summaryrefslogtreecommitdiffstats
path: root/src/cmd/link/internal/ppc64/asm.go
diff options
context:
space:
mode:
Diffstat (limited to 'src/cmd/link/internal/ppc64/asm.go')
-rw-r--r--src/cmd/link/internal/ppc64/asm.go1386
1 files changed, 1386 insertions, 0 deletions
diff --git a/src/cmd/link/internal/ppc64/asm.go b/src/cmd/link/internal/ppc64/asm.go
new file mode 100644
index 0000000..6313879
--- /dev/null
+++ b/src/cmd/link/internal/ppc64/asm.go
@@ -0,0 +1,1386 @@
+// Inferno utils/5l/asm.c
+// https://bitbucket.org/inferno-os/inferno-os/src/master/utils/5l/asm.c
+//
+// Copyright © 1994-1999 Lucent Technologies Inc. All rights reserved.
+// Portions Copyright © 1995-1997 C H Forsyth (forsyth@terzarima.net)
+// Portions Copyright © 1997-1999 Vita Nuova Limited
+// Portions Copyright © 2000-2007 Vita Nuova Holdings Limited (www.vitanuova.com)
+// Portions Copyright © 2004,2006 Bruce Ellis
+// Portions Copyright © 2005-2007 C H Forsyth (forsyth@terzarima.net)
+// Revisions Copyright © 2000-2007 Lucent Technologies Inc. and others
+// Portions Copyright © 2009 The Go Authors. All rights reserved.
+//
+// Permission is hereby granted, free of charge, to any person obtaining a copy
+// of this software and associated documentation files (the "Software"), to deal
+// in the Software without restriction, including without limitation the rights
+// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+// copies of the Software, and to permit persons to whom the Software is
+// furnished to do so, subject to the following conditions:
+//
+// The above copyright notice and this permission notice shall be included in
+// all copies or substantial portions of the Software.
+//
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+// THE SOFTWARE.
+
+package ppc64
+
+import (
+ "cmd/internal/objabi"
+ "cmd/internal/sys"
+ "cmd/link/internal/ld"
+ "cmd/link/internal/loader"
+ "cmd/link/internal/sym"
+ "debug/elf"
+ "encoding/binary"
+ "fmt"
+ "log"
+ "strconv"
+ "strings"
+)
+
+func genpltstub(ctxt *ld.Link, ldr *loader.Loader, r loader.Reloc, s loader.Sym) (sym loader.Sym, firstUse bool) {
+ // The ppc64 ABI PLT has similar concepts to other
+ // architectures, but is laid out quite differently. When we
+ // see an R_PPC64_REL24 relocation to a dynamic symbol
+ // (indicating that the call needs to go through the PLT), we
+ // generate up to three stubs and reserve a PLT slot.
+ //
+ // 1) The call site will be bl x; nop (where the relocation
+ // applies to the bl). We rewrite this to bl x_stub; ld
+ // r2,24(r1). The ld is necessary because x_stub will save
+ // r2 (the TOC pointer) at 24(r1) (the "TOC save slot").
+ //
+ // 2) We reserve space for a pointer in the .plt section (once
+ // per referenced dynamic function). .plt is a data
+ // section filled solely by the dynamic linker (more like
+ // .plt.got on other architectures). Initially, the
+ // dynamic linker will fill each slot with a pointer to the
+ // corresponding x@plt entry point.
+ //
+ // 3) We generate the "call stub" x_stub (once per dynamic
+ // function/object file pair). This saves the TOC in the
+ // TOC save slot, reads the function pointer from x's .plt
+ // slot and calls it like any other global entry point
+ // (including setting r12 to the function address).
+ //
+ // 4) We generate the "symbol resolver stub" x@plt (once per
+ // dynamic function). This is solely a branch to the glink
+ // resolver stub.
+ //
+ // 5) We generate the glink resolver stub (only once). This
+ // computes which symbol resolver stub we came through and
+ // invokes the dynamic resolver via a pointer provided by
+ // the dynamic linker. This will patch up the .plt slot to
+ // point directly at the function so future calls go
+ // straight from the call stub to the real function, and
+ // then call the function.
