summaryrefslogtreecommitdiffstats
path: root/src/runtime/sema_test.go
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-28 13:18:25 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-28 13:18:25 +0000
commit109be507377fe7f6e8819ac94041d3fdcdf6fd2f (patch)
tree2806a689f8fab4a2ec9fc949830ef270a91d667d /src/runtime/sema_test.go
parentInitial commit. (diff)
downloadgolang-1.19-upstream.tar.xz
golang-1.19-upstream.zip
Adding upstream version 1.19.8.upstream/1.19.8upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/runtime/sema_test.go')
-rw-r--r--src/runtime/sema_test.go170
1 files changed, 170 insertions, 0 deletions
diff --git a/src/runtime/sema_test.go b/src/runtime/sema_test.go
new file mode 100644
index 0000000..9943d2e
--- /dev/null
+++ b/src/runtime/sema_test.go
@@ -0,0 +1,170 @@
+// Copyright 2019 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package runtime_test
+
+import (
+ "fmt"
+ . "runtime"
+ "sync"
+ "sync/atomic"
+ "testing"
+)
+
+// TestSemaHandoff checks that when semrelease+handoff is
+// requested, the G that releases the semaphore yields its
+// P directly to the first waiter in line.
+// See issue 33747 for discussion.
+func TestSemaHandoff(t *testing.T) {
+ const iter = 10000
+ ok := 0
+ for i := 0; i < iter; i++ {
+ if testSemaHandoff() {
+ ok++
+ }
+ }
+ // As long as two thirds of handoffs are direct, we
+ // consider the test successful. The scheduler is
+ // nondeterministic, so this test checks that we get the
+ // desired outcome in a significant majority of cases.
+ // The actual ratio of direct handoffs is much higher
+ // (>90%) but we use a lower threshold to minimize the
+ // chances that unrelated changes in the runtime will
+ // cause the test to fail or become flaky.
+ if ok < iter*2/3 {
+ t.Fatal("direct handoff < 2/3:", ok, iter)
+ }
+}
+
+func TestSemaHandoff1(t *testing.T) {
+ if GOMAXPROCS(-1) <= 1 {
+ t.Skip("GOMAXPROCS <= 1")
+ }
+ defer GOMAXPROCS(GOMAXPROCS(-1))
+ GOMAXPROCS(1)
+ TestSemaHandoff(t)
+}
+
+func TestSemaHandoff2(t *testing.T) {
+ if GOMAXPROCS(-1) <= 2 {
+ t.Skip("GOMAXPROCS <= 2")
+ }
+ defer GOMAXPROCS(GOMAXPROCS(-1))
+ GOMAXPROCS(2)
+ TestSemaHandoff(t)
+}
+
+func testSemaHandoff() bool {
+ var sema, res uint32
+ done := make(chan struct{})
+
+ // We're testing that the current goroutine is able to yield its time slice
+ // to another goroutine. Stop the current goroutine from migrating to
+ // another CPU where it can win the race (and appear to have not yielded) by
+ // keeping the CPUs slightly busy.
+ var wg sync.WaitGroup
+ for i := 0; i < GOMAXPROCS(-1); i++ {
+ wg.Add(1)
+ go func() {
+ defer wg.Done()
+ for {
+ select {
+ case <-done:
+ return
+ default:
+ }
+ Gosched()
+ }
+ }()
+ }
+
+ wg.Add(1)
+ go func() {
+ defer wg.Done()
+ Semacquire(&sema)
+ atomic.CompareAndSwapUint32(&res, 0, 1)
+
+ Semrelease1(&sema, true, 0)
+ close(done)
+ }()
+ for SemNwait(&sema) == 0 {
+ Gosched() // wait for goroutine to block in Semacquire
+ }
+
+ // The crux of the test: we release the semaphore with handoff
+ // and immediately perform a CAS both here and in the waiter; we
+ // want the CAS in the waiter to execute first.
+ Semrelease1(&sema, true, 0)
+ atomic.CompareAndSwapUint32(&res, 0, 2)
+
+ wg.Wait() // wait for goroutines to finish to avoid data races
+
+ return res == 1 // did the waiter run first?
+}
+
+func BenchmarkSemTable(b *testing.B) {
+ for _, n := range []int{1000, 2000, 4000, 8000} {
+ b.Run(fmt.Sprintf("OneAddrCollision/n=%d", n), func(b *testing.B) {
+ tab := Escape(new(SemTable))
+ u := make([]uint32, SemTableSize+1)
+
+ b.ResetTimer()
+
+ for j := 0; j < b.N; j++ {
+ // Simulate two locks colliding on the same semaRoot.
+ //
+ // Specifically enqueue all the waiters for the first lock,
+ // then all the waiters for the second lock.
+ //
+ // Then, dequeue all the waiters from the first lock, then
+ // the second.
+ //
+ // Each enqueue/dequeue operation should be O(1), because
+ // there are exactly 2 locks. This could be O(n) if all
+ // the waiters for both locks are on the same list, as it
+ // once was.
+ for i := 0; i < n; i++ {
+ if i < n/2 {
+ tab.Enqueue(&u[0])
+ } else {
+ tab.Enqueue(&u[SemTableSize])
+ }
+ }
+ for i := 0; i < n; i++ {
+ var ok bool
+ if i < n/2 {
+ ok = tab.Dequeue(&u[0])
+ } else {
+ ok = tab.Dequeue(&u[SemTableSize])
+ }
+ if !ok {
+ b.Fatal("failed to dequeue")
+ }
+ }
+ }
+ })
+ b.Run(fmt.Sprintf("ManyAddrCollision/n=%d", n), func(b *testing.B) {
+ tab := Escape(new(SemTable))
+ u := make([]uint32, n*SemTableSize)
+
+ b.ResetTimer()
+
+ for j := 0; j < b.N; j++ {
+ // Simulate n locks colliding on the same semaRoot.
+ //
+ // Each enqueue/dequeue operation should be O(log n), because
+ // each semaRoot is a tree. This could be O(n) if it was
+ // some simpler data structure.
+ for i := 0; i < n; i++ {
+ tab.Enqueue(&u[i*SemTableSize])
+ }
+ for i := 0; i < n; i++ {
+ if !tab.Dequeue(&u[i*SemTableSize]) {
+ b.Fatal("failed to dequeue")
+ }
+ }
+ }
+ })
+ }
+}