summaryrefslogtreecommitdiffstats
path: root/src/cmd/link/internal/ld/data.go
diff options
context:
space:
mode:
Diffstat (limited to 'src/cmd/link/internal/ld/data.go')
-rw-r--r--src/cmd/link/internal/ld/data.go2867
1 files changed, 2867 insertions, 0 deletions
diff --git a/src/cmd/link/internal/ld/data.go b/src/cmd/link/internal/ld/data.go
new file mode 100644
index 0000000..e1a211a
--- /dev/null
+++ b/src/cmd/link/internal/ld/data.go
@@ -0,0 +1,2867 @@
+// Derived from Inferno utils/6l/obj.c and utils/6l/span.c
+// https://bitbucket.org/inferno-os/inferno-os/src/master/utils/6l/obj.c
+// https://bitbucket.org/inferno-os/inferno-os/src/master/utils/6l/span.c
+//
+// Copyright © 1994-1999 Lucent Technologies Inc. All rights reserved.
+// Portions Copyright © 1995-1997 C H Forsyth (forsyth@terzarima.net)
+// Portions Copyright © 1997-1999 Vita Nuova Limited
+// Portions Copyright © 2000-2007 Vita Nuova Holdings Limited (www.vitanuova.com)
+// Portions Copyright © 2004,2006 Bruce Ellis
+// Portions Copyright © 2005-2007 C H Forsyth (forsyth@terzarima.net)
+// Revisions Copyright © 2000-2007 Lucent Technologies Inc. and others
+// Portions Copyright © 2009 The Go Authors. All rights reserved.
+//
+// Permission is hereby granted, free of charge, to any person obtaining a copy
+// of this software and associated documentation files (the "Software"), to deal
+// in the Software without restriction, including without limitation the rights
+// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+// copies of the Software, and to permit persons to whom the Software is
+// furnished to do so, subject to the following conditions:
+//
+// The above copyright notice and this permission notice shall be included in
+// all copies or substantial portions of the Software.
+//
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+// THE SOFTWARE.
+
+package ld
+
+import (
+ "bytes"
+ "cmd/internal/gcprog"
+ "cmd/internal/objabi"
+ "cmd/internal/sys"
+ "cmd/link/internal/loader"
+ "cmd/link/internal/sym"
+ "compress/zlib"
+ "debug/elf"
+ "encoding/binary"
+ "fmt"
+ "log"
+ "os"
+ "sort"
+ "strconv"
+ "strings"
+ "sync"
+ "sync/atomic"
+)
+
+// isRuntimeDepPkg reports whether pkg is the runtime package or its dependency
+func isRuntimeDepPkg(pkg string) bool {
+ switch pkg {
+ case "runtime",
+ "sync/atomic", // runtime may call to sync/atomic, due to go:linkname
+ "internal/abi", // used by reflectcall (and maybe more)
+ "internal/bytealg", // for IndexByte
+ "internal/cpu": // for cpu features
+ return true
+ }
+ return strings.HasPrefix(pkg, "runtime/internal/") && !strings.HasSuffix(pkg, "_test")
+}
+
+// Estimate the max size needed to hold any new trampolines created for this function. This
+// is used to determine when the section can be split if it becomes too large, to ensure that
+// the trampolines are in the same section as the function that uses them.
+func maxSizeTrampolines(ctxt *Link, ldr *loader.Loader, s loader.Sym, isTramp bool) uint64 {
+ // If thearch.Trampoline is nil, then trampoline support is not available on this arch.
+ // A trampoline does not need any dependent trampolines.
+ if thearch.Trampoline == nil || isTramp {
+ return 0
+ }
+
+ n := uint64(0)
+ relocs := ldr.Relocs(s)
+ for ri := 0; ri < relocs.Count(); ri++ {
+ r := relocs.At(ri)
+ if r.Type().IsDirectCallOrJump() {
+ n++
+ }
+ }
+
+ if ctxt.IsPPC64() {
+ return n * 16 // Trampolines in PPC64 are 4 instructions.
+ }
+ if ctxt.IsARM64() {
+ return n * 12 // Trampolines in ARM64 are 3 instructions.
+ }
+ panic("unreachable")
+}
+
+// Detect too-far jumps in function s, and add trampolines if necessary.
+// ARM, PPC64, PPC64LE and RISCV64 support trampoline insertion for internal
+// and external linking. On PPC64 and PPC64LE the text sections might be split
+// but will still insert trampolines where necessary.
+func trampoline(ctxt *Link, s loader.Sym) {
+ if thearch.Trampoline == nil {
+ return // no need or no support of trampolines on this arch
+ }
+
+ ldr := ctxt.loader
+ relocs := ldr.Relocs(s)
+ for ri := 0; ri < relocs.Count(); ri++ {
+ r := relocs.At(ri)
+ rt := r.Type()
+ if !rt.IsDirectCallOrJump() && !isPLTCall(rt) {
+ continue
+ }
+ rs := r.Sym()
+ if !ldr.AttrReachable(rs) || ldr.SymType(rs) == sym.Sxxx {
+ continue // something is wrong. skip it here and we'll emit a better error later
+ }
+
+ // RISC-V is only able to reach +/-1MiB via a JAL instruction,
+ // which we can readily exceed in the same package. As such, we
+ // need to generate trampolines when the address is unknown.
+ if ldr.SymValue(rs) == 0 && !ctxt.Target.IsRISCV64() && ldr.SymType(rs) != sym.SDYNIMPORT && ldr.SymType(rs) != sym.SUNDEFEXT {
+ if ldr.SymPkg(s) != "" && ldr.SymPkg(rs) == ldr.SymPkg(s) {
+ // Symbols in the same package are laid out together.
+ // Except that if SymPkg(s) == "", it is a host object symbol
+ // which may call an external symbol via PLT.
+ continue
+ }
+ if isRuntimeDepPkg(ldr.SymPkg(s)) && isRuntimeDepPkg(ldr.SymPkg(rs)) {
+ continue // runtime packages are laid out together
+ }
+ }
+ thearch.Trampoline(ctxt, ldr, ri, rs, s)
+ }
+}
+
+// whether rt is a (host object) relocation that will be turned into
+// a call to PLT.
+func isPLTCall(rt objabi.RelocType) bool {
+ const pcrel = 1
+ switch rt {
+ // ARM64
+ case objabi.ElfRelocOffset + objabi.RelocType(elf.R_AARCH64_CALL26),
+ objabi.ElfRelocOffset + objabi.RelocType(elf.R_AARCH64_JUMP26),
+ objabi.MachoRelocOffset + MACHO_ARM64_RELOC_BRANCH26*2 + pcrel:
+ return true
+
+ // ARM
+ case objabi.ElfRelocOffset + objabi.RelocType(elf.R_ARM_CALL),
+ objabi.ElfRelocOffset + objabi.RelocType(elf.R_ARM_PC24),
+ objabi.ElfRelocOffset + objabi.RelocType(elf.R_ARM_JUMP24):
+ return true
+ }
+ // TODO: other architectures.
+ return false
+}
+
+// FoldSubSymbolOffset computes the offset of symbol s to its top-level outer
+// symbol. Returns the top-level symbol and the offset.
+// This is used in generating external relocations.
+func FoldSubSymbolOffset(ldr *loader.Loader, s loader.Sym) (loader.Sym, int64) {
+ outer := ldr.OuterSym(s)
+ off := int64(0)
+ if outer != 0 {
+ off += ldr.SymValue(s) - ldr.SymValue(outer)
+ s = outer
+ }
+ return s, off
+}
+
+// relocsym resolve relocations in "s", updating the symbol's content
+// in "P".
+// The main loop walks through the list of relocations attached to "s"
+// and resolves them where applicable. Relocations are often
+// architecture-specific, requiring calls into the 'archreloc' and/or
+// 'archrelocvariant' functions for the architecture. When external
+// linking is in effect, it may not be possible to completely resolve
+// the address/offset for a symbol, in which case the goal is to lay
+// the groundwork for turning a given relocation into an external reloc
+// (to be applied by the external linker). For more on how relocations
+// work in general, see
+//
+// "Linkers and Loaders", by John R. Levine (Morgan Kaufmann, 1999), ch. 7
+//
+// This is a performance-critical function for the linker; be careful
+// to avoid introducing unnecessary allocations in the main loop.
+func (st *relocSymState) relocsym(s loader.Sym, P []byte) {
+ ldr := st.ldr
+ relocs := ldr.Relocs(s)
+ if relocs.Count() == 0 {
+ return
+ }
+ target := st.target
+ syms := st.syms
+ nExtReloc := 0 // number of external relocations
+ for ri := 0; ri < relocs.Count(); ri++ {
+ r := relocs.At(ri)
+ off := r.Off()
+ siz := int32(r.Siz())
+ rs := r.Sym()
+ rt := r.Type()
+ weak := r.Weak()
+ if off < 0 || off+siz > int32(len(P)) {
+ rname := ""
+ if rs != 0 {
+ rname = ldr.SymName(rs)
+ }
+ st.err.Errorf(s, "invalid relocation %s: %d+%d not in [%d,%d)", rname, off, siz, 0, len(P))
+ continue
+ }
+ if siz == 0 { // informational relocation - no work to do
+ continue
+ }
+
+ var rst sym.SymKind
+ if rs != 0 {
+ rst = ldr.SymType(rs)
+ }
+
+ if rs != 0 && (rst == sym.Sxxx || rst == sym.SXREF) {
+ // When putting the runtime but not main into a shared library
+ // these symbols are undefined and that's OK.
+ if target.IsShared() || target.IsPlugin() {
+ if ldr.SymName(rs) == "main.main" || (!target.IsPlugin() && ldr.SymName(rs) == "main..inittask") {
+ sb := ldr.MakeSymbolUpdater(rs)
+ sb.SetType(sym.SDYNIMPORT)
+ } else if strings.HasPrefix(ldr.SymName(rs), "go.info.") {
+ // Skip go.info symbols. They are only needed to communicate
+ // DWARF info between the compiler and linker.
+ continue
+ }
+ } else if target.IsPPC64() && ldr.SymName(rs) == ".TOC." {
+ // TOC symbol doesn't have a type but we do assign a value
+ // (see the address pass) and we can resolve it.
+ // TODO: give it a type.
+ } else {
+ st.err.errorUnresolved(ldr, s, rs)
+ continue
+ }
+ }
+
+ if rt >= objabi.ElfRelocOffset {
+ continue
+ }
+
+ // We need to be able to reference dynimport symbols when linking against
+ // shared libraries, and AIX, Darwin, OpenBSD and Solaris always need it.
+ if !target.IsAIX() && !target.IsDarwin() && !target.IsSolaris() && !target.IsOpenbsd() && rs != 0 && rst == sym.SDYNIMPORT && !target.IsDynlinkingGo() && !ldr.AttrSubSymbol(rs) {
+ if !(target.IsPPC64() && target.IsExternal() && ldr.SymName(rs) == ".TOC.") {
+ st.err.Errorf(s, "unhandled relocation for %s (type %d (%s) rtype %d (%s))", ldr.SymName(rs), rst, rst, rt, sym.RelocName(target.Arch, rt))
+ }
+ }
+ if rs != 0 && rst != sym.STLSBSS && !weak && rt != objabi.R_METHODOFF && !ldr.AttrReachable(rs) {
+ st.err.Errorf(s, "unreachable sym in relocation: %s", ldr.SymName(rs))
+ }
+
+ var rv sym.RelocVariant
+ if target.IsPPC64() || target.IsS390X() {
+ rv = ldr.RelocVariant(s, ri)
+ }
+
+ // TODO(mundaym): remove this special case - see issue 14218.
+ if target.IsS390X() {
+ switch rt {
+ case objabi.R_PCRELDBL:
+ rt = objabi.R_PCREL
+ rv = sym.RV_390_DBL
+ case objabi.R_CALL:
+ rv = sym.RV_390_DBL
+ }
+ }
+
+ var o int64
+ switch rt {
+ default:
+ switch siz {
+ default:
+ st.err.Errorf(s, "bad reloc size %#x for %s", uint32(siz), ldr.SymName(rs))
+ case 1:
+ o = int64(P[off])
+ case 2:
+ o = int64(target.Arch.ByteOrder.Uint16(P[off:]))
+ case 4:
+ o = int64(target.Arch.ByteOrder.Uint32(P[off:]))
+ case 8:
+ o = int64(target.Arch.ByteOrder.Uint64(P[off:]))
+ }
+ out, n, ok := thearch.Archreloc(target, ldr, syms, r, s, o)
+ if target.IsExternal() {
+ nExtReloc += n
+ }
+ if ok {
+ o = out
+ } else {
+ st.err.Errorf(s, "unknown reloc to %v: %d (%s)", ldr.SymName(rs), rt, sym.RelocName(target.Arch, rt))
+ }
+ case objabi.R_TLS_LE:
+ if target.IsExternal() && target.IsElf() {
+ nExtReloc++
+ o = 0
+ if !target.IsAMD64() {
+ o = r.Add()
+ }
+ break
+ }
+
+ if target.IsElf() && target.IsARM() {
+ // On ELF ARM, the thread pointer is 8 bytes before
+ // the start of the thread-local data block, so add 8
+ // to the actual TLS offset (r->sym->value).
+ // This 8 seems to be a fundamental constant of
+ // ELF on ARM (or maybe Glibc on ARM); it is not
+ // related to the fact that our own TLS storage happens
+ // to take up 8 bytes.
+ o = 8 + ldr.SymValue(rs)
+ } else if target.IsElf() || target.IsPlan9() || target.IsDarwin() {
+ o = int64(syms.Tlsoffset) + r.Add()
+ } else if target.IsWindows() {
+ o = r.Add()
+ } else {
+ log.Fatalf("unexpected R_TLS_LE relocation for %v", target.HeadType)
+ }
+ case objabi.R_TLS_IE:
+ if target.IsExternal() && target.IsElf() {
+ nExtReloc++
+ o = 0
+ if !target.IsAMD64() {
+ o = r.Add()
+ }
+ if target.Is386() {
+ nExtReloc++ // need two ELF relocations on 386, see ../x86/asm.go:elfreloc1
+ }
+ break
+ }
+ if target.IsPIE() && target.IsElf() {
+ // We are linking the final executable, so we
+ // can optimize any TLS IE relocation to LE.
+ if thearch.TLSIEtoLE == nil {
+ log.Fatalf("internal linking of TLS IE not supported on %v", target.Arch.Family)
+ }
+ thearch.TLSIEtoLE(P, int(off), int(siz))
+ o = int64(syms.Tlsoffset)
+ } else {
+ log.Fatalf("cannot handle R_TLS_IE (sym %s) when linking internally", ldr.SymName(s))
+ }
+ case objabi.R_ADDR:
+ if weak && !ldr.AttrReachable(rs) {
+ // Redirect it to runtime.unreachableMethod, which will throw if called.
+ rs = syms.unreachableMethod
+ }
+ if target.IsExternal() {
+ nExtReloc++
+
+ // set up addend for eventual relocation via outer symbol.
+ rs := rs
+ rs, off := FoldSubSymbolOffset(ldr, rs)
+ xadd := r.Add() + off
+ rst := ldr.SymType(rs)
+ if rst != sym.SHOSTOBJ && rst != sym.SDYNIMPORT && rst != sym.SUNDEFEXT && ldr.SymSect(rs) == nil {
+ st.err.Errorf(s, "missing section for relocation target %s", ldr.SymName(rs))
+ }
+
+ o = xadd
+ if target.IsElf() {
+ if target.IsAMD64() {
+ o = 0
+ }
+ } else if target.IsDarwin() {
+ if ldr.SymType(rs) != sym.SHOSTOBJ {
+ o += ldr.SymValue(rs)
+ }
+ } else if target.IsWindows() {
+ // nothing to do
+ } else if target.IsAIX() {
+ o = ldr.SymValue(rs) + xadd
+ } else {
+ st.err.Errorf(s, "unhandled pcrel relocation to %s on %v", ldr.SymName(rs), target.HeadType)
+ }
+
+ break
+ }
+
+ // On AIX, a second relocation must be done by the loader,
+ // as section addresses can change once loaded.
+ // The "default" symbol address is still needed by the loader so
+ // the current relocation can't be skipped.
+ if target.IsAIX() && rst != sym.SDYNIMPORT {
+ // It's not possible to make a loader relocation in a
+ // symbol which is not inside .data section.
+ // FIXME: It should be forbidden to have R_ADDR from a
+ // symbol which isn't in .data. However, as .text has the
+ // same address once loaded, this is possible.
+ if ldr.SymSect(s).Seg == &Segdata {
+ Xcoffadddynrel(target, ldr, syms, s, r, ri)
+ }
+ }
+
+ o = ldr.SymValue(rs) + r.Add()
+
+ // On amd64, 4-byte offsets will be sign-extended, so it is impossible to
+ // access more than 2GB of static data; fail at link time is better than
+ // fail at runtime. See https://golang.org/issue/7980.
+ // Instead of special casing only amd64, we treat this as an error on all
+ // 64-bit architectures so as to be future-proof.
+ if int32(o) < 0 && target.Arch.PtrSize > 4 && siz == 4 {
+ st.err.Errorf(s, "non-pc-relative relocation address for %s is too big: %#x (%#x + %#x)", ldr.SymName(rs), uint64(o), ldr.SymValue(rs), r.Add())
+ errorexit()
+ }
+ case objabi.R_DWARFSECREF:
+ if ldr.SymSect(rs) == nil {
+ st.err.Errorf(s, "missing DWARF section for relocation target %s", ldr.SymName(rs))
+ }
+
+ if target.IsExternal() {
+ // On most platforms, the external linker needs to adjust DWARF references
+ // as it combines DWARF sections. However, on Darwin, dsymutil does the
+ // DWARF linking, and it understands how to follow section offsets.
+ // Leaving in the relocation records confuses it (see
+ // https://golang.org/issue/22068) so drop them for Darwin.
+ if !target.IsDarwin() {
+ nExtReloc++
+ }
+
+ xadd := r.Add() + ldr.SymValue(rs) - int64(ldr.SymSect(rs).Vaddr)
+
+ o = xadd
+ if target.IsElf() && target.IsAMD64() {
+ o = 0
+ }
+ break
+ }
+ o = ldr.SymValue(rs) + r.Add() - int64(ldr.SymSect(rs).Vaddr)
+ case objabi.R_METHODOFF:
+ if !ldr.AttrReachable(rs) {
+ // Set it to a sentinel value. The runtime knows this is not pointing to
+ // anything valid.
+ o = -1
+ break
+ }
+ fallthrough
+ case objabi.R_ADDROFF:
+ if weak && !ldr.AttrReachable(rs) {
+ continue
+ }
+ if ldr.SymSect(rs) == nil {
+ st.err.Errorf(s, "unreachable sym in relocation: %s", ldr.SymName(rs))
+ continue
+ }
+
+ // The method offset tables using this relocation expect the offset to be relative
+ // to the start of the first text section, even if there are multiple.
+ if ldr.SymSect(rs).Name == ".text" {
+ o = ldr.SymValue(rs) - int64(Segtext.Sections[0].Vaddr) + r.Add()
+ } else {
+ o = ldr.SymValue(rs) - int64(ldr.SymSect(rs).Vaddr) + r.Add()
+ }
+
+ case objabi.R_ADDRCUOFF:
+ // debug_range and debug_loc elements use this relocation type to get an
+ // offset from the start of the compile unit.
+ o = ldr.SymValue(rs) + r.Add() - ldr.SymValue(loader.Sym(ldr.SymUnit(rs).Textp[0]))
+
+ // r.Sym() can be 0 when CALL $(constant) is transformed from absolute PC to relative PC call.
+ case objabi.R_GOTPCREL:
+ if target.IsDynlinkingGo() && target.IsDarwin() && rs != 0 {
+ nExtReloc++
+ o = r.Add()
+ break
+ }
+ if target.Is386() && target.IsExternal() && target.IsELF {
+ nExtReloc++ // need two ELF relocations on 386, see ../x86/asm.go:elfreloc1
+ }
+ fallthrough
+ case objabi.R_CALL, objabi.R_PCREL:
+ if target.IsExternal() && rs != 0 && rst == sym.SUNDEFEXT {
+ // pass through to the external linker.
+ nExtReloc++
+ o = 0
+ break
+ }
+ if target.IsExternal() && rs != 0 && (ldr.SymSect(rs) != ldr.SymSect(s) || rt == objabi.R_GOTPCREL) {
+ nExtReloc++
+
+ // set up addend for eventual relocation via outer symbol.
+ rs := rs
+ rs, off := FoldSubSymbolOffset(ldr, rs)
+ xadd := r.Add() + off - int64(siz) // relative to address after the relocated chunk
+ rst := ldr.SymType(rs)
+ if rst != sym.SHOSTOBJ && rst != sym.SDYNIMPORT && ldr.SymSect(rs) == nil {
+ st.err.Errorf(s, "missing section for relocation target %s", ldr.SymName(rs))
+ }
+
+ o = xadd
+ if target.IsElf() {
+ if target.IsAMD64() {
+ o = 0
+ }
+ } else if target.IsDarwin() {
+ if rt == objabi.R_CALL {
+ if target.IsExternal() && rst == sym.SDYNIMPORT {
+ if target.IsAMD64() {
+ // AMD64 dynamic relocations are relative to the end of the relocation.
+ o += int64(siz)
+ }
+ } else {
+ if rst != sym.SHOSTOBJ {
+ o += int64(uint64(ldr.SymValue(rs)) - ldr.SymSect(rs).Vaddr)
+ }
+ o -= int64(off) // relative to section offset, not symbol
+ }
+ } else {
+ o += int64(siz)
+ }
+ } else if target.IsWindows() && target.IsAMD64() { // only amd64 needs PCREL
+ // PE/COFF's PC32 relocation uses the address after the relocated
+ // bytes as the base. Compensate by skewing the addend.
+ o += int64(siz)
+ } else {
+ st.err.Errorf(s, "unhandled pcrel relocation to %s on %v", ldr.SymName(rs), target.HeadType)
+ }
+
+ break
+ }
+
+ o = 0
+ if rs != 0 {
+ o = ldr.SymValue(rs)
+ }
+
+ o += r.Add() - (ldr.SymValue(s) + int64(off) + int64(siz))
+ case objabi.R_SIZE:
+ o = ldr.SymSize(rs) + r.Add()
+
+ case objabi.R_XCOFFREF:
+ if !target.IsAIX() {
+ st.err.Errorf(s, "find XCOFF R_REF on non-XCOFF files")
+ }
+ if !target.IsExternal() {
+ st.err.Errorf(s, "find XCOFF R_REF with internal linking")
+ }
+ nExtReloc++
+ continue
+
+ case objabi.R_DWARFFILEREF:
+ // We don't renumber files in dwarf.go:writelines anymore.
+ continue
+
+ case objabi.R_CONST:
+ o = r.Add()
+
+ case objabi.R_GOTOFF:
+ o = ldr.SymValue(rs) + r.Add() - ldr.SymValue(syms.GOT)
+ }
+
+ if target.IsPPC64() || target.IsS390X() {
+ if rv != sym.RV_NONE {
+ o = thearch.Archrelocvariant(target, ldr, r, rv, s, o, P)
+ }
+ }
+
+ switch siz {
+ default:
+ st.err.Errorf(s, "bad reloc size %#x for %s", uint32(siz), ldr.SymName(rs))
+ case 1:
+ P[off] = byte(int8(o))
+ case 2:
+ if o != int64(int16(o)) {
+ st.err.Errorf(s, "relocation address for %s is too big: %#x", ldr.SymName(rs), o)
+ }
+ target.Arch.ByteOrder.PutUint16(P[off:], uint16(o))
+ case 4:
+ if rt == objabi.R_PCREL || rt == objabi.R_CALL {
+ if o != int64(int32(o)) {
+ st.err.Errorf(s, "pc-relative relocation address for %s is too big: %#x", ldr.SymName(rs), o)
+ }
+ } else {
+ if o != int64(int32(o)) && o != int64(uint32(o)) {
+ st.err.Errorf(s, "non-pc-relative relocation address for %s is too big: %#x", ldr.SymName(rs), uint64(o))
+ }
+ }
+ target.Arch.ByteOrder.PutUint32(P[off:], uint32(o))
+ case 8:
+ target.Arch.ByteOrder.PutUint64(P[off:], uint64(o))
+ }
+ }
+ if target.IsExternal() {
+ // We'll stream out the external relocations in asmb2 (e.g. elfrelocsect)
+ // and we only need the count here.
+ atomic.AddUint32(&ldr.SymSect(s).Relcount, uint32(nExtReloc))
+ }
+}
+
+// Convert a Go relocation to an external relocation.
+func extreloc(ctxt *Link, ldr *loader.Loader, s loader.Sym, r loader.Reloc) (loader.ExtReloc, bool) {
+ var rr loader.ExtReloc
+ target := &ctxt.Target
+ siz := int32(r.Siz())
+ if siz == 0 { // informational relocation - no work to do
+ return rr, false
+ }
+
+ rt := r.Type()
+ if rt >= objabi.ElfRelocOffset {
+ return rr, false
+ }
+ rr.Type = rt
+ rr.Size = uint8(siz)
+
+ // TODO(mundaym): remove this special case - see issue 14218.
+ if target.IsS390X() {
+ switch rt {
+ case objabi.R_PCRELDBL:
+ rt = objabi.R_PCREL
+ }
+ }
+
+ switch rt {
+ default:
+ return thearch.Extreloc(target, ldr, r, s)
+
+ case objabi.R_TLS_LE, objabi.R_TLS_IE:
+ if target.IsElf() {
+ rs := r.Sym()
+ rr.Xsym = rs
+ if rr.Xsym == 0 {
+ rr.Xsym = ctxt.Tlsg
+ }
+ rr.Xadd = r.Add()
+ break
+ }
+ return rr, false
+
+ case objabi.R_ADDR:
+ // set up addend for eventual relocation via outer symbol.
+ rs := r.Sym()
+ if r.Weak() && !ldr.AttrReachable(rs) {
+ rs = ctxt.ArchSyms.unreachableMethod
+ }
+ rs, off := FoldSubSymbolOffset(ldr, rs)
+ rr.Xadd = r.Add() + off
+ rr.Xsym = rs
+
+ case objabi.R_DWARFSECREF:
+ // On most platforms, the external linker needs to adjust DWARF references
+ // as it combines DWARF sections. However, on Darwin, dsymutil does the
+ // DWARF linking, and it understands how to follow section offsets.
+ // Leaving in the relocation records confuses it (see
+ // https://golang.org/issue/22068) so drop them for Darwin.
+ if target.IsDarwin() {
+ return rr, false
+ }
+ rs := r.Sym()
+ rr.Xsym = loader.Sym(ldr.SymSect(rs).Sym)
+ rr.Xadd = r.Add() + ldr.SymValue(rs) - int64(ldr.SymSect(rs).Vaddr)
+
+ // r.Sym() can be 0 when CALL $(constant) is transformed from absolute PC to relative PC call.
+ case objabi.R_GOTPCREL, objabi.R_CALL, objabi.R_PCREL:
+ rs := r.Sym()
+ if rt == objabi.R_GOTPCREL && target.IsDynlinkingGo() && target.IsDarwin() && rs != 0 {
+ rr.Xadd = r.Add()
+ rr.Xadd -= int64(siz) // relative to address after the relocated chunk
+ rr.Xsym = rs
+ break
+ }
+ if rs != 0 && ldr.SymType(rs) == sym.SUNDEFEXT {
+ // pass through to the external linker.
+ rr.Xadd = 0
+ if target.IsElf() {
+ rr.Xadd -= int64(siz)
+ }
+ rr.Xsym = rs
+ break
+ }
+ if rs != 0 && (ldr.SymSect(rs) != ldr.SymSect(s) || rt == objabi.R_GOTPCREL) {
+ // set up addend for eventual relocation via outer symbol.
+ rs := rs
+ rs, off := FoldSubSymbolOffset(ldr, rs)
+ rr.Xadd = r.Add() + off
+ rr.Xadd -= int64(siz) // relative to address after the relocated chunk
+ rr.Xsym = rs
+ break
+ }
+ return rr, false
+
+ case objabi.R_XCOFFREF:
+ return ExtrelocSimple(ldr, r), true
+
+ // These reloc types don't need external relocations.
+ case objabi.R_ADDROFF, objabi.R_METHODOFF, objabi.R_ADDRCUOFF,
+ objabi.R_SIZE, objabi.R_CONST, objabi.R_GOTOFF:
+ return rr, false
+ }
+ return rr, true
+}
+
+// ExtrelocSimple creates a simple external relocation from r, with the same
+// symbol and addend.
+func ExtrelocSimple(ldr *loader.Loader, r loader.Reloc) loader.ExtReloc {
+ var rr loader.ExtReloc
+ rs := r.Sym()
+ rr.Xsym = rs
+ rr.Xadd = r.Add()
+ rr.Type = r.Type()
+ rr.Size = r.Siz()
+ return rr
+}
+
+// ExtrelocViaOuterSym creates an external relocation from r targeting the
+// outer symbol and folding the subsymbol's offset into the addend.
+func ExtrelocViaOuterSym(ldr *loader.Loader, r loader.Reloc, s loader.Sym) loader.ExtReloc {
+ // set up addend for eventual relocation via outer symbol.
