.speciallock) + releasem(mp) + return result +} + +// The described object has a finalizer set for it. +// +// specialfinalizer is allocated from non-GC'd memory, so any heap +// pointers must be specially handled. +// +//go:notinheap +type specialfinalizer struct { + special special + fn *funcval // May be a heap pointer. + nret uintptr + fint *_type // May be a heap pointer, but always live. + ot *ptrtype // May be a heap pointer, but always live. +} + +// Adds a finalizer to the object p. Returns true if it succeeded. +func addfinalizer(p unsafe.Pointer, f *funcval, nret uintptr, fint *_type, ot *ptrtype) bool { + lock(&mheap_.speciallock) + s := (*specialfinalizer)(mheap_.specialfinalizeralloc.alloc()) + unlock(&mheap_.speciallock) + s.special.kind = _KindSpecialFinalizer + s.fn = f + s.nret = nret + s.fint = fint + s.ot = ot + if addspecial(p, &s.special) { + // This is responsible for maintaining the same + // GC-related invariants as markrootSpans in any + // situation where it's possible that markrootSpans + // has already run but mark termination hasn't yet. + if gcphase != _GCoff { + base, _, _ := findObject(uintptr(p), 0, 0) + mp := acquirem() + gcw := &mp.p.ptr().gcw + // Mark everything reachable from the object + // so it's retained for the finalizer. + scanobject(base, gcw) + // Mark the finalizer itself, since the + // special isn't part of the GC'd heap. + scanblock(uintptr(unsafe.Pointer(&s.fn)), goarch.PtrSize, &oneptrmask[0], gcw, nil) + releasem(mp) + } + return true + } + + // There was an old finalizer + lock(&mheap_.speciallock) + mheap_.specialfinalizeralloc.free(unsafe.Pointer(s)) + unlock(&mheap_.speciallock) + return false +} + +// Removes the finalizer (if any) from the object p. +func removefinalizer(p unsafe.Pointer) { + s := (*specialfinalizer)(unsafe.Pointer(removespecial(p, _KindSpecialFinalizer))) + if s == nil { + return // there wasn't a finalizer to remove + } + lock(&mheap_.speciallock) + mheap_.specialfinalizeralloc.free(unsafe.Pointer(s)) + unlock(&mheap_.speciallock) +} + +// The described object is being heap profiled. +// +//go:notinheap +type specialprofile struct { + special special + b *bucket +} + +// Set the heap profile bucket associated with addr to b. +func setprofilebucket(p unsafe.Pointer, b *bucket) { + lock(&mheap_.speciallock) + s := (*specialprofile)(mheap_.specialprofilealloc.alloc()) + unlock(&mheap_.speciallock) + s.special.kind = _KindSpecialProfile + s.b = b + if !addspecial(p, &s.special) { + throw("setprofilebucket: profile already set") + } +} + +// specialReachable tracks whether an object is reachable on the next +// GC cycle. This is used by testing. +type specialReachable struct { + special special + done bool + reachable bool +} + +// specialsIter helps iterate over specials lists. +type specialsIter struct { + pprev **special + s *special +} + +func newSpecialsIter(span *mspan) specialsIter { + return specialsIter{&span.specials, span.specials} +} + +func (i *specialsIter) valid() bool { + return i.s != nil +} + +func (i *specialsIter) next() { + i.pprev = &i.s.next + i.s = *i.pprev +} + +// unlinkAndNext removes the current special from the list and moves +// the iterator to the next special. It returns the unlinked special. +func (i *specialsIter) unlinkAndNext() *special { + cur := i.s + i.s = cur.next + *i.pprev = i.s + return cur +} + +// freeSpecial performs any cleanup on special s and deallocates it. +// s must already be unlinked from the specials list. +func freeSpecial(s *special, p unsafe.Pointer, size uintptr) { + switch s.kind { + case _KindSpecialFinalizer: + sf := (*specialfinalizer)(unsafe.Pointer(s)) + queuefinalizer(p, sf.fn, sf.nret, sf.fint, sf.ot) + lock(&mheap_.speciallock) + mheap_.specialfinalizeralloc.free(unsafe.Pointer(sf)) + unlock(&mheap_.speciallock) + case _KindSpecialProfile: + sp := (*specialprofile)(unsafe.Pointer(s)) + mProf_Free(sp.b, size) + lock(&mheap_.speciallock) + mheap_.specialprofilealloc.free(unsafe.Pointer(sp)) + unlock(&mheap_.speciallock) + case _KindSpecialReachable: + sp := (*specialReachable)(unsafe.Pointer(s)) + sp.done = true + // The creator frees these. + default: + throw("bad special kind") + panic("not reached") + } +} + +// gcBits is an alloc/mark bitmap. This is always used as *gcBits. +// +//go:notinheap +type gcBits uint8 + +// bytep returns a pointer to the n'th byte of b. +func (b *gcBits) bytep(n uintptr) *uint8 { + return addb((*uint8)(b), n) +} + +// bitp returns a pointer to the byte containing bit n and a mask for +// selecting that bit from *bytep. +func (b *gcBits) bitp(n uintptr) (bytep *uint8, mask uint8) { + return b.bytep(n / 8), 1 << (n % 8) +} + +const gcBitsChunkBytes = uintptr(64 << 10) +const gcBitsHeaderBytes = unsafe.Sizeof(gcBitsHeader{}) + +type gcBitsHeader struct { + free uintptr // free is the index into bits of the next free byte. + next uintptr // *gcBits triggers recursive type bug. (issue 14620) +} + +//go:notinheap +type gcBitsArena struct { + // gcBitsHeader // side step recursive type bug (issue 14620) by including fields by hand. + free uintptr // free is the index into bits of the next free byte; read/write atomically + next *gcBitsArena + bits [gcBitsChunkBytes - gcBitsHeaderBytes]gcBits +} + +var gcBitsArenas struct { + lock mutex + free *gcBitsArena + next *gcBitsArena // Read atomically. Write atomically under lock. + current *gcBitsArena + previous *gcBitsArena +} + +// tryAlloc allocates from b or returns nil if b does not have enough room. +// This is safe to call concurrently. +func (b *gcBitsArena) tryAlloc(bytes uintptr) *gcBits { + if b == nil || atomic.Loaduintptr(&b.free)+bytes > uintptr(len(b.bits)) { + return nil + } + // Try to allocate from this block. + end := atomic.Xadduintptr(&b.free, bytes) + if end > uintptr(len(b.bits)) { + return nil + } + // There was enough room. + start := end - bytes + return &b.bits[start] +} + +// newMarkBits returns a pointer to 8 byte aligned bytes +// to be used for a span's mark bits. +func newMarkBits(nelems uintptr) *gcBits { + blocksNeeded := uintptr((nelems + 63) / 64) + bytesNeeded := blocksNeeded * 8 + + // Try directly allocating from the current head arena. + head := (*gcBitsArena)(atomic.Loadp(unsafe.Pointer(&gcBitsArenas.next))) + if p := head.tryAlloc(bytesNeeded); p != nil { + return p + } + + // There's not enough room in the head arena. We may need to + // allocate a new arena. + lock(&gcBitsArenas.lock) + // Try the head arena again, since it may have changed. Now + // that we hold the lock, the list head can't change, but its + // free position still can. + if p := gcBitsArenas.next.tryAlloc(bytesNeeded); p != nil { + unlock(&gcBitsArenas.lock) + return p + } + + // Allocate a new arena. This may temporarily drop the lock. + fresh := newArenaMayUnlock() + // If newArenaMayUnlock dropped the lock, another thread may + // have put a fresh arena on the "next" list. Try allocating + // from next again. + if p := gcBitsArenas.next.tryAlloc(bytesNeeded); p != nil { + // Put fresh back on the free list. + // TODO: Mark it "already zeroed" + fresh.next = gcBitsArenas.free + gcBitsArenas.free = fresh + unlock(&gcBitsArenas.lock) + return p + } + + // Allocate from the fresh arena. We haven't linked it in yet, so + // this cannot race and is guaranteed to succeed. + p := fresh.tryAlloc(bytesNeeded) + if p == nil { + throw("markBits overflow") + } + + // Add the fresh arena to the "next" list. + fresh.next = gcBitsArenas.next + atomic.StorepNoWB(unsafe.Pointer(&gcBitsArenas.next), unsafe.Pointer(fresh)) + + unlock(&gcBitsArenas.lock) + return p +} + +// newAllocBits returns a pointer to 8 byte aligned bytes +// to be used for this span's alloc bits. +// newAllocBits is used to provide newly initialized spans +// allocation bits. For spans not being initialized the +// mark bits are repurposed as allocation bits when +// the span is swept. +func newAllocBits(nelems uintptr) *gcBits { + return newMarkBits(nelems) +} + +// nextMarkBitArenaEpoch establishes a new epoch for the arenas +// holding the mark bits. The arenas are named relative to the +// current GC cycle which is demarcated by the call to finishweep_m. +// +// All current spans have been swept. +// During that sweep each span allocated room for its gcmarkBits in +// gcBitsArenas.next block. gcBitsArenas.next becomes the gcBitsArenas.current +// where the GC will mark objects and after each span is swept these bits +// will be used to allocate objects. +// gcBitsArenas.current becomes gcBitsArenas.previous where the span's +// gcAllocBits live until all the spans have been swept during this GC cycle. +// The span's sweep extinguishes all the references to gcBitsArenas.previous +// by pointing gcAllocBits into the gcBitsArenas.current. +// The gcBitsArenas.previous is released to the gcBitsArenas.free list. +func nextMarkBitArenaEpoch() { + lock(&gcBitsArenas.lock) + if gcBitsArenas.previous != nil { + if gcBitsArenas.free == nil { + gcBitsArenas.free = gcBitsArenas.previous + } else { + // Find end of previous arenas. + last := gcBitsArenas.previous + for last = gcBitsArenas.previous; last.next != nil; last = last.next { + } + last.next = gcBitsArenas.free + gcBitsArenas.free = gcBitsArenas.previous + } + } + gcBitsArenas.previous = gcBitsArenas.current + gcBitsArenas.current = gcBitsArenas.next + atomic.StorepNoWB(unsafe.Pointer(&gcBitsArenas.next), nil) // newMarkBits calls newArena when needed + unlock(&gcBitsArenas.lock) +} + +// newArenaMayUnlock allocates and zeroes a gcBits arena. +// The caller must hold gcBitsArena.lock. This may temporarily release it. +func newArenaMayUnlock() *gcBitsArena { + var result *gcBitsArena + if gcBitsArenas.free == nil { + unlock(&gcBitsArenas.lock) + result = (*gcBitsArena)(sysAlloc(gcBitsChunkBytes, &memstats.gcMiscSys)) + if result == nil { + throw("runtime: cannot allocate memory") + } + lock(&gcBitsArenas.lock) + } else { + result = gcBitsArenas.free + gcBitsArenas.free = gcBitsArenas.free.next + memclrNoHeapPointers(unsafe.Pointer(result), gcBitsChunkBytes) + } + result.next = nil + // If result.bits is not 8 byte aligned adjust index so + // that &result.bits[result.free] is 8 byte aligned. + if uintptr(unsafe.Offsetof(gcBitsArena{}.bits))&7 == 0 { + result.free = 0 + } else { + result.free = 8 - (uintptr(unsafe.Pointer(&result.bits[0])) & 7) + } + return result +} |