+
+ // NOTE: It's possible we could make ppc64 closer to other
+ // architectures: ppc64's .plt is like .plt.got on other
+ // platforms and ppc64's .glink is like .plt on other
+ // platforms.
+
+ // Find all R_PPC64_REL24 relocations that reference dynamic
+ // imports. Reserve PLT entries for these symbols and
+ // generate call stubs. The call stubs need to live in .text,
+ // which is why we need to do this pass this early.
+ //
+ // This assumes "case 1" from the ABI, where the caller needs
+ // us to save and restore the TOC pointer.
+
+ // Reserve PLT entry and generate symbol
+ // resolver
+ addpltsym(ctxt, ldr, r.Sym())
+
+ // Generate call stub. Important to note that we're looking
+ // up the stub using the same version as the parent symbol (s),
+ // needed so that symtoc() will select the right .TOC. symbol
+ // when processing the stub. In older versions of the linker
+ // this was done by setting stub.Outer to the parent, but
+ // if the stub has the right version initially this is not needed.
+ n := fmt.Sprintf("%s.%s", ldr.SymName(s), ldr.SymName(r.Sym()))
+ stub := ldr.CreateSymForUpdate(n, ldr.SymVersion(s))
+ firstUse = stub.Size() == 0
+ if firstUse {
+ gencallstub(ctxt, ldr, 1, stub, r.Sym())
+ }
+
+ // Update the relocation to use the call stub
+ r.SetSym(stub.Sym())
+
+ // Make the symbol writeable so we can fixup toc.
+ su := ldr.MakeSymbolUpdater(s)
+ su.MakeWritable()
+ p := su.Data()
+
+ // Check for toc restore slot (a nop), and replace with toc restore.
+ var nop uint32
+ if len(p) >= int(r.Off()+8) {
+ nop = ctxt.Arch.ByteOrder.Uint32(p[r.Off()+4:])
+ }
+ if nop != 0x60000000 {
+ ldr.Errorf(s, "Symbol %s is missing toc restoration slot at offset %d", ldr.SymName(s), r.Off()+4)
+ }
+ const o1 = 0xe8410018 // ld r2,24(r1)
+ ctxt.Arch.ByteOrder.PutUint32(p[r.Off()+4:], o1)
+
+ return stub.Sym(), firstUse
+}
+
+// Scan relocs and generate PLT stubs and generate/fixup ABI defined functions created by the linker
+func genstubs(ctxt *ld.Link, ldr *loader.Loader) {
+ var stubs []loader.Sym
+ var abifuncs []loader.Sym
+ for _, s := range ctxt.Textp {
+ relocs := ldr.Relocs(s)
+ for i := 0; i < relocs.Count(); i++ {
+ if r := relocs.At(i); r.Type() == objabi.ElfRelocOffset+objabi.RelocType(elf.R_PPC64_REL24) {
+ switch ldr.SymType(r.Sym()) {
+ case sym.SDYNIMPORT:
+ // This call goes throught the PLT, generate and call through a PLT stub.
+ if sym, firstUse := genpltstub(ctxt, ldr, r, s); firstUse {
+ stubs = append(stubs, sym)
+ }
+
+ case sym.SXREF:
+ // Is this an ELF ABI defined function which is (in practice)
+ // generated by the linker to save/restore callee save registers?
+ // These are defined similarly for both PPC64 ELF and ELFv2.
+ targName := ldr.SymName(r.Sym())
+ if strings.HasPrefix(targName, "_save") || strings.HasPrefix(targName, "_rest") {
+ if sym, firstUse := rewriteABIFuncReloc(ctxt, ldr, targName, r); firstUse {
+ abifuncs = append(abifuncs, sym)
+ }
+ }
+ }
+ }
+ }
+ }
+
+ // Append any usage of the go versions of ELF save/restore
+ // functions to the end of the callstub list to minimize
+ // chances a trampoline might be needed.
+ stubs = append(stubs, abifuncs...)
+
+ // Put stubs at the beginning (instead of the end).
+ // So when resolving the relocations to calls to the stubs,
+ // the addresses are known and trampolines can be inserted
+ // when necessary.
+ ctxt.Textp = append(stubs, ctxt.Textp...)
+}
+
+func genaddmoduledata(ctxt *ld.Link, ldr *loader.Loader) {
+ initfunc, addmoduledata := ld.PrepareAddmoduledata(ctxt)
+ if initfunc == nil {
+ return
+ }
+
+ o := func(op uint32) {
+ initfunc.AddUint32(ctxt.Arch, op)
+ }
+
+ // addis r2, r12, .TOC.-func@ha
+ toc := ctxt.DotTOC[0]
+ rel1, _ := initfunc.AddRel(objabi.R_ADDRPOWER_PCREL)
+ rel1.SetOff(0)
+ rel1.SetSiz(8)
+ rel1.SetSym(toc)
+ o(0x3c4c0000)
+ // addi r2, r2, .TOC.-func@l
+ o(0x38420000)
+ // mflr r31
+ o(0x7c0802a6)
+ // stdu r31, -32(r1)
+ o(0xf801ffe1)
+ // addis r3, r2, local.moduledata@got@ha
+ var tgt loader.Sym
+ if s := ldr.Lookup("local.moduledata", 0); s != 0 {
+ tgt = s
+ } else if s := ldr.Lookup("local.pluginmoduledata", 0); s != 0 {
+ tgt = s
+ } else {
+ tgt = ldr.LookupOrCreateSym("runtime.firstmoduledata", 0)
+ }
+ rel2, _ := initfunc.AddRel(objabi.R_ADDRPOWER_GOT)
+ rel2.SetOff(int32(initfunc.Size()))
+ rel2.SetSiz(8)
+ rel2.SetSym(tgt)
+ o(0x3c620000)
+ // ld r3, local.moduledata@got@l(r3)
+ o(0xe8630000)
+ // bl runtime.addmoduledata
+ rel3, _ := initfunc.AddRel(objabi.R_CALLPOWER)
+ rel3.SetOff(int32(initfunc.Size()))
+ rel3.SetSiz(4)
+ rel3.SetSym(addmoduledata)
+ o(0x48000001)
+ // nop
+ o(0x60000000)
+ // ld r31, 0(r1)
+ o(0xe8010000)
+ // mtlr r31
+ o(0x7c0803a6)
+ // addi r1,r1,32
+ o(0x38210020)
+ // blr
+ o(0x4e800020)
+}
+
+// Rewrite ELF (v1 or v2) calls to _savegpr0_n, _savegpr1_n, _savefpr_n, _restfpr_n, _savevr_m, or
+// _restvr_m (14<=n<=31, 20<=m<=31). Redirect them to runtime.elf_restgpr0+(n-14)*4,
+// runtime.elf_restvr+(m-20)*8, and similar.
+//
+// These functions are defined in the ELFv2 ABI (generated when using gcc -Os option) to save and
+// restore callee-saved registers (as defined in the PPC64 ELF ABIs) from registers n or m to 31 of
+// the named type. R12 and R0 are sometimes used in exceptional ways described in the ABI.
+//
+// Final note, this is only needed when linking internally. The external linker will generate these
+// functions if they are used.
+func rewriteABIFuncReloc(ctxt *ld.Link, ldr *loader.Loader, tname string, r loader.Reloc) (sym loader.Sym, firstUse bool) {
+ s := strings.Split(tname, "_")
+ // A valid call will split like {"", "savegpr0", "20"}
+ if len(s) != 3 {
+ return 0, false // Not an abi func.
+ }
+ minReg := 14 // _savegpr0_{n}, _savegpr1_{n}, _savefpr_{n}, 14 <= n <= 31
+ offMul := 4 // 1 instruction per register op.
+ switch s[1] {
+ case "savegpr0", "savegpr1", "savefpr":
+ case "restgpr0", "restgpr1", "restfpr":
+ case "savevr", "restvr":
+ minReg = 20 // _savevr_{n} or _restvr_{n}, 20 <= n <= 31
+ offMul = 8 // 2 instructions per register op.
+ default:
+ return 0, false // Not an abi func
+ }
+ n, e := strconv.Atoi(s[2])
+ if e != nil || n < minReg || n > 31 || r.Add() != 0 {
+ return 0, false // Invalid register number, or non-zero addend. Not an abi func.
+ }
+
+ // tname is a valid relocation to an ABI defined register save/restore function. Re-relocate
+ // them to a go version of these functions in runtime/asm_ppc64x.s
+ ts := ldr.LookupOrCreateSym("runtime.elf_"+s[1], 0)
+ r.SetSym(ts)
+ r.SetAdd(int64((n - minReg) * offMul))
+ firstUse = !ldr.AttrReachable(ts)
+ if firstUse {
+ ldr.SetAttrReachable(ts, true)
+ // This function only becomes reachable now. It has been dropped from
+ // the text section (it was unreachable until now), it needs included.
+ //
+ // Similarly, TOC regeneration should not happen for these functions,
+ // remove it from this save/restore function.
+ if ldr.AttrShared(ts) {
+ sb := ldr.MakeSymbolUpdater(ts)
+ sb.SetData(sb.Data()[8:])
+ sb.SetSize(sb.Size() - 8)
+ relocs := sb.Relocs()
+ // Only one PCREL reloc to .TOC. should be present.
+ if relocs.Count() != 1 {
+ log.Fatalf("Unexpected number of relocs in %s\n", ldr.SymName(ts))
+ }
+ sb.ResetRelocs()
+
+ }
+ }
+ return ts, firstUse
+}
+
+func gentext(ctxt *ld.Link, ldr *loader.Loader) {
+ if ctxt.DynlinkingGo() {
+ genaddmoduledata(ctxt, ldr)
+ }
+
+ if ctxt.LinkMode == ld.LinkInternal {
+ genstubs(ctxt, ldr)
+ }
+}
+
+// Construct a call stub in stub that calls symbol targ via its PLT
+// entry.
+func gencallstub(ctxt *ld.Link, ldr *loader.Loader, abicase int, stub *loader.SymbolBuilder, targ loader.Sym) {
+ if abicase != 1 {
+ // If we see R_PPC64_TOCSAVE or R_PPC64_REL24_NOTOC
+ // relocations, we'll need to implement cases 2 and 3.
+ log.Fatalf("gencallstub only implements case 1 calls")
+ }
+
+ plt := ctxt.PLT
+
+ stub.SetType(sym.STEXT)
+
+ // Save TOC pointer in TOC save slot
+ stub.AddUint32(ctxt.Arch, 0xf8410018) // std r2,24(r1)
+
+ // Load the function pointer from the PLT.
+ rel, ri1 := stub.AddRel(objabi.R_POWER_TOC)
+ rel.SetOff(int32(stub.Size()))
+ rel.SetSiz(2)
+ rel.SetAdd(int64(ldr.SymPlt(targ)))
+ rel.SetSym(plt)
+ if ctxt.Arch.ByteOrder == binary.BigEndian {
+ rel.SetOff(rel.Off() + int32(rel.Siz()))
+ }
+ ldr.SetRelocVariant(stub.Sym(), int(ri1), sym.RV_POWER_HA)
+ stub.AddUint32(ctxt.Arch, 0x3d820000) // addis r12,r2,targ@plt@toc@ha
+
+ rel2, ri2 := stub.AddRel(objabi.R_POWER_TOC)
+ rel2.SetOff(int32(stub.Size()))
+ rel2.SetSiz(2)
+ rel2.SetAdd(int64(ldr.SymPlt(targ)))
+ rel2.SetSym(plt)
+ if ctxt.Arch.ByteOrder == binary.BigEndian {
+ rel2.SetOff(rel2.Off() + int32(rel2.Siz()))
+ }
+ ldr.SetRelocVariant(stub.Sym(), int(ri2), sym.RV_POWER_LO)
+ stub.AddUint32(ctxt.Arch, 0xe98c0000) // ld r12,targ@plt@toc@l(r12)
+
+ // Jump to the loaded pointer
+ stub.AddUint32(ctxt.Arch, 0x7d8903a6) // mtctr r12
+ stub.AddUint32(ctxt.Arch, 0x4e800420) // bctr
+}
+
+func adddynrel(target *ld.Target, ldr *loader.Loader, syms *ld.ArchSyms, s loader.Sym, r loader.Reloc, rIdx int) bool {
+ if target.IsElf() {
+ return addelfdynrel(target, ldr, syms, s, r, rIdx)
+ } else if target.IsAIX() {
+ return ld.Xcoffadddynrel(target, ldr, syms, s, r, rIdx)
+ }
+ return false
+}
+
+func addelfdynrel(target *ld.Target, ldr *loader.Loader, syms *ld.ArchSyms, s loader.Sym, r loader.Reloc, rIdx int) bool {
+ targ := r.Sym()
+ var targType sym.SymKind
+ if targ != 0 {
+ targType = ldr.SymType(targ)
+ }
+
+ switch r.Type() {
+ default:
+ if r.Type() >= objabi.ElfRelocOffset {
+ ldr.Errorf(s, "unexpected relocation type %d (%s)", r.Type(), sym.RelocName(target.Arch, r.Type()))
+ return false
+ }
+
+ // Handle relocations found in ELF object files.
+ case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_REL24):
+ su := ldr.MakeSymbolUpdater(s)
+ su.SetRelocType(rIdx, objabi.R_CALLPOWER)
+
+ // This is a local call, so the caller isn't setting
+ // up r12 and r2 is the same for the caller and
+ // callee. Hence, we need to go to the local entry
+ // point. (If we don't do this, the callee will try
+ // to use r12 to compute r2.)
+ su.SetRelocAdd(rIdx, r.Add()+int64(ldr.SymLocalentry(targ))*4)
+
+ if targType == sym.SDYNIMPORT {
+ // Should have been handled in elfsetupplt
+ ldr.Errorf(s, "unexpected R_PPC64_REL24 for dyn import")
+ }
+
+ return true
+
+ case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC_REL32):
+ su := ldr.MakeSymbolUpdater(s)
+ su.SetRelocType(rIdx, objabi.R_PCREL)
+ su.SetRelocAdd(rIdx, r.Add()+4)
+
+ if targType == sym.SDYNIMPORT {
+ ldr.Errorf(s, "unexpected R_PPC_REL32 for dyn import")
+ }
+
+ return true
+
+ case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_ADDR64):
+ su := ldr.MakeSymbolUpdater(s)
+ su.SetRelocType(rIdx, objabi.R_ADDR)
+ if targType == sym.SDYNIMPORT {
+ // These happen in .toc sections
+ ld.Adddynsym(ldr, target, syms, targ)
+
+ rela := ldr.MakeSymbolUpdater(syms.Rela)
+ rela.AddAddrPlus(target.Arch, s, int64(r.Off()))
+ rela.AddUint64(target.Arch, elf.R_INFO(uint32(ldr.SymDynid(targ)), uint32(elf.R_PPC64_ADDR64)))
+ rela.AddUint64(target.Arch, uint64(r.Add()))
+ su.SetRelocType(rIdx, objabi.ElfRelocOffset) // ignore during relocsym
+ } else if target.IsPIE() && target.IsInternal() {
+ // For internal linking PIE, this R_ADDR relocation cannot
+ // be resolved statically. We need to generate a dynamic
+ // relocation. Let the code below handle it.
+ break
+ }
+ return true
+
+ case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_TOC16):
+ su := ldr.MakeSymbolUpdater(s)
+ su.SetRelocType(rIdx, objabi.R_POWER_TOC)
+ ldr.SetRelocