diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-28 13:18:25 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-28 13:18:25 +0000 |
commit | 109be507377fe7f6e8819ac94041d3fdcdf6fd2f (patch) | |
tree | 2806a689f8fab4a2ec9fc949830ef270a91d667d /src/runtime/sema_test.go | |
parent | Initial commit. (diff) | |
download | golang-1.19-upstream.tar.xz golang-1.19-upstream.zip |
Adding upstream version 1.19.8.upstream/1.19.8upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/runtime/sema_test.go')
-rw-r--r-- | src/runtime/sema_test.go | 170 |
1 files changed, 170 insertions, 0 deletions
diff --git a/src/runtime/sema_test.go b/src/runtime/sema_test.go new file mode 100644 index 0000000..9943d2e --- /dev/null +++ b/src/runtime/sema_test.go @@ -0,0 +1,170 @@ +// Copyright 2019 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package runtime_test + +import ( + "fmt" + . "runtime" + "sync" + "sync/atomic" + "testing" +) + +// TestSemaHandoff checks that when semrelease+handoff is +// requested, the G that releases the semaphore yields its +// P directly to the first waiter in line. +// See issue 33747 for discussion. +func TestSemaHandoff(t *testing.T) { + const iter = 10000 + ok := 0 + for i := 0; i < iter; i++ { + if testSemaHandoff() { + ok++ + } + } + // As long as two thirds of handoffs are direct, we + // consider the test successful. The scheduler is + // nondeterministic, so this test checks that we get the + // desired outcome in a significant majority of cases. + // The actual ratio of direct handoffs is much higher + // (>90%) but we use a lower threshold to minimize the + // chances that unrelated changes in the runtime will + // cause the test to fail or become flaky. + if ok < iter*2/3 { + t.Fatal("direct handoff < 2/3:", ok, iter) + } +} + +func TestSemaHandoff1(t *testing.T) { + if GOMAXPROCS(-1) <= 1 { + t.Skip("GOMAXPROCS <= 1") + } + defer GOMAXPROCS(GOMAXPROCS(-1)) + GOMAXPROCS(1) + TestSemaHandoff(t) +} + +func TestSemaHandoff2(t *testing.T) { + if GOMAXPROCS(-1) <= 2 { + t.Skip("GOMAXPROCS <= 2") + } + defer GOMAXPROCS(GOMAXPROCS(-1)) + GOMAXPROCS(2) + TestSemaHandoff(t) +} + +func testSemaHandoff() bool { + var sema, res uint32 + done := make(chan struct{}) + + // We're testing that the current goroutine is able to yield its time slice + // to another goroutine. Stop the current goroutine from migrating to + // another CPU where it can win the race (and appear to have not yielded) by + // keeping the CPUs slightly busy. + var wg sync.WaitGroup + for i := 0; i < GOMAXPROCS(-1); i++ { + wg.Add(1) + go func() { + defer wg.Done() + for { + select { + case <-done: + return + default: + } + Gosched() + } + }() + } + + wg.Add(1) + go func() { + defer wg.Done() + Semacquire(&sema) + atomic.CompareAndSwapUint32(&res, 0, 1) + + Semrelease1(&sema, true, 0) + close(done) + }() + for SemNwait(&sema) == 0 { + Gosched() // wait for goroutine to block in Semacquire + } + + // The crux of the test: we release the semaphore with handoff + // and immediately perform a CAS both here and in the waiter; we + // want the CAS in the waiter to execute first. + Semrelease1(&sema, true, 0) + atomic.CompareAndSwapUint32(&res, 0, 2) + + wg.Wait() // wait for goroutines to finish to avoid data races + + return res == 1 // did the waiter run first? +} + +func BenchmarkSemTable(b *testing.B) { + for _, n := range []int{1000, 2000, 4000, 8000} { + b.Run(fmt.Sprintf("OneAddrCollision/n=%d", n), func(b *testing.B) { + tab := Escape(new(SemTable)) + u := make([]uint32, SemTableSize+1) + + b.ResetTimer() + + for j := 0; j < b.N; j++ { + // Simulate two locks colliding on the same semaRoot. + // + // Specifically enqueue all the waiters for the first lock, + // then all the waiters for the second lock. + // + // Then, dequeue all the waiters from the first lock, then + // the second. + // + // Each enqueue/dequeue operation should be O(1), because + // there are exactly 2 locks. This could be O(n) if all + // the waiters for both locks are on the same list, as it + // once was. + for i := 0; i < n; i++ { + if i < n/2 { + tab.Enqueue(&u[0]) + } else { + tab.Enqueue(&u[SemTableSize]) + } + } + for i := 0; i < n; i++ { + var ok bool + if i < n/2 { + ok = tab.Dequeue(&u[0]) + } else { + ok = tab.Dequeue(&u[SemTableSize]) + } + if !ok { + b.Fatal("failed to dequeue") + } + } + } + }) + b.Run(fmt.Sprintf("ManyAddrCollision/n=%d", n), func(b *testing.B) { + tab := Escape(new(SemTable)) + u := make([]uint32, n*SemTableSize) + + b.ResetTimer() + + for j := 0; j < b.N; j++ { + // Simulate n locks colliding on the same semaRoot. + // + // Each enqueue/dequeue operation should be O(log n), because + // each semaRoot is a tree. This could be O(n) if it was + // some simpler data structure. + for i := 0; i < n; i++ { + tab.Enqueue(&u[i*SemTableSize]) + } + for i := 0; i < n; i++ { + if !tab.Dequeue(&u[i*SemTableSize]) { + b.Fatal("failed to dequeue") + } + } + } + }) + } +} |