+ var rr loader.ExtReloc
+ rs := r.Sym()
+ rs, off := FoldSubSymbolOffset(ldr, rs)
+ rr.Xadd = r.Add() + off
+ rst := ldr.SymType(rs)
+ if rst != sym.SHOSTOBJ && rst != sym.SDYNIMPORT && rst != sym.SUNDEFEXT && ldr.SymSect(rs) == nil {
+ ldr.Errorf(s, "missing section for %s", ldr.SymName(rs))
+ }
+ rr.Xsym = rs
+ rr.Type = r.Type()
+ rr.Size = r.Siz()
+ return rr
+}
+
+// relocSymState hold state information needed when making a series of
+// successive calls to relocsym(). The items here are invariant
+// (meaning that they are set up once initially and then don't change
+// during the execution of relocsym), with the exception of a slice
+// used to facilitate batch allocation of external relocations. Calls
+// to relocsym happen in parallel; the assumption is that each
+// parallel thread will have its own state object.
+type relocSymState struct {
+ target *Target
+ ldr *loader.Loader
+ err *ErrorReporter
+ syms *ArchSyms
+}
+
+// makeRelocSymState creates a relocSymState container object to
+// pass to relocsym(). If relocsym() calls happen in parallel,
+// each parallel thread should have its own state object.
+func (ctxt *Link) makeRelocSymState() *relocSymState {
+ return &relocSymState{
+ target: &ctxt.Target,
+ ldr: ctxt.loader,
+ err: &ctxt.ErrorReporter,
+ syms: &ctxt.ArchSyms,
+ }
+}
+
+func windynrelocsym(ctxt *Link, rel *loader.SymbolBuilder, s loader.Sym) {
+ var su *loader.SymbolBuilder
+ relocs := ctxt.loader.Relocs(s)
+ for ri := 0; ri < relocs.Count(); ri++ {
+ r := relocs.At(ri)
+ if r.IsMarker() {
+ continue // skip marker relocations
+ }
+ targ := r.Sym()
+ if targ == 0 {
+ continue
+ }
+ if !ctxt.loader.AttrReachable(targ) {
+ if r.Weak() {
+ continue
+ }
+ ctxt.Errorf(s, "dynamic relocation to unreachable symbol %s",
+ ctxt.loader.SymName(targ))
+ }
+
+ tplt := ctxt.loader.SymPlt(targ)
+ tgot := ctxt.loader.SymGot(targ)
+ if tplt == -2 && tgot != -2 { // make dynimport JMP table for PE object files.
+ tplt := int32(rel.Size())
+ ctxt.loader.SetPlt(targ, tplt)
+
+ if su == nil {
+ su = ctxt.loader.MakeSymbolUpdater(s)
+ }
+ r.SetSym(rel.Sym())
+ r.SetAdd(int64(tplt))
+
+ // jmp *addr
+ switch ctxt.Arch.Family {
+ default:
+ ctxt.Errorf(s, "unsupported arch %v", ctxt.Arch.Family)
+ return
+ case sys.I386:
+ rel.AddUint8(0xff)
+ rel.AddUint8(0x25)
+ rel.AddAddrPlus(ctxt.Arch, targ, 0)
+ rel.AddUint8(0x90)
+ rel.AddUint8(0x90)
+ case sys.AMD64:
+ rel.AddUint8(0xff)
+ rel.AddUint8(0x24)
+ rel.AddUint8(0x25)
+ rel.AddAddrPlus4(ctxt.Arch, targ, 0)
+ rel.AddUint8(0x90)
+ }
+ } else if tplt >= 0 {
+ if su == nil {
+ su = ctxt.loader.MakeSymbolUpdater(s)
+ }
+ r.SetSym(rel.Sym())
+ r.SetAdd(int64(tplt))
+ }
+ }
+}
+
+// windynrelocsyms generates jump table to C library functions that will be
+// added later. windynrelocsyms writes the table into .rel symbol.
+func (ctxt *Link) windynrelocsyms() {
+ if !(ctxt.IsWindows() && iscgo && ctxt.IsInternal()) {
+ return
+ }
+
+ rel := ctxt.loader.CreateSymForUpdate(".rel", 0)
+ rel.SetType(sym.STEXT)
+
+ for _, s := range ctxt.Textp {
+ windynrelocsym(ctxt, rel, s)
+ }
+
+ ctxt.Textp = append(ctxt.Textp, rel.Sym())
+}
+
+func dynrelocsym(ctxt *Link, s loader.Sym) {
+ target := &ctxt.Target
+ ldr := ctxt.loader
+ syms := &ctxt.ArchSyms
+ relocs := ldr.Relocs(s)
+ for ri := 0; ri < relocs.Count(); ri++ {
+ r := relocs.At(ri)
+ if r.IsMarker() {
+ continue // skip marker relocations
+ }
+ rSym := r.Sym()
+ if r.Weak() && !ldr.AttrReachable(rSym) {
+ continue
+ }
+ if ctxt.BuildMode == BuildModePIE && ctxt.LinkMode == LinkInternal {
+ // It's expected that some relocations will be done
+ // later by relocsym (R_TLS_LE, R_ADDROFF), so
+ // don't worry if Adddynrel returns false.
+ thearch.Adddynrel(target, ldr, syms, s, r, ri)
+ continue
+ }
+
+ if rSym != 0 && ldr.SymType(rSym) == sym.SDYNIMPORT || r.Type() >= objabi.ElfRelocOffset {
+ if rSym != 0 && !ldr.AttrReachable(rSym) {
+ ctxt.Errorf(s, "dynamic relocation to unreachable symbol %s", ldr.SymName(rSym))
+ }
+ if !thearch.Adddynrel(target, ldr, syms, s, r, ri) {
+ ctxt.Errorf(s, "unsupported dynamic relocation for symbol %s (type=%d (%s) stype=%d (%s))", ldr.SymName(rSym), r.Type(), sym.RelocName(ctxt.Arch, r.Type()), ldr.SymType(rSym), ldr.SymType(rSym))
+ }
+ }
+ }
+}
+
+func (state *dodataState) dynreloc(ctxt *Link) {
+ if ctxt.HeadType == objabi.Hwindows {
+ return
+ }
+ // -d suppresses dynamic loader format, so we may as well not
+ // compute these sections or mark their symbols as reachable.
+ if *FlagD {
+ return
+ }
+
+ for _, s := range ctxt.Textp {
+ dynrelocsym(ctxt, s)
+ }
+ for _, syms := range state.data {
+ for _, s := range syms {
+ dynrelocsym(ctxt, s)
+ }
+ }
+ if ctxt.IsELF {
+ elfdynhash(ctxt)
+ }
+}
+
+func CodeblkPad(ctxt *Link, out *OutBuf, addr int64, size int64, pad []byte) {
+ writeBlocks(ctxt, out, ctxt.outSem, ctxt.loader, ctxt.Textp, addr, size, pad)
+}
+
+const blockSize = 1 << 20 // 1MB chunks written at a time.
+
+// writeBlocks writes a specified chunk of symbols to the output buffer. It
+// breaks the write up into ≥blockSize chunks to write them out, and schedules
+// as many goroutines as necessary to accomplish this task. This call then
+// blocks, waiting on the writes to complete. Note that we use the sem parameter
+// to limit the number of concurrent writes taking place.
+func writeBlocks(ctxt *Link, out *OutBuf, sem chan int, ldr *loader.Loader, syms []loader.Sym, addr, size int64, pad []byte) {
+ for i, s := range syms {
+ if ldr.SymValue(s) >= addr && !ldr.AttrSubSymbol(s) {
+ syms = syms[i:]
+ break
+ }
+ }
+
+ var wg sync.WaitGroup
+ max, lastAddr, written := int64(blockSize), addr+size, int64(0)
+ for addr < lastAddr {
+ // Find the last symbol we'd write.
+ idx := -1
+ for i, s := range syms {
+ if ldr.AttrSubSymbol(s) {
+ continue
+ }
+
+ // If the next symbol's size would put us out of bounds on the total length,
+ // stop looking.
+ end := ldr.SymValue(s) + ldr.SymSize(s)
+ if end > lastAddr {
+ break
+ }
+
+ // We're gonna write this symbol.
+ idx = i
+
+ // If we cross over the max size, we've got enough symbols.
+ if end > addr+max {
+ break
+ }
+ }
+
+ // If we didn't find any symbols to write, we're done here.
+ if idx < 0 {
+ break
+ }
+
+ // Compute the length to write, including padding.
+ // We need to write to the end address (lastAddr), or the next symbol's
+ // start address, whichever comes first. If there is no more symbols,
+ // just write to lastAddr. This ensures we don't leave holes between the
+ // blocks or at the end.
+ length := int64(0)
+ if idx+1 < len(syms) {
+ // Find the next top-level symbol.
+ // Skip over sub symbols so we won't split a container symbol
+ // into two blocks.
+ next := syms[idx+1]
+ for ldr.AttrSubSymbol(next) {
+ idx++
+ next = syms[idx+1]
+ }
+ length = ldr.SymValue(next) - addr
+ }
+ if length == 0 || length > lastAddr-addr {
+ length = lastAddr - addr
+ }
+
+ // Start the block output operator.
+ if o, err := out.View(uint64(out.Offset() + written)); err == nil {
+ sem <- 1
+ wg.Add(1)
+ go func(o *OutBuf, ldr *loader.Loader, syms []loader.Sym, addr, size int64, pad []byte) {
+ writeBlock(ctxt, o, ldr, syms, addr, size, pad)
+ wg.Done()
+ <-sem
+ }(o, ldr, syms, addr, length, pad)
+ } else { // output not mmaped, don't parallelize.
+ writeBlock(ctxt, out, ldr, syms, addr, length, pad)
+ }
+
+ // Prepare for the next loop.
+ if idx != -1 {
+ syms = syms[idx+1:]
+ }
+ written += length
+ addr += length
+ }
+ wg.Wait()
+}
+
+func writeBlock(ctxt *Link, out *OutBuf, ldr *loader.Loader, syms []loader.Sym, addr, size int64, pad []byte) {
+
+ st := ctxt.makeRelocSymState()
+
+ // This doesn't distinguish the memory size from the file
+ // size, and it lays out the file based on Symbol.Value, which
+ // is the virtual address. DWARF compression changes file sizes,
+ // so dwarfcompress will fix this up later if necessary.
+ eaddr := addr + size
+ for _, s := range syms {
+ if ldr.AttrSubSymbol(s) {
+ continue
+ }
+ val := ldr.SymValue(s)
+ if val >= eaddr {
+ break
+ }
+ if val < addr {
+ ldr.Errorf(s, "phase error: addr=%#x but sym=%#x type=%v sect=%v", addr, val, ldr.SymType(s), ldr.SymSect(s).Name)
+ errorexit()
+ }
+ if addr < val {
+ out.WriteStringPad("", int(val-addr), pad)
+ addr = val
+ }
+ P := out.WriteSym(ldr, s)
+ st.relocsym(s, P)
+ if f, ok := ctxt.generatorSyms[s]; ok {
+ f(ctxt, s)
+ }
+ addr += int64(len(P))
+ siz := ldr.SymSize(s)
+ if addr < val+siz {
+ out.WriteStringPad("", int(val+siz-addr), pad)
+ addr = val + siz
+ }
+ if addr != val+siz {
+ ldr.Errorf(s, "phase error: addr=%#x value+size=%#x", addr, val+siz)
+ errorexit()
+ }
+ if val+siz >= eaddr {
+ break
+ }
+ }
+
+ if addr < eaddr {
+ out.WriteStringPad("", int(eaddr-addr), pad)
+ }
+}
+
+type writeFn func(*Link, *OutBuf, int64, int64)
+
+// writeParallel handles scheduling parallel execution of data write functions.
+func writeParallel(wg *sync.WaitGroup, fn writeFn, ctxt *Link, seek, vaddr, length uint64) {
+ if out, err := ctxt.Out.View(seek); err != nil {
+ ctxt.Out.SeekSet(int64(seek))
+ fn(ctxt, ctxt.Out, int64(vaddr), int64(length))
+ } else {
+ wg.Add(1)
+ go func() {
+ defer wg.Done()
+ fn(ctxt, out, int64(vaddr), int64(length))
+ }()
+ }
+}
+
+func datblk(ctxt *Link, out *OutBuf, addr, size int64) {
+ writeDatblkToOutBuf(ctxt, out, addr, size)
+}
+
+// Used only on Wasm for now.
+func DatblkBytes(ctxt *Link, addr int64, size int64) []byte {
+ buf := make([]byte, size)
+ out := &OutBuf{heap: buf}
+ writeDatblkToOutBuf(ctxt, out, addr, size)
+ return buf
+}
+
+func writeDatblkToOutBuf(ctxt *Link, out *OutBuf, addr int64, size int64) {
+ writeBlocks(ctxt, out, ctxt.outSem, ctxt.loader, ctxt.datap, addr, size, zeros[:])
+}
+
+func dwarfblk(ctxt *Link, out *OutBuf, addr int64, size int64) {
+ // Concatenate the section symbol lists into a single list to pass
+ // to writeBlocks.
+ //
+ // NB: ideally we would do a separate writeBlocks call for each
+ // section, but this would run the risk of undoing any file offset
+ // adjustments made during layout.
+ n := 0
+ for i := range dwarfp {
+ n += len(dwarfp[i].syms)
+ }
+ syms := make([]loader.Sym, 0, n)
+ for i := range dwarfp {
+ syms = append(syms, dwarfp[i].syms...)
+ }
+ writeBlocks(ctxt, out, ctxt.outSem, ctxt.loader, syms, addr, size, zeros[:])
+}
+
+var zeros [512]byte
+
+var (
+ strdata = make(map[string]string)
+ strnames []string
+)
+
+func addstrdata1(ctxt *Link, arg string) {
+ eq := strings.Index(arg, "=")
+ dot := strings.LastIndex(arg[:eq+1], ".")
+ if eq < 0 || dot < 0 {
+ Exitf("-X flag requires argument of the form importpath.name=value")
+ }
+ pkg := arg[:dot]
+ if ctxt.BuildMode == BuildModePlugin && pkg == "main" {
+ pkg = *flagPluginPath
+ }
+ pkg = objabi.PathToPrefix(pkg)
+ name := pkg + arg[dot:eq]
+ value := arg[eq+1:]
+ if _, ok := strdata[name]; !ok {
+ strnames = append(strnames, name)
+ }
+ strdata[name] = value
+}
+
+// addstrdata sets the initial value of the string variable name to value.
+func addstrdata(arch *sys.Arch, l *loader.Loader, name, value string) {
+ s := l.Lookup(name, 0)
+ if s == 0 {
+ return
+ }
+ if goType := l.SymGoType(s); goType == 0 {
+ return
+ } else if typeName := l.SymName(goType); typeName != "type.string" {
+ Errorf(nil, "%s: cannot set with -X: not a var of type string (%s)", name, typeName)
+ return
+ }
+ if !l.AttrReachable(s) {
+ return // don't bother setting unreachable variable
+ }
+ bld := l.MakeSymbolUpdater(s)
+ if bld.Type() == sym.SBSS {
+ bld.SetType(sym.SDATA)
+ }
+
+ p := fmt.Sprintf("%s.str", name)
+ sbld := l.CreateSymForUpdate(p, 0)
+ sbld.Addstring(value)
+ sbld.SetType(sym.SRODATA)
+
+ bld.SetSize(0)
+ bld.SetData(make([]byte, 0, arch.PtrSize*2))
+ bld.SetReadOnly(false)
+ bld.ResetRelocs()
+ bld.AddAddrPlus(arch, sbld.Sym(), 0)
+ bld.AddUint(arch, uint64(len(value)))
+}
+
+func (ctxt *Link) dostrdata() {
+ for _, name := range strnames {
+ addstrdata(ctxt.Arch, ctxt.loader, name, strdata[name])
+ }
+}
+
+// addgostring adds str, as a Go string value, to s. symname is the name of the
+// symbol used to define the string data and must be unique per linked object.
+func addgostring(ctxt *Link, ldr *loader.Loader, s *loader.SymbolBuilder, symname, str string) {
+ sdata := ldr.CreateSymForUpdate(symname, 0)
+ if sdata.Type() != sym.Sxxx {
+ ctxt.Errorf(s.Sym(), "duplicate symname in addgostring: %s", symname)
+ }
+ sdata.SetLocal(true)
+ sdata.SetType(sym.SRODATA)
+ sdata.SetSize(int64(len(str)))
+ sdata.SetData([]byte(str))
+ s.AddAddr(ctxt.Arch, sdata.Sym())
+ s.AddUint(ctxt.Arch, uint64(len(str)))
+}
+
+func addinitarrdata(ctxt *Link, ldr *loader.Loader, s loader.Sym) {
+ p := ldr.SymName(s) + ".ptr"
+ sp := ldr.CreateSymForUpdate(p, 0)
+ sp.SetType(sym.SINITARR)
+ sp.SetSize(0)
+ sp.SetDuplicateOK(true)
+ sp.AddAddr(ctxt.Arch, s)
+}
+
+// symalign returns the required alignment for the given symbol s.
+func symalign(ldr *loader.Loader, s loader.Sym) int32 {
+ min := int32(thearch.Minalign)
+ align := ldr.SymAlign(s)
+ if align >= min {
+ return align
+ } else if align != 0 {
+ return min
+ }
+ align = int32(thearch.Maxalign)
+ ssz := ldr.SymSize(s)
+ for int64(align) > ssz && align > min {
+ align >>= 1
+ }
+ ldr.SetSymAlign(s, align)
+ return align
+}
+
+func aligndatsize(state *dodataState, datsize int64, s loader.Sym) int64 {
+ return Rnd(datsize, int64(symalign(state.ctxt.loader, s)))
+}
+
+const debugGCProg = false
+
+type GCProg struct {
+ ctxt *Link
+ sym *loader.SymbolBuilder
+ w gcprog.Writer
+}
+
+func (p *GCProg) Init(ctxt *Link, name string) {
+ p.ctxt = ctxt
+ p.sym = ctxt.loader.CreateSymForUpdate(name, 0)
+ p.w.Init(p.writeByte())
+ if debugGCProg {
+ fmt.Fprintf(os.Stderr, "ld: start GCProg %s\n", name)
+ p.w.Debug(os.Stderr)
+ }
+}
+
+func (p *GCProg) writeByte() func(x byte) {
+ return func(x byte) {
+ p.sym.AddUint8(x)
+ }
+}
+
+func (p *GCProg) End(size int64) {
+ p.w.ZeroUntil(size / int64(p.ctxt.Arch.PtrSize))
+ p.w.End()
+ if debugGCProg {
+ fmt.Fprintf(os.Stderr, "ld: end GCProg\n")
+ }
+}
+
+func (p *GCProg) AddSym(s loader.Sym) {
+ ldr := p.ctxt.loader
+ typ := ldr.SymGoType(s)
+
+ // Things without pointers should be in sym.SNOPTRDATA or sym.SNOPTRBSS;
+ // everything we see should have pointers and should therefore have a type.
+ if typ == 0 {
+ switch ldr.SymName(s) {
+ case "runtime.data", "runtime.edata", "runtime.bss", "runtime.ebss":
+ // Ignore special symbols that are sometimes laid out
+ // as real symbols. See comment about dyld on darwin in
+ // the address function.
+ return
+ }
+ p.ctxt.Errorf(p.sym.Sym(), "missing Go type information for global symbol %s: size %d", ldr.SymName(s), ldr.SymSize(s))
+ return
+ }
+
+ ptrsize := int64(p.ctxt.Arch.PtrSize)
+ typData := ldr.Data(typ)
+ nptr := decodetypePtrdata(p.ctxt.Arch, typData) / ptrsize
+
+ if debugGCProg {
+ fmt.Fprintf(os.Stderr, "gcprog sym: %s at %d (ptr=%d+%d)\n", ldr.SymName(s), ldr.SymValue(s), ldr.SymValue(s)/ptrsize, nptr)
+ }
+
+ sval := ldr.SymValue(s)
+ if decodetypeUsegcprog(p.ctxt.Arch, typData) == 0 {
+ // Copy pointers from mask into program.
+ mask := decodetypeGcmask(p.ctxt, typ)
+ for i := int64(0); i < nptr; i++ {
+ if (mask[i/8]>>uint(i%8))&1 != 0 {
+ p.w.Ptr(sval/ptrsize + i)
+ }
+ }
+ return
+ }
+
+ // Copy program.
+ prog := decodetypeGcprog(p.ctxt, typ)
+ p.w.ZeroUntil(sval / ptrsize)
+ p.w.Append(prog[4:], nptr)
+}
+
+// cutoff is the maximum data section size permitted by the linker
+// (see issue #9862).
+const cutoff = 2e9 // 2 GB (or so; looks better in errors than 2^31)
+
+func (state *dodataState) checkdatsize(symn sym.SymKind) {
+ if state.datsize > cutoff {
+ Errorf(nil, "too much data in section %v (over %v bytes)", symn, cutoff)
+ }
+}
+
+// fixZeroSizedSymbols gives a few special symbols with zero size some space.
+func fixZeroSizedSymbols(ctxt *Link) {
+ // The values in moduledata are filled out by relocations
+ // pointing to the addresses of these special symbols.
+ // Typically these symbols have no size and are not laid
+ // out with their matching section.
+ //
+ // However on darwin, dyld will find the special symbol
+ // in the first loaded module, even though it is local.
+ //
+ // (An hypothesis, formed without looking in the dyld sources:
+ // these special symbols have no size, so their address
+ // matches a real symbol. The dynamic linker assumes we
+ // want the normal symbol with the same address and finds
+ // it in the other module.)
+ //
+ // To work around this we lay out the symbls whose
+ // addresses are vital for multi-module programs to work
+ // as normal symbols, and give them a little size.
+ //
+ // On AIX, as all DATA sections are merged together, ld might not put
+ // these symbols at the beginning of their respective section if there
+ // aren't real symbols, their alignment might not match the
+ // first symbol alignment. Therefore, there are explicitly put at the
+ // beginning of their section with the same alignment.
+ if !(ctxt.DynlinkingGo() && ctxt.HeadType == objabi.Hdarwin) && !(ctxt.HeadType == objabi.Haix && ctxt.LinkMode == LinkExternal) {
+ return
+ }
+
+ ldr := ctxt.loader
+ bss := ldr.CreateSymForUpdate("runtime.bss", 0)
+ bss.SetSize(8)
+ ldr.SetAttrSpecial(bss.Sym(), false)
+
+ ebss := ldr.CreateSymForUpdate("runtime.ebss", 0)
+ ldr.SetAttrSpecial(ebss.Sym(), false)
+
+ data := ldr.CreateSymForUpdate("runtime.data", 0)
+ data.SetSize(8)
+ ldr.SetAttrSpecial(data.Sym(), false)
+
+ edata := ldr.CreateSymForUpdate("runtime.edata", 0)
+ ldr.SetAttrSpecial(edata.Sym(), false)
+
+ if ctxt.HeadType == objabi.Haix {
+ // XCOFFTOC symbols are part of .data section.
+ edata.SetType(sym.SXCOFFTOC)
+ }
+
+ types := ldr.CreateSymForUpdate("runtime.types", 0)
+ types.SetType(sym.STYPE)
+ types.SetSize(8)
+ ldr.SetAttrSpecial(types.Sym(), false)
+
+ etypes := ldr.CreateSymForUpdate("runtime.etypes", 0)
+ etypes.SetType(sym.SFUNCTAB)
+ ldr.SetAttrSpecial(etypes.Sym(), false)
+
+ if ctxt.HeadType == objabi.Haix {
+ rodata := ldr.CreateSymForUpdate("runtime.rodata", 0)
+ rodata.SetType(sym.SSTRING)
+ rodata.SetSize(8)
+ ldr.SetAttrSpecial(rodata.Sym(), false)
+
+ erodata := ldr.CreateSymForUpdate("runtime.erodata", 0)
+ ldr.SetAttrSpecial(erodata.Sym(), false)
+ }
+}
+
+// makeRelroForSharedLib creates a section of readonly data if necessary.
+func (state *dodataState) makeRelroForSharedLib(target *Link) {
+ if !target.UseRelro() {
+ return
+ }
+
+ // "read only" data with relocations needs to go in its own section
+ // when building a shared library. We do this by boosting objects of
+ // type SXXX with relocations to type SXXXRELRO.
+ ldr := target.loader
+ for _, symnro := range sym.ReadOnly {
+ symnrelro := sym.RelROMap[symnro]
+
+ ro := []loader.Sym{}
+ relro := state.data[symnrelro]
+
+ for _, s := range state.data[symnro] {
+ relocs := ldr.Relocs(s)
+ isRelro := relocs.Count() > 0
+ switch state.symType(s) {
+ case sym.STYPE, sym.STYPERELRO, sym.SGOFUNCRELRO:
+ // Symbols are not sorted yet, so it is possible
+ // that an Outer symbol has been changed to a
+ // relro Type before it reaches here.
+ isRelro = true
+ case sym.SFUNCTAB:
+ if ldr.SymName(s) == "runtime.etypes" {
+ // runtime.etypes must be at the end of
+ // the relro data.
+ isRelro = true
+ }
+ case sym.SGOFUNC:
+ // The only SGOFUNC symbols that contain relocations are .stkobj,
+ // and their relocations are of type objabi.R_ADDROFF,
+ // which always get resolved during linking.
+ isRelro = false
+ }
+ if isRelro {
+ state.setSymType(s, symnrelro)
+ if outer := ldr.OuterSym(s); outer != 0 {
+ state.setSymType(outer, symnrelro)
+ }
+ relro = append(relro, s)
+ } else {
+ ro = append(ro, s)
+ }
+ }
+
+ // Check that we haven't made two symbols with the same .Outer into
+ // different types (because references two symbols with non-nil Outer
+ // become references to the outer symbol + offset it's vital that the
+ // symbol and the outer end up in the same section).
+ for _, s := range relro {
+ if outer := ldr.OuterSym(s); outer != 0 {
+ st := state.symType(s)
+ ost := state.symType(outer)
+ if st != ost {
+ state.ctxt.Errorf(s, "inconsistent types for symbol and its Outer %s (%v != %v)",
+ ldr.SymName(outer), st, ost)
+ }
+ }
+ }
+
+ state.data[symnro] = ro
+ state.data[symnrelro] = relro
+ }
+}
+
+// dodataState holds bits of state information needed by dodata() and the
+// various helpers it calls. The lifetime of these items should not extend
+// past the end of dodata().
+type dodataState struct {
+ // Link context
+ ctxt *Link
+ // Data symbols bucketed by type.
+ data [sym.SXREF][]loader.Sym
+ // Max alignment for each flavor of data symbol.
+ dataMaxAlign [sym.SXREF]int32
+ // Overridden sym type
+ symGroupType []sym.SymKind
+ // Current data size so far.
+ datsize int64
+}
+
+// A note on symType/setSymType below:
+//
+// In the legacy linker, the types of symbols (notably data symbols) are
+// changed during the symtab() phase so as to insure that similar symbols
+// are bucketed together, then their types are changed back again during
+// dodata. Symbol to section assignment also plays tricks along these lines
+// in the case where a relro segment is needed.
+//
+// The value returned from setType() below reflects the effects of
+// any overrides made by symtab and/or dodata.
+
+// symType returns the (possibly overridden) type of 's'.
+func (state *dodataState) symType(s loader.Sym) sym.SymKind {
+ if int(s) < len(state.symGroupType) {
+ if override := state.symGroupType[s]; override != 0 {
+ return override
+ }
+ }
+ return state.ctxt.loader.SymType(s)
+}
+
+// setSymType sets a new override type for 's'.
+func (state *dodataState) setSymType(s loader.Sym, kind sym.SymKind) {
+ if s == 0 {
+ panic("bad")
+ }
+ if int(s) < len(state.symGroupType) {
+ state.symGroupType[s] = kind
+ } else {
+ su := state.ctxt.loader.MakeSymbolUpdater(s)
+ su.SetType(kind)
+ }
+}
+
+func (ctxt *Link) dodata(symGroupType []sym.SymKind) {
+
+ // Give zeros sized symbols space if necessary.
+ fixZeroSizedSymbols(ctxt)
+
+ // Collect data symbols by type into data.
+ state := dodataState{ctxt: ctxt, symGroupType: symGroupType}
+ ldr := ctxt.loader
+ for s := loader.Sym(1); s < loader.Sym(ldr.NSym()); s++ {
+ if !ldr.AttrReachable(s) || ldr.AttrSpecial(s) || ldr.AttrSubSymbol(s) ||
+ !ldr.TopLevelSym(s) {
+ continue
+ }
+
+ st := state.symType(s)
+
+ if st <= sym.STEXT || st >= sym.SXREF {
+ continue
+ }
+ state.data[st] = append(state.data[st], s)
+
+ // Similarly with checking the onlist attr.
+ if ldr.AttrOnList(s) {
+ log.Fatalf("symbol %s listed multiple times", ldr.SymName(s))
+ }
+ ldr.SetAttrOnList(s, true)
+ }
+
+ // Now that we have the data symbols, but before we start
+ // to assign addresses, record all the necessary
+ // dynamic relocations. These will grow the relocation
+ // symbol, which is itself data.
+ //
+ // On darwin, we need the symbol table numbers for dynreloc.
+ if ctxt.HeadType == objabi.Hdarwin {
+ machosymorder(ctxt)
+ }
+ state.dynreloc(ctxt)
+
+ // Move any RO data with relocations to a separate section.
+ state.makeRelroForSharedLib(ctxt)
+
+ // Set alignment for the symbol with the largest known index,
+ // so as to trigger allocation of the loader's internal
+ // alignment array. This will avoid data races in the parallel
+ // section below.
+ lastSym := loader.Sym(ldr.NSym() - 1)
+ ldr.SetSymAlign(lastSym, ldr.SymAlign(lastSym))
+
+ // Sort symbols.
+ var wg sync.WaitGroup
+ for symn := range state.data {
+ symn := sym.SymKind(symn)
+ wg.Add(1)
+ go func() {
+ state.data[symn], state.dataMaxAlign[symn] = state.dodataSect(ctxt, symn, state.data[symn])
+ wg.Done()
+ }()
+ }
+ wg.Wait()
+
+ if ctxt.IsELF {
+ // Make .rela and .rela.plt contiguous, the ELF ABI requires this
+ // and Solaris actually cares.
+ syms := state.data[sym.SELFROSECT]
+ reli, plti := -1, -1
+ for i, s := range syms {
+ switch ldr.SymName(s) {
+ case ".rel.plt", ".rela.plt":
+ plti = i
+ case ".rel", ".rela":
+ reli = i
+ }
+ }
+ if reli >= 0 && plti >= 0 && plti != reli+1 {
+ var first, second int
+ if plti > reli {
+ first, second = reli, plti
+ } else {
+ first, second = plti, reli
+ }
+ rel, plt := syms[reli], syms[plti]
+ copy(syms[first+2:], syms[first+1:second])
+ syms[first+0] = rel
+ syms[first+1] = plt
+
+ // Make sure alignment doesn't introduce a gap.
+ // Setting the alignment explicitly prevents
+ // symalign from basing it on the size and
+ // getting it wrong.
+ ldr.SetSymAlign(rel, int32(ctxt.Arch.RegSize))
+ ldr.SetSymAlign(plt, int32(ctxt.Arch.RegSize))
+ }
+ state.data[sym.SELFROSECT] = syms
+ }
+
+ if ctxt.HeadType == objabi.Haix && ctxt.LinkMode == LinkExternal {
+ // These symbols must have the same alignment as their section.
+ // Otherwise, ld might change the layout of Go sections.
+ ldr.SetSymAlign(ldr.Lookup("runtime.data", 0), state.dataMaxAlign[sym.SDATA])
+ ldr.SetSymAlign(ldr.Lookup("runtime.bss", 0), state.dataMaxAlign[sym.SBSS])
+ }
+
+ // Create *sym.Section objects and assign symbols to sections for
+ // data/rodata (and related) symbols.
+ state.allocateDataSections(ctxt)
+
+ // Create *sym.Section objects and assign symbols to sections for
+ // DWARF symbols.
+ state.allocateDwarfSections(ctxt)
+
+ /* number the sections */
+ n := int16(1)
+
+ for _, sect := range Segtext.Sections {
+ sect.Extnum = n
+ n++
+ }
+ for _, sect := range Segrodata.Sections {
+ sect.Extnum = n
+ n++
+ }
+ for _, sect := range Segrelrodata.Sections {
+ sect.Extnum = n
+ n++
+ }
+ for _, sect := range Segdata.Sections {
+ sect.Extnum = n
+ n++
+ }
+ for _, sect := range Segdwarf.Sections {
+ sect.Extnum = n
+ n++
+ }
+}
+
+// allocateDataSectionForSym creates a new sym.Section into which a a
+// single symbol will be placed. Here "seg" is the segment into which
+// the section will go, "s" is the symbol to be placed into the new
+// section, and "rwx" contains permissions for the section.
+func (state *dodataState) allocateDataSectionForSym(seg *sym.Segment, s loader.Sym, rwx int) *sym.Section {
+ ldr := state.ctxt.loader
+ sname := ldr.SymName(s)
+ if sname == "go.buildinfo" { // clumsy hack for Go 1.19 builders
+ sname = ".go.buildinfo"
+ }
+ sect := addsection(ldr, state.ctxt.Arch, seg, sname, rwx)
+ sect.Align = symalign(ldr, s)
+ state.datsize = Rnd(state.datsize, int64(sect.Align))
+ sect.Vaddr = uint64(state.datsize)
+ return sect
+}
+
+// allocateNamedDataSection creates a new sym.Section for a category
+// of data symbols. Here "seg" is the segment into which the section
+// will go, "sName" is the name to give to the section, "types" is a
+// range of symbol types to be put into the section, and "rwx"
+// contains permissions for the section.
+func (state *dodataState) allocateNamedDataSection(seg *sym.Segment, sName string, types []sym.SymKind, rwx int) *sym.Section {
+ sect := addsection(state.ctxt.loader, state.ctxt.Arch, seg, sName, rwx)
+ if len(types) == 0 {
+ sect.Align = 1
+ } else if len(types) == 1 {
+ sect.Align = state.dataMaxAlign[types[0]]
+ } else {
+ for _, symn := range types {
+ align := state.dataMaxAlign[symn]
+ if sect.Align < align {
+ sect.Align = align
+ }
+ }
+ }
+ state.datsize = Rnd(state.datsize, int64(sect.Align))
+ sect.Vaddr = uint64(state.datsize)
+ return sect
+}
+
+// assignDsymsToSection assigns a collection of data symbols to a
+// newly created section. "sect" is the section into which to place
+// the symbols, "syms" holds the list of symbols to assign,
+// "forceType" (if non-zero) contains a new sym type to apply to each
+// sym during the assignment, and "aligner" is a hook to call to
+// handle alignment during the assignment process.
+func (state *dodataState) assignDsymsToSection(sect *sym.Section, syms []loader.Sym, forceType sym.SymKind, aligner func(state *dodataState, datsize int64, s loader.Sym) int64) {
+ ldr := state.ctxt.loader
+ for _, s := range syms {
+ state.datsize = aligner(state, state.datsize, s)
+ ldr.SetSymSect(s, sect)
+ if forceType != sym.Sxxx {
+ state.setSymType(s, forceType)
+ }
+ ldr.SetSymValue(s, int64(uint64(state.datsize)-sect.Vaddr))
+ state.datsize += ldr.SymSize(s)
+ }
+ sect.Length = uint64(state.datsize) - sect.Vaddr
+}
+
+func (state *dodataState) assignToSection(sect *sym.Section, symn sym.SymKind, forceType sym.SymKind) {
+ state.assignDsymsToSection(sect, state.data[symn], forceType, aligndatsize)
+ state.checkdatsize(symn)
+}
+
+// allocateSingleSymSections walks through the bucketed data symbols
+// with type 'symn', creates a new section for each sym, and assigns
+// the sym to a newly created section. Section name is set from the
+// symbol name. "Seg" is the segment into which to place the new
+// section, "forceType" is the new sym.SymKind to assign to the symbol
+// within the section, and "rwx" holds section permissions.
+func (state *dodataState) allocateSingleSymSections(seg *sym.Segment, symn sym.SymKind, forceType sym.SymKind, rwx int) {
+ ldr := state.ctxt.loader
+ for _, s := range state.data[symn] {
+ sect := state.allocateDataSectionForSym(seg, s, rwx)
+ ldr.SetSymSect(s, sect)
+ state.setSymType(s, forceType)
+ ldr.SetSymValue(s, int64(uint64(state.datsize)-sect.Vaddr))
+ state.datsize += ldr.SymSize(s)
+ sect.Length = uint64(state.datsize) - sect.Vaddr
+ }
+ state.checkdatsize(symn)
+}
+
+// allocateNamedSectionAndAssignSyms creates a new section with the
+// specified name, then walks through the bucketed data symbols with
+// type 'symn' and assigns each of them to this new section. "Seg" is
+// the segment into which to place the new section, "secName" is the
+// name to give to the new section, "forceType" (if non-zero) contains
+// a new sym type to apply to each sym during the assignment, and
+// "rwx" holds section permissions.
+func (state *dodataState) allocateNamedSectionAndAssignSyms(seg *sym.Segment, secName string, symn sym.SymKind, forceType sym.SymKind, rwx int) *sym.Section {
+
+ sect := state.allocateNamedDataSection(seg, secName, []sym.SymKind{symn}, rwx)
+ state.assignDsymsToSection(sect, state.data[symn], forceType, aligndatsize)
+ return sect
+}
+
+// allocateDataSections allocates sym.Section objects for data/rodata
+// (and related) symbols, and then assigns symbols to those sections.
+func (state *dodataState) allocateDataSections(ctxt *Link) {
+ // Allocate sections.
+ // Data is processed before segtext, because we need
+ // to see all symbols in the .data and .bss sections in order
+ // to generate garbage collection information.
+
+ // Writable data sections that do not need any specialized handling.
+ writable := []sym.SymKind{
+ sym.SBUILDINFO,
+ sym.SELFSECT,
+ sym.SMACHO,
+ sym.SMACHOGOT,
+ sym.SWINDOWS,
+ }
+ for _, symn := range writable {
+ state.allocateSingleSymSections(&Segdata, symn, sym.SDATA, 06)
+ }
+ ldr := ctxt.loader
+
+ // .got
+ if len(state.data[sym.SELFGOT]) > 0 {
+ state.allocateNamedSectionAndAssignSyms(&Segdata, ".got", sym.SELFGOT, sym.SDATA, 06)
+ }
+
+ /* pointer-free data */
+ sect := state.allocateNamedSectionAndAssignSyms(&Segdata, ".noptrdata", sym.SNOPTRDATA, sym.SDATA, 06)
+ ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.noptrdata", 0), sect)
+ ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.enoptrdata", 0), sect)
+
+ hasinitarr := ctxt.linkShared
+
+ /* shared library initializer */
+ switch ctxt.BuildMode {
+ case BuildModeCArchive, BuildModeCShared, BuildModeShared, BuildModePlugin:
+ hasinitarr = true
+ }
+
+ if ctxt.HeadType == objabi.Haix {
+ if len(state.data[sym.SINITARR]) > 0 {
+ Errorf(nil, "XCOFF format doesn't allow .init_array section")
+ }
+ }
+
+ if hasinitarr && len(state.data[sym.SINITARR]) > 0 {
+ state.allocateNamedSectionAndAssignSyms(&Segdata, ".init_array", sym.SINITARR, sym.Sxxx, 06)
+ }
+
+ /* data */
+ sect = state.allocateNamedSectionAndAssignSyms(&Segdata, ".data", sym.SDATA, sym.SDATA, 06)
+ ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.data", 0), sect)
+ ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.edata", 0), sect)
+ dataGcEnd := state.datsize - int64(sect.Vaddr)
+
+ // On AIX, TOC entries must be the last of .data
+ // These aren't part of gc as they won't change during the runtime.
+ state.assignToSection(sect, sym.SXCOFFTOC, sym.SDATA)
+ state.checkdatsize(sym.SDATA)
+ sect.Length = uint64(state.datsize) - sect.Vaddr
+
+ /* bss */
+ sect = state.allocateNamedSectionAndAssignSyms(&Segdata, ".bss", sym.SBSS, sym.Sxxx, 06)
+ ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.bss", 0), sect)
+ ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.ebss", 0), sect)
+ bssGcEnd := state.datsize - int64(sect.Vaddr)
+
+ // Emit gcdata for bss symbols now that symbol values have been assigned.
+ gcsToEmit := []struct {
+ symName string
+ symKind sym.SymKind
+ gcEnd int64
+ }{
+ {"runtime.gcdata", sym.SDATA, dataGcEnd},
+ {"runtime.gcbss", sym.SBSS, bssGcEnd},
+ }
+ for _, g := range gcsToEmit {
+ var gc GCProg
+ gc.Init(ctxt, g.symName)
+ for _, s := range state.data[g.symKind] {
+ gc.AddSym(s)
+ }
+ gc.End(g.gcEnd)
+ }
+
+ /* pointer-free bss */
+ sect = state.allocateNamedSectionAndAssignSyms(&Segdata, ".noptrbss", sym.SNOPTRBSS, sym.Sxxx, 06)
+ ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.noptrbss", 0), sect)
+ ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.enoptrbss", 0), sect)
+ ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.end", 0), sect)
+
+ // Coverage instrumentation counters for libfuzzer.
+ if len(state.data[sym.SLIBFUZZER_8BIT_COUNTER]) > 0 {
+ sect := state.allocateNamedSectionAndAssignSyms(&Segdata, "__sancov_cntrs", sym.SLIBFUZZER_8BIT_COUNTER, sym.Sxxx, 06)
+ ldr.SetSymSect(ldr.LookupOrCreateSym("__start___sancov_cntrs", 0), sect)
+ ldr.SetSymSect(ldr.LookupOrCreateSym("__stop___sancov_cntrs", 0), sect)
+ ldr.SetSymSect(ldr.LookupOrCreateSym("internal/fuzz._counters", 0), sect)
+ ldr.SetSymSect(ldr.LookupOrCreateSym("internal/fuzz._ecounters", 0), sect)
+ }
+
+ if len(state.data[sym.STLSBSS]) > 0 {
+ var sect *sym.Section
+ // FIXME: not clear why it is sometimes necessary to suppress .tbss section creation.
+ if (ctxt.IsELF || ctxt.HeadType == objabi.Haix) && (ctxt.LinkMode == LinkExternal || !*FlagD) {
+ sect = addsection(ldr, ctxt.Arch, &Segdata, ".tbss", 06)
+ sect.Align = int32(ctxt.Arch.PtrSize)
+ // FIXME: why does this need to be set to zero?
+ sect.Vaddr = 0
+ }
+ state.datsize = 0
+
+ for _, s := range state.data[sym.STLSBSS] {
+ state.datsize = aligndatsize(state, state.datsize, s)
+ if sect != nil {
+ ldr.SetSymSect(s, sect)
+ }
+ ldr.SetSymValue(s, state.datsize)
+ state.datsize += ldr.SymSize(s)
+ }
+ state.checkdatsize(sym.STLSBSS)
+
+ if sect != nil {
+ sect.Length = uint64(state.datsize)
+ }
+ }
+
+ /*
+ * We finished data, begin read-only data.
+ * Not all systems support a separate read-only non-executable data section.
+ * ELF and Windows PE systems do.
+ * OS X and Plan 9 do not.
+ * And if we're using external linking mode, the point is moot,
+ * since it's not our decision; that code expects the sections in
+ * segtext.
+ */
+ var segro *sym.Segment
+ if ctxt.IsELF && ctxt.LinkMode == LinkInternal {
+ segro = &Segrodata
+ } else if ctxt.HeadType == objabi.Hwindows {
+ segro = &Segrodata
+ } else {
+ segro = &Segtext
+ }
+
+ state.datsize = 0
+
+ /* read-only executable ELF, Mach-O sections */
+ if len(state.data[sym.STEXT]) != 0 {
+ culprit := ldr.SymName(state.data[sym.STEXT][0])
+ Errorf(nil, "dodata found an sym.STEXT symbol: %s", culprit)
+ }
+ state.allocateSingleSymSections(&Segtext, sym.SELFRXSECT, sym.SRODATA, 05)
+ state.allocateSingleSymSections(&Segtext, sym.SMACHOPLT, sym.SRODATA, 05)
+
+ /* read-only data */
+ sect = state.allocateNamedDataSection(segro, ".rodata", sym.ReadOnly, 04)
+ ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.rodata", 0), sect)
+ ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.erodata", 0), sect)
+ if !ctxt.UseRelro() {
+ ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.types", 0), sect)
+ ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.etypes", 0), sect)
+ }
+ for _, symn := range sym.ReadOnly {
+ symnStartValue := state.datsize
+ if len(state.data[symn]) != 0 {
+ symnStartValue = aligndatsize(state, symnStartValue, state.data[symn][0])
+ }
+ state.assignToSection(sect, symn, sym.SRODATA)
+ setCarrierSize(symn, state.datsize-symnStartValue)
+ if ctxt.HeadType == objabi.Haix {
+ // Read-only symbols might be wrapped inside their outer
+ // symbol.
+ // XCOFF symbol table needs to know the size of
+ // these outer symbols.
+ xcoffUpdateOuterSize(ctxt, state.datsize-symnStartValue, symn)
+ }
+ }
+
+ /* read-only ELF, Mach-O sections */
+ state.allocateSingleSymSections(segro, sym.SELFROSECT, sym.SRODATA, 04)
+
+ // There is some data that are conceptually read-only but are written to by
+ // relocations. On GNU systems, we can arrange for the dynamic linker to
+ // mprotect sections after relocations are applied by giving them write
+ // permissions in the object file and calling them ".data.rel.ro.FOO". We
+ // divide the .rodata section between actual .rodata and .data.rel.ro.rodata,
+ // but for the other sections that this applies to, we just write a read-only
+ // .FOO section or a read-write .data.rel.ro.FOO section depending on the
+ // situation.
+ // TODO(mwhudson): It would make sense to do this more widely, but it makes
+ // the system linker segfault on darwin.
+ const relroPerm = 06
+ const fallbackPerm = 04
+ relroSecPerm := fallbackPerm
+ genrelrosecname := func(suffix string) string {
+ if suffix == "" {
+ return ".rodata"
+ }
+ return suffix
+ }
+ seg := segro
+
+ if ctxt.UseRelro() {
+ segrelro := &Segrelrodata
+ if ctxt.LinkMode == LinkExternal && !ctxt.IsAIX() && !ctxt.IsDarwin() {
+ // Using a separate segment with an external
+ // linker results in some programs moving
+ // their data sections unexpectedly, which
+ // corrupts the moduledata. So we use the
+ // rodata segment and let the external linker
+ // sort out a rel.ro segment.
+ segrelro = segro
+ } else {
+ // Reset datsize for new segment.
+ state.datsize = 0
+ }
+
+ if !ctxt.IsDarwin() { // We don't need the special names on darwin.
+ genrelrosecname = func(suffix string) string {
+ return ".data.rel.ro" + suffix
+ }
+ }
+
+ relroReadOnly := []sym.SymKind{}
+ for _, symnro := range sym.ReadOnly {
+ symn := sym.RelROMap[symnro]
+ relroReadOnly = append(relroReadOnly, symn)
+ }
+ seg = segrelro
+ relroSecPerm = relroPerm
+
+ /* data only written by relocations */
+ sect = state.allocateNamedDataSection(segrelro, genrelrosecname(""), relroReadOnly, relroSecPerm)
+
+ ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.types", 0), sect)
+ ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.etypes", 0), sect)
+
+ for i, symnro := range sym.ReadOnly {
+ if i == 0 && symnro == sym.STYPE && ctxt.HeadType != objabi.Haix {
+ // Skip forward so that no type
+ // reference uses a zero offset.
+ // This is unlikely but possible in small
+ // programs with no other read-only data.
+ state.datsize++
+ }
+
+ symn := sym.RelROMap[symnro]
+ symnStartValue := state.datsize
+ if len(state.data[symn]) != 0 {
+ symnStartValue = aligndatsize(state, symnStartValue, state.data[symn][0])
+ }
+
+ for _, s := range state.data[symn] {
+ outer := ldr.OuterSym(s)
+ if s != 0 && ldr.SymSect(outer) != nil && ldr.SymSect(outer) != sect {
+ ctxt.Errorf(s, "s.Outer (%s) in different section from s, %s != %s", ldr.SymName(outer), ldr.SymSect(outer).Name, sect.Name)
+ }
+ }
+ state.assignToSection(sect, symn, sym.SRODATA)
+ setCarrierSize(symn, state.datsize-symnStartValue)
+ if ctxt.HeadType == objabi.Haix {
+ // Read-only symbols might be wrapped inside their outer
+ // symbol.
+ // XCOFF symbol table needs to know the size of
+ // these outer symbols.
+ xcoffUpdateOuterSize(ctxt, state.datsize-symnStartValue, symn)
+ }
+ }
+
+ sect.Length = uint64(state.datsize) - sect.Vaddr
+ }
+
+ /* typelink */
+ sect = state.allocateNamedDataSection(seg, genrelrosecname(".typelink"), []sym.SymKind{sym.STYPELINK}, relroSecPerm)
+
+ typelink := ldr.CreateSymForUpdate("runtime.typelink", 0)
+ ldr.SetSymSect(typelink.Sym(), sect)
+ typelink.SetType(sym.SRODATA)
+ state.datsize += typelink.Size()
+ state.checkdatsize(sym.STYPELINK)
+ sect.Length = uint64(state.datsize) - sect.Vaddr
+
+ /* itablink */
+ sect = state.allocateNamedDataSection(seg, genrelrosecname(".itablink"), []sym.SymKind{sym.SITABLINK}, relroSecPerm)
+
+ itablink := ldr.CreateSymForUpdate("runtime.itablink", 0)
+ ldr.SetSymSect(itablink.Sym(), sect)
+ itablink.SetType(sym.SRODATA)
+ state.datsize += itablink.Size()
+ state.checkdatsize(sym.SITABLINK)
+ sect.Length = uint64(state.datsize) - sect.Vaddr
+
+ /* gosymtab */
+ sect = state.allocateNamedSectionAndAssignSyms(seg, genrelrosecname(".gosymtab"), sym.SSYMTAB, sym.SRODATA, relroSecPerm)
+ ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.symtab", 0), sect)
+ ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.esymtab", 0), sect)
+
+ /* gopclntab */
+ sect = state.allocateNamedSectionAndAssignSyms(seg, genrelrosecname(".gopclntab"), sym.SPCLNTAB, sym.SRODATA, relroSecPerm)
+ ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.pclntab", 0), sect)
+ ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.pcheader", 0), sect)
+ ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.funcnametab", 0), sect)
+ ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.cutab", 0), sect)
+ ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.filetab", 0), sect)
+ ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.pctab", 0), sect)
+ ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.functab", 0), sect)
+ ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.epclntab", 0), sect)
+ setCarrierSize(sym.SPCLNTAB, int64(sect.Length))
+ if ctxt.HeadType == objabi.Haix {
+ xcoffUpdateOuterSize(ctxt, int64(sect.Length), sym.SPCLNTAB)
+ }
+
+ // 6g uses 4-byte relocation offsets, so the entire segment must fit in 32 bits.
+ if state.datsize != int64(uint32(state.datsize)) {
+ Errorf(nil, "read-only data segment too large: %d", state.datsize)
+ }
+
+ siz := 0
+ for symn := sym.SELFRXSECT; symn < sym.SXREF; symn++ {
+ siz += len(state.data[symn])
+ }
+ ctxt.datap = make([]loader.Sym, 0, siz)
+ for symn := sym.SELFRXSECT; symn < sym.SXREF; symn++ {
+ ctxt.datap = append(ctxt.datap, state.data[symn]...)
+ }
+}
+
+// allocateDwarfSections allocates sym.Section objects for DWARF
+// symbols, and assigns symbols to sections.
+func (state *dodataState) allocateDwarfSections(ctxt *Link) {
+
+ alignOne := func(state *dodataState, datsize int64, s loader.Sym) int64 { return datsize }
+
+ ldr := ctxt.loader
+ for i := 0; i < len(dwarfp); i++ {
+ // First the section symbol.
+ s := dwarfp[i].secSym()
+ sect := state.allocateNamedDataSection(&Segdwarf, ldr.SymName(s), []sym.SymKind{}, 04)
+ ldr.SetSymSect(s, sect)
+ sect.Sym = sym.LoaderSym(s)
+ curType := ldr.SymType(s)
+ state.setSymType(s, sym.SRODATA)
+ ldr.SetSymValue(s, int64(uint64(state.datsize)-sect.Vaddr))
+ state.datsize += ldr.SymSize(s)
+
+ // Then any sub-symbols for the section symbol.
+ subSyms := dwarfp[i].subSyms()
+ state.assignDsymsToSection(sect, subSyms, sym.SRODATA, alignOne)
+
+ for j := 0; j < len(subSyms); j++ {
+ s := subSyms[j]
+ if ctxt.HeadType == objabi.Haix && curType == sym.SDWARFLOC {
+ // Update the size of .debug_loc for this symbol's
+ // package.
+ addDwsectCUSize(".debug_loc", ldr.SymPkg(s), uint64(ldr.SymSize(s)))
+ }
+ }
+ sect.Length = uint64(state.datsize) - sect.Vaddr
+ state.checkdatsize(curType)
+ }
+}
+
+type symNameSize struct {
+ name string
+ sz int64
+ val int64
+ sym loader.Sym
+}
+
+func (state *dodataState) dodataSect(ctxt *Link, symn sym.SymKind, syms []loader.Sym) (result []loader.Sym, maxAlign int32) {
+ var head, tail loader.Sym
+ ldr := ctxt.loader
+ sl := make([]symNameSize, len(syms))
+ for k, s := range syms {
+ ss := ldr.SymSize(s)
+ sl[k] = symNameSize{name: ldr.SymName(s), sz: ss, sym: s}
+ ds := int64(len(ldr.Data(s)))
+ switch {
+ case ss < ds:
+ ctxt.Errorf(s, "initialize bounds (%d < %d)", ss, ds)
+ case ss < 0:
+ ctxt.Errorf(s, "negative size (%d bytes)", ss)
+ case ss > cutoff:
+ ctxt.Errorf(s, "symbol too large (%d bytes)", ss)
+ }
+
+ // If the usually-special section-marker symbols are being laid
+ // out as regular symbols, put them either at the beginning or
+ // end of their section.
+ if (ctxt.DynlinkingGo() && ctxt.HeadType == objabi.Hdarwin) || (ctxt.HeadType == objabi.Haix && ctxt.LinkMode == LinkExternal) {
+ switch ldr.SymName(s) {
+ case "runtime.text", "runtime.bss", "runtime.data", "runtime.types", "runtime.rodata":
+ head = s
+ continue
+ case "runtime.etext", "runtime.ebss", "runtime.edata", "runtime.etypes", "runtime.erodata":
+ tail = s
+ continue
+ }
+ }
+ }
+
+ // For ppc64, we want to interleave the .got and .toc sections
+ // from input files. Both are type sym.SELFGOT, so in that case
+ // we skip size comparison and fall through to the name
+ // comparison (conveniently, .got sorts before .toc).
+ checkSize := symn != sym.SELFGOT
+
+ // Perform the sort.
+ if symn != sym.SPCLNTAB {
+ sort.Slice(sl, func(i, j int) bool {
+ si, sj := sl[i].sym, sl[j].sym
+ switch {
+ case si == head, sj == tail:
+ return true
+ case sj == head, si == tail:
+ return false
+ }
+ if checkSize {
+ isz := sl[i].sz
+ jsz := sl[j].sz
+ if isz != jsz {
+ return isz < jsz
+ }
+ }
+ iname := sl[i].name
+ jname := sl[j].name
+ if iname != jname {
+ return iname < jname
+ }
+ return si < sj
+ })
+ } else {
+ // PCLNTAB was built internally, and already has the proper order.
+ }
+
+ // Set alignment, construct result
+ syms = syms[:0]
+ for k := range sl {
+ s := sl[k].sym
+ if s != head && s != tail {
+ align := symalign(ldr, s)
+ if maxAlign < align {
+ maxAlign = align
+ }
+ }
+ syms = append(syms, s)
+ }
+
+ return syms, maxAlign
+}
+
+// Add buildid to beginning of text segment, on non-ELF systems.
+// Non-ELF binary formats are not always flexible enough to
+// give us a place to put the Go build ID. On those systems, we put it
+// at the very beginning of the text segment.
+// This “header” is read by cmd/go.
+func (ctxt *Link) textbuildid() {
+ if ctxt.IsELF || ctxt.BuildMode == BuildModePlugin || *flagBuildid == "" {
+ return
+ }
+
+ ldr := ctxt.loader
+ s := ldr.CreateSymForUpdate("go.buildid", 0)
+ // The \xff is invalid UTF-8, meant to make it less likely
+ // to find one of these accidentally.
+ data := "\xff Go build ID: " + strconv.Quote(*flagBuildid) + "\n \xff"
+ s.SetType(sym.STEXT)
+ s.SetData([]byte(data))
+ s.SetSize(int64(len(data)))
+
+ ctxt.Textp = append(ctxt.Textp, 0)
+ copy(ctxt.Textp[1:], ctxt.Textp)
+ ctxt.Textp[0] = s.Sym()
+}
+
+func (ctxt *Link) buildinfo() {
+ if ctxt.linkShared || ctxt.BuildMode == BuildModePlugin {
+ // -linkshared and -buildmode=plugin get confused
+ // about the relocations in go.buildinfo
+ // pointing at the other data sections.
+ // The version information is only available in executables.
+ return
+ }
+
+ // Write the buildinfo symbol, which go version looks for.
+ // The code reading this data is in package debug/buildinfo.
+ ldr := ctxt.loader
+ s := ldr.CreateSymForUpdate("go.buildinfo", 0)
+ s.SetType(sym.SBUILDINFO)
+ s.SetAlign(16)
+ // The \xff is invalid UTF-8, meant to make it less likely
+ // to find one of these accidentally.
+ const prefix = "\xff Go buildinf:" // 14 bytes, plus 2 data bytes filled in below
+ data := make([]byte, 32)
+ copy(data, prefix)
+ data[len(prefix)] = byte(ctxt.Arch.PtrSize)
+ data[len(prefix)+1] = 0
+ if ctxt.Arch.ByteOrder == binary.BigEndian {
+ data[len(prefix)+1] = 1
+ }
+ data[len(prefix)+1] |= 2 // signals new pointer-free format
+ data = appendString(data, strdata["runtime.buildVersion"])
+ data = appendString(data, strdata["runtime.modinfo"])
+ // MacOS linker gets very upset if the size os not a multiple of alignment.
+ for len(data)%16 != 0 {
+ data = append(data, 0)
+ }
+ s.SetData(data)
+ s.SetSize(int64(len(data)))
+
+ // Add reference to go:buildinfo from the rodata section,
+ // so that external linking with -Wl,--gc-sections does not
+ // delete the build info.
+ sr := ldr.CreateSymForUpdate("go.buildinfo.ref", 0)
+ sr.SetType(sym.SRODATA)
+ sr.SetAlign(int32(ctxt.Arch.PtrSize))
+ sr.AddAddr(ctxt.Arch, s.Sym())
+}
+
+// appendString appends s to data, prefixed by its varint-encoded length.
+func appendString(data []byte, s string) []byte {
+ var v [binary.MaxVarintLen64]byte
+ n := binary.PutUvarint(v[:], uint64(len(s)))
+ data = append(data, v[:n]...)
+ data = append(data, s...)
+ return data
+}
+
+// assign addresses to text
+func (ctxt *Link) textaddress() {
+ addsection(ctxt.loader, ctxt.Arch, &Segtext, ".text", 05)
+
+ // Assign PCs in text segment.
+ // Could parallelize, by assigning to text
+ // and then letting threads copy down, but probably not worth it.
+ sect := Segtext.Sections[0]
+
+ sect.Align = int32(Funcalign)
+
+ ldr := ctxt.loader
+
+ text := ctxt.xdefine("runtime.text", sym.STEXT, 0)
+ etext := ctxt.xdefine("runtime.etext", sym.STEXT, 0)
+ ldr.SetSymSect(text, sect)
+ if ctxt.IsAIX() && ctxt.IsExternal() {
+ // Setting runtime.text has a real symbol prevents ld to
+ // change its base address resulting in wrong offsets for
+ // reflect methods.
+ u := ldr.MakeSymbolUpdater(text)
+ u.SetAlign(sect.Align)
+ u.SetSize(8)
+ }
+
+ if (ctxt.DynlinkingGo() && ctxt.IsDarwin()) || (ctxt.IsAIX() && ctxt.IsExternal()) {
+ ldr.SetSymSect(etext, sect)
+ ctxt.Textp = append(ctxt.Textp, etext, 0)
+ copy(ctxt.Textp[1:], ctxt.Textp)
+ ctxt.Textp[0] = text
+ }
+
+ start := uint64(Rnd(*FlagTextAddr, int64(Funcalign)))
+ va := start
+ n := 1
+ sect.Vaddr = va
+
+ limit := thearch.TrampLimit
+ if limit == 0 {
+ limit = 1 << 63 // unlimited
+ }
+ if *FlagDebugTextSize != 0 {
+ limit = uint64(*FlagDebugTextSize)
+ }
+ if *FlagDebugTramp > 1 {
+ limit = 1 // debug mode, force generating trampolines for everything
+ }
+
+ if ctxt.IsAIX() && ctxt.IsExternal() {
+ // On AIX, normally we won't generate direct calls to external symbols,
+ // except in one test, cmd/go/testdata/script/link_syso_issue33139.txt.
+ // That test doesn't make much sense, and I'm not sure it ever works.
+ // Just generate trampoline for now (which will turn a direct call to
+ // an indirect call, which at least builds).
+ limit = 1
+ }
+
+ // First pass: assign addresses assuming the program is small and
+ // don't generate trampolines.
+ big := false
+ for _, s := range ctxt.Textp {
+ sect, n, va = assignAddress(ctxt, sect, n, s, va, false, big)
+ if va-start >= limit {
+ big = true
+ break
+ }
+ }
+
+ // Second pass: only if it is too big, insert trampolines for too-far
+ // jumps and targets with unknown addresses.
+ if big {
+ // reset addresses
+ for _, s := range ctxt.Textp {
+ if ldr.OuterSym(s) != 0 || s == text {
+ continue
+ }
+ oldv := ldr.SymValue(s)
+ for sub := s; sub != 0; sub = ldr.SubSym(sub) {
+ ldr.SetSymValue(sub, ldr.SymValue(sub)-oldv)
+ }
+ }
+ va = start
+
+ ntramps := 0
+ for _, s := range ctxt.Textp {
+ sect, n, va = assignAddress(ctxt, sect, n, s, va, false, big)
+
+ trampoline(ctxt, s) // resolve jumps, may add trampolines if jump too far
+
+ // lay down trampolines after each function
+ for ; ntramps < len(ctxt.tramps); ntramps++ {
+ tramp := ctxt.tramps[ntramps]
+ if ctxt.IsAIX() && strings.HasPrefix(ldr.SymName(tramp), "runtime.text.") {
+ // Already set in assignAddress
+ continue
+ }
+ sect, n, va = assignAddress(ctxt, sect, n, tramp, va, true, big)
+ }
+ }
+
+ // merge tramps into Textp, keeping Textp in address order
+ if ntramps != 0 {
+ newtextp := make([]loader.Sym, 0, len(ctxt.Textp)+ntramps)
+ i := 0
+ for _, s := range ctxt.Textp {
+ for ; i < ntramps && ldr.SymValue(ctxt.tramps[i]) < ldr.SymValue(s); i++ {
+ newtextp = append(newtextp, ctxt.tramps[i])
+ }
+ newtextp = append(newtextp, s)
+ }
+ newtextp = append(newtextp, ctxt.tramps[i:ntramps]...)
+
+ ctxt.Textp = newtextp
+ }
+ }
+
+ sect.Length = va - sect.Vaddr
+ ldr.SetSymSect(etext, sect)
+ if ldr.SymValue(etext) == 0 {
+ // Set the address of the start/end symbols, if not already
+ // (i.e. not darwin+dynlink or AIX+external, see above).
+ ldr.SetSymValue(etext, int64(va))
+ ldr.SetSymValue(text, int64(Segtext.Sections[0].Vaddr))
+ }
+}
+
+// assigns address for a text symbol, returns (possibly new) section, its number, and the address
+func assignAddress(ctxt *Link, sect *sym.Section, n int, s loader.Sym, va uint64, isTramp, big bool) (*sym.Section, int, uint64) {
+ ldr := ctxt.loader
+ if thearch.AssignAddress != nil {
+ return thearch.AssignAddress(ldr, sect, n, s, va, isTramp)
+ }
+
+ ldr.SetSymSect(s, sect)
+ if ldr.AttrSubSymbol(s) {
+ return sect, n, va
+ }
+
+ align := ldr.SymAlign(s)
+ if align == 0 {
+ align = int32(Funcalign)
+ }
+ va = uint64(Rnd(int64(va), int64(align)))
+ if sect.Align < align {
+ sect.Align = align
+ }
+
+ funcsize := uint64(MINFUNC) // spacing required for findfunctab
+ if ldr.SymSize(s) > MINFUNC {
+ funcsize = uint64(ldr.SymSize(s))
+ }
+
+ // If we need to split text sections, and this function doesn't fit in the current
+ // section, then create a new one.
+ //
+ // Only break at outermost syms.
+ if big && splitTextSections(ctxt) && ldr.OuterSym(s) == 0 {
+ // For debugging purposes, allow text size limit to be cranked down,
+ // so as to stress test the code that handles multiple text sections.
+ var textSizelimit uint64 = thearch.TrampLimit
+ if *FlagDebugTextSize != 0 {
+ textSizelimit = uint64(*FlagDebugTextSize)
+ }
+
+ // Sanity check: make sure the limit is larger than any
+ // individual text symbol.
+ if funcsize > textSizelimit {
+ panic(fmt.Sprintf("error: text size limit %d less than text symbol %s size of %d", textSizelimit, ldr.SymName(s), funcsize))
+ }
+
+ if va-sect.Vaddr+funcsize+maxSizeTrampolines(ctxt, ldr, s, isTramp) > textSizelimit {
+ sectAlign := int32(thearch.Funcalign)
+ if ctxt.IsPPC64() {
+ // Align the next text section to the worst case function alignment likely
+ // to be encountered when processing function symbols. The start address
+ // is rounded against the final alignment of the text section later on in
+ // (*Link).address. This may happen due to usage of PCALIGN directives
+ // larger than Funcalign, or usage of ISA 3.1 prefixed instructions
+ // (see ISA 3.1 Book I 1.9).
+ const ppc64maxFuncalign = 64
+ sectAlign = ppc64maxFuncalign
+ va = uint64(Rnd(int64(va), ppc64maxFuncalign))
+ }
+
+ // Set the length for the previous text section
+ sect.Length = va - sect.Vaddr
+
+ // Create new section, set the starting Vaddr
+ sect = addsection(ctxt.loader, ctxt.Arch, &Segtext, ".text", 05)
+
+ sect.Vaddr = va
+ sect.Align = sectAlign
+ ldr.SetSymSect(s, sect)
+
+ // Create a symbol for the start of the secondary text sections
+ ntext := ldr.CreateSymForUpdate(fmt.Sprintf("runtime.text.%d", n), 0)
+ ntext.SetSect(sect)
+ if ctxt.IsAIX() {
+ // runtime.text.X must be a real symbol on AIX.
+ // Assign its address directly in order to be the
+ // first symbol of this new section.
+ ntext.SetType(sym.STEXT)
+ ntext.SetSize(int64(MINFUNC))
+ ntext.SetOnList(true)
+ ntext.SetAlign(sectAlign)
+ ctxt.tramps = append(ctxt.tramps, ntext.Sym())
+
+ ntext.SetValue(int64(va))
+ va += uint64(ntext.Size())
+
+ if align := ldr.SymAlign(s); align != 0 {
+ va = uint64(Rnd(int64(va), int64(align)))
+ } else {
+ va = uint64(Rnd(int64(va), int64(Funcalign)))
+ }
+ }
+ n++
+ }
+ }
+
+ ldr.SetSymValue(s, 0)
+ for sub := s; sub != 0; sub = ldr.SubSym(sub) {
+ ldr.SetSymValue(sub, ldr.SymValue(sub)+int64(va))
+ if ctxt.Debugvlog > 2 {
+ fmt.Println("assign text address:", ldr.SymName(sub), ldr.SymValue(sub))
+ }
+ }
+
+ va += funcsize
+
+ return sect, n, va
+}
+
+// Return whether we may need to split text sections.
+//
+// On PPC64x whem external linking a text section should not be larger than 2^25 bytes
+// due to the size of call target offset field in the bl instruction. Splitting into
+// smaller text sections smaller than this limit allows the system linker to modify the long
+// calls appropriately. The limit allows for the space needed for tables inserted by the
+// linker.
+//
+// The same applies to Darwin/ARM64, with 2^27 byte threshold.
+func splitTextSections(ctxt *Link) bool {
+ return (ctxt.IsPPC64() || (ctxt.IsARM64() && ctxt.IsDarwin())) && ctxt.IsExternal()
+}
+
+// On Wasm, we reserve 4096 bytes for zero page, then 8192 bytes for wasm_exec.js
+// to store command line args and environment variables.
+// Data sections starts from at least address 12288.
+// Keep in sync with wasm_exec.js.
+const wasmMinDataAddr = 4096 + 8192
+
+// address assigns virtual addresses to all segments and sections and
+// returns all segments in file order.
+func (ctxt *Link) address() []*sym.Segment {
+ var order []*sym.Segment // Layout order
+
+ va := uint64(*FlagTextAddr)
+ order = append(order, &Segtext)
+ Segtext.Rwx = 05
+ Segtext.Vaddr = va
+ for i, s := range Segtext.Sections {
+ va = uint64(Rnd(int64(va), int64(s.Align)))
+ s.Vaddr = va
+ va += s.Length
+
+ if ctxt.IsWasm() && i == 0 && va < wasmMinDataAddr {
+ va = wasmMinDataAddr
+ }
+ }
+
+ Segtext.Length = va - uint64(*FlagTextAddr)
+
+ if len(Segrodata.Sections) > 0 {
+ // align to page boundary so as not to mix
+ // rodata and executable text.
+ //
+ // Note: gold or GNU ld will reduce the size of the executable
+ // file by arranging for the relro segment to end at a page
+ // boundary, and overlap the end of the text segment with the
+ // start of the relro segment in the file. The PT_LOAD segments
+ // will be such that the last page of the text segment will be
+ // mapped twice, once r-x and once starting out rw- and, after
+ // relocation processing, changed to r--.
+ //
+ // Ideally the last page of the text segment would not be
+ // writable even for this short period.
+ va = uint64(Rnd(int64(va), int64(*FlagRound)))
+
+ order = append(order, &Segrodata)
+ Segrodata.Rwx = 04
+ Segrodata.Vaddr = va
+ for _, s := range Segrodata.Sections {
+ va = uint64(Rnd(int64(va), int64(s.Align)))
+ s.Vaddr = va
+ va += s.Length
+ }
+
+ Segrodata.Length = va - Segrodata.Vaddr
+ }
+ if len(Segrelrodata.Sections) > 0 {
+ // align to page boundary so as not to mix
+ // rodata, rel-ro data, and executable text.
+ va = uint64(Rnd(int64(va), int64(*FlagRound)))
+ if ctxt.HeadType == objabi.Haix {
+ // Relro data are inside data segment on AIX.
+ va += uint64(XCOFFDATABASE) - uint64(XCOFFTEXTBASE)
+ }
+
+ order = append(order, &Segrelrodata)
+ Segrelrodata.Rwx = 06
+ Segrelrodata.Vaddr = va
+ for _, s := range Segrelrodata.Sections {
+ va = uint64(Rnd(int64(va), int64(s.Align)))
+ s.Vaddr = va
+ va += s.Length
+ }
+
+ Segrelrodata.Length = va - Segrelrodata.Vaddr
+ }
+
+ va = uint64(Rnd(int64(va), int64(*FlagRound)))
+ if ctxt.HeadType == objabi.Haix && len(Segrelrodata.Sections) == 0 {
+ // Data sections are moved to an unreachable segment
+ // to ensure that they are position-independent.
+ // Already done if relro sections exist.
+ va += uint64(XCOFFDATABASE) - uint64(XCOFFTEXTBASE)
+ }
+ order = append(order, &Segdata)
+ Segdata.Rwx = 06
+ Segdata.Vaddr = va
+ var data *sym.Section
+ var noptr *sym.Section
+ var bss *sym.Section
+ var noptrbss *sym.Section
+ var fuzzCounters *sym.Section
+ for i, s := range Segdata.Sections {
+ if (ctxt.IsELF || ctxt.HeadType == objabi.Haix) && s.Name == ".tbss" {
+ continue
+ }
+ vlen := int64(s.Length)
+ if i+1 < len(Segdata.Sections) && !((ctxt.IsELF || ctxt.HeadType == objabi.Haix) && Segdata.Sections[i+1].Name == ".tbss") {
+ vlen = int64(Segdata.Sections[i+1].Vaddr - s.Vaddr)
+ }
+ s.Vaddr = va
+ va += uint64(vlen)
+ Segdata.Length = va - Segdata.Vaddr
+ switch s.Name {
+ case ".data":
+ data = s
+ case ".noptrdata":
+ noptr = s
+ case ".bss":
+ bss = s
+ case ".noptrbss":
+ noptrbss = s
+ case "__sancov_cntrs":
+ fuzzCounters = s
+ }
+ }
+
+ // Assign Segdata's Filelen omitting the BSS. We do this here
+ // simply because right now we know where the BSS starts.
+ Segdata.Filelen = bss.Vaddr - Segdata.Vaddr
+
+ va = uint64(Rnd(int64(va), int64(*FlagRound)))
+ order = append(order, &Segdwarf)
+ Segdwarf.Rwx = 06
+ Segdwarf.Vaddr = va
+ for i, s := range Segdwarf.Sections {
+ vlen := int64(s.Length)
+ if i+1 < len(Segdwarf.Sections) {
+ vlen = int64(Segdwarf.Sections[i+1].Vaddr - s.Vaddr)
+ }
+ s.Vaddr = va
+ va += uint64(vlen)
+ if ctxt.HeadType == objabi.Hwindows {
+ va = uint64(Rnd(int64(va), PEFILEALIGN))
+ }
+ Segdwarf.Length = va - Segdwarf.Vaddr
+ }
+
+ ldr := ctxt.loader
+ var (
+ rodata = ldr.SymSect(ldr.LookupOrCreateSym("runtime.rodata", 0))
+ symtab = ldr.SymSect(ldr.LookupOrCreateSym("runtime.symtab", 0))
+ pclntab = ldr.SymSect(ldr.LookupOrCreateSym("runtime.pclntab", 0))
+ types = ldr.SymSect(ldr.LookupOrCreateSym("runtime.types", 0))
+ )
+
+ for _, s := range ctxt.datap {
+ if sect := ldr.SymSect(s); sect != nil {
+ ldr.AddToSymValue(s, int64(sect.Vaddr))
+ }
+ v := ldr.SymValue(s)
+ for sub := ldr.SubSym(s); sub != 0; sub = ldr.SubSym(sub) {
+ ldr.AddToSymValue(sub, v)
+ }
+ }
+
+ for _, si := range dwarfp {
+ for _, s := range si.syms {
+ if sect := ldr.SymSect(s); sect != nil {
+ ldr.AddToSymValue(s, int64(sect.Vaddr))
+ }
+ sub := ldr.SubSym(s)
+ if sub != 0 {
+ panic(fmt.Sprintf("unexpected sub-sym for %s %s", ldr.SymName(s), ldr.SymType(s).String()))
+ }
+ v := ldr.SymValue(s)
+ for ; sub != 0; sub = ldr.SubSym(sub) {
+ ldr.AddToSymValue(s, v)
+ }
+ }
+ }
+
+ if ctxt.BuildMode == BuildModeShared {
+ s := ldr.LookupOrCreateSym("go.link.abihashbytes", 0)
+ sect := ldr.SymSect(ldr.LookupOrCreateSym(".note.go.abihash", 0))
+ ldr.SetSymSect(s, sect)
+ ldr.SetSymValue(s, int64(sect.Vaddr+16))
+ }
+
+ // If there are multiple text sections, create runtime.text.n for
+ // their section Vaddr, using n for index
+ n := 1
+ for _, sect := range Segtext.Sections[1:] {
+ if sect.Name != ".text" {
+ break
+ }
+ symname := fmt.Sprintf("runtime.text.%d", n)
+ if ctxt.HeadType != objabi.Haix || ctxt.LinkMode != LinkExternal {
+ // Addresses are already set on AIX with external linker
+ // because these symbols are part of their sections.
+ ctxt.xdefine(symname, sym.STEXT, int64(sect.Vaddr))
+ }
+ n++
+ }
+
+ ctxt.xdefine("runtime.rodata", sym.SRODATA, int64(rodata.Vaddr))
+ ctxt.xdefine("runtime.erodata", sym.SRODATA, int64(rodata.Vaddr+rodata.Length))
+ ctxt.xdefine("runtime.types", sym.SRODATA, int64(types.Vaddr))
+ ctxt.xdefine("runtime.etypes", sym.SRODATA, int64(types.Vaddr+types.Length))
+
+ s := ldr.Lookup("runtime.gcdata", 0)
+ ldr.SetAttrLocal(s, true)
+ ctxt.xdefine("runtime.egcdata", sym.SRODATA, ldr.SymAddr(s)+ldr.SymSize(s))
+ ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.egcdata", 0), ldr.SymSect(s))
+
+ s = ldr.LookupOrCreateSym("runtime.gcbss", 0)
+ ldr.SetAttrLocal(s, true)
+ ctxt.xdefine("runtime.egcbss", sym.SRODATA, ldr.SymAddr(s)+ldr.SymSize(s))
+ ldr.SetSymSect(ldr.LookupOrCreateSym("runtime.egcbss", 0), ldr.SymSect(s))
+
+ ctxt.xdefine("runtime.symtab", sym.SRODATA, int64(symtab.Vaddr))
+ ctxt.xdefine("runtime.esymtab", sym.SRODATA, int64(symtab.Vaddr+symtab.Length))
+ ctxt.xdefine("runtime.pclntab", sym.SRODATA, int64(pclntab.Vaddr))
+ ctxt.defineInternal("runtime.pcheader", sym.SRODATA)
+ ctxt.defineInternal("runtime.funcnametab", sym.SRODATA)
+ ctxt.defineInternal("runtime.cutab", sym.SRODATA)
+ ctxt.defineInternal("runtime.filetab", sym.SRODATA)
+ ctxt.defineInternal("runtime.pctab", sym.SRODATA)
+ ctxt.defineInternal("runtime.functab", sym.SRODATA)
+ ctxt.xdefine("runtime.epclntab", sym.SRODATA, int64(pclntab.Vaddr+pclntab.Length))
+ ctxt.xdefine("runtime.noptrdata", sym.SNOPTRDATA, int64(noptr.Vaddr))
+ ctxt.xdefine("runtime.enoptrdata", sym.SNOPTRDATA, int64(noptr.Vaddr+noptr.Length))
+ ctxt.xdefine("runtime.bss", sym.SBSS, int64(bss.Vaddr))
+ ctxt.xdefine("runtime.ebss", sym.SBSS, int64(bss.Vaddr+bss.Length))
+ ctxt.xdefine("runtime.data", sym.SDATA, int64(data.Vaddr))
+ ctxt.xdefine("runtime.edata", sym.SDATA, int64(data.Vaddr+data.Length))
+ ctxt.xdefine("runtime.noptrbss", sym.SNOPTRBSS, int64(noptrbss.Vaddr))
+ ctxt.xdefine("runtime.enoptrbss", sym.SNOPTRBSS, int64(noptrbss.Vaddr+noptrbss.Length))
+ ctxt.xdefine("runtime.end", sym.SBSS, int64(Segdata.Vaddr+Segdata.Length))
+
+ if fuzzCounters != nil {
+ ctxt.xdefine("__start___sancov_cntrs", sym.SLIBFUZZER_8BIT_COUNTER, int64(fuzzCounters.Vaddr))
+ ctxt.xdefine("__stop___sancov_cntrs", sym.SLIBFUZZER_8BIT_COUNTER, int64(fuzzCounters.Vaddr+fuzzCounters.Length))
+ ctxt.xdefine("internal/fuzz._counters", sym.SLIBFUZZER_8BIT_COUNTER, int64(fuzzCounters.Vaddr))
+ ctxt.xdefine("internal/fuzz._ecounters", sym.SLIBFUZZER_8BIT_COUNTER, int64(fuzzCounters.Vaddr+fuzzCounters.Length))
+ }
+
+ if ctxt.IsSolaris() {
+ // On Solaris, in the runtime it sets the external names of the
+ // end symbols. Unset them and define separate symbols, so we
+ // keep both.
+ etext := ldr.Lookup("runtime.etext", 0)
+ edata := ldr.Lookup("runtime.edata", 0)
+ end := ldr.Lookup("runtime.end", 0)
+ ldr.SetSymExtname(etext, "runtime.etext")
+ ldr.SetSymExtname(edata, "runtime.edata")
+ ldr.SetSymExtname(end, "runtime.end")
+ ctxt.xdefine("_etext", ldr.SymType(etext), ldr.SymValue(etext))
+ ctxt.xdefine("_edata", ldr.SymType(edata), ldr.SymValue(edata))
+ ctxt.xdefine("_end", ldr.SymType(end), ldr.SymValue(end))
+ ldr.SetSymSect(ldr.Lookup("_etext", 0), ldr.SymSect(etext))
+ ldr.SetSymSect(ldr.Lookup("_edata", 0), ldr.SymSect(edata))
+ ldr.SetSymSect(ldr.Lookup("_end", 0), ldr.SymSect(end))
+ }
+
+ if ctxt.IsPPC64() && ctxt.IsElf() {
+ // Resolve .TOC. symbols for all objects. Only one TOC region is supported. If a
+ // GOT section is present, compute it as suggested by the ELFv2 ABI. Otherwise,
+ // choose a similar offset from the start of the data segment.
+ tocAddr := int64(Segdata.Vaddr) + 0x8000
+ if gotAddr := ldr.SymValue(ctxt.GOT); gotAddr != 0 {
+ tocAddr = gotAddr + 0x8000
+ }
+ for i, _ := range ctxt.DotTOC {
+ if i >= sym.SymVerABICount && i < sym.SymVerStatic { // these versions are not used currently
+ continue
+ }
+ if toc := ldr.Lookup(".TOC.", i); toc != 0 {
+ ldr.SetSymValue(toc, tocAddr)
+ }
+ }
+ }
+
+ return order
+}
+
+// layout assigns file offsets and lengths to the segments in order.
+// Returns the file size containing all the segments.
+func (ctxt *Link) layout(order []*sym.Segment) uint64 {
+ var prev *sym.Segment
+ for _, seg := range order {
+ if prev == nil {
+ seg.Fileoff = uint64(HEADR)
+ } else {
+ switch ctxt.HeadType {
+ default:
+ // Assuming the previous segment was
+ // aligned, the following rounding
+ // should ensure that this segment's
+ // VA ≡ Fileoff mod FlagRound.
+ seg.Fileoff = uint64(Rnd(int64(prev.Fileoff+prev.Filelen), int64(*FlagRound)))
+ if seg.Vaddr%uint64(*FlagRound) != seg.Fileoff%uint64(*FlagRound) {
+ Exitf("bad segment rounding (Vaddr=%#x Fileoff=%#x FlagRound=%#x)", seg.Vaddr, seg.Fileoff, *FlagRound)
+ }
+ case objabi.Hwindows:
+ seg.Fileoff = prev.Fileoff + uint64(Rnd(int64(prev.Filelen), PEFILEALIGN))
+ case objabi.Hplan9:
+ seg.Fileoff = prev.Fileoff + prev.Filelen
+ }
+ }
+ if seg != &Segdata {
+ // Link.address already set Segdata.Filelen to
+ // account for BSS.
+ seg.Filelen = seg.Length
+ }
+ prev = seg
+ }
+ return prev.Fileoff + prev.Filelen
+}
+
+// add a trampoline with symbol s (to be laid down after the current function)
+func (ctxt *Link) AddTramp(s *loader.SymbolBuilder) {
+ s.SetType(sym.STEXT)
+ s.SetReachable(true)
+ s.SetOnList(true)
+ ctxt.tramps = append(ctxt.tramps, s.Sym())
+ if *FlagDebugTramp > 0 && ctxt.Debugvlog > 0 {
+ ctxt.Logf("trampoline %s inserted\n", s.Name())
+ }
+}
+
+// compressSyms compresses syms and returns the contents of the
+// compressed section. If the section would get larger, it returns nil.
+func compressSyms(ctxt *Link, syms []loader.Sym) []byte {
+ ldr := ctxt.loader
+ var total int64
+ for _, sym := range syms {
+ total += ldr.SymSize(sym)
+ }
+
+ var buf bytes.Buffer
+ if ctxt.IsELF {
+ switch ctxt.Arch.PtrSize {
+ case 8:
+ binary.Write(&buf, ctxt.Arch.ByteOrder, elf.Chdr64{
+ Type: uint32(elf.COMPRESS_ZLIB),
+ Size: uint64(total),
+ Addralign: uint64(ctxt.Arch.Alignment),
+ })
+ case 4:
+ binary.Write(&buf, ctxt.Arch.ByteOrder, elf.Chdr32{
+ Type: uint32(elf.COMPRESS_ZLIB),
+ Size: uint32(total),
+ Addralign: uint32(ctxt.Arch.Alignment),
+ })
+ default:
+ log.Fatalf("can't compress header size:%d", ctxt.Arch.PtrSize)
+ }
+ } else {
+ buf.Write([]byte("ZLIB"))
+ var sizeBytes [8]byte
+ binary.BigEndian.PutUint64(sizeBytes[:], uint64(total))
+ buf.Write(sizeBytes[:])
+ }
+
+ var relocbuf []byte // temporary buffer for applying relocations
+
+ // Using zlib.BestSpeed achieves very nearly the same
+ // compression levels of zlib.DefaultCompression, but takes
+ // substantially less time. This is important because DWARF
+ // compression can be a significant fraction of link time.
+ z, err := zlib.NewWriterLevel(&buf, zlib.BestSpeed)
+ if err != nil {
+ log.Fatalf("NewWriterLevel failed: %s", err)
+ }
+ st := ctxt.makeRelocSymState()
+ for _, s := range syms {
+ // Symbol data may be read-only. Apply relocations in a
+ // temporary buffer, and immediately write it out.
+ P := ldr.Data(s)
+ relocs := ldr.Relocs(s)
+ if relocs.Count() != 0 {
+ relocbuf = append(relocbuf[:0], P...)
+ P = relocbuf
+ st.relocsym(s, P)
+ }
+ if _, err := z.Write(P); err != nil {
+ log.Fatalf("compression failed: %s", err)
+ }
+ for i := ldr.SymSize(s) - int64(len(P)); i > 0; {
+ b := zeros[:]
+ if i < int64(len(b)) {
+ b = b[:i]
+ }
+ n, err := z.Write(b)
+ if err != nil {
+ log.Fatalf("compression failed: %s", err)
+ }
+ i -= int64(n)
+ }
+ }
+ if err := z.Close(); err != nil {
+ log.Fatalf("compression failed: %s", err)
+ }
+ if int64(buf.Len()) >= total {
+ // Compression didn't save any space.
+ return nil
+ }
+ return buf.Bytes()
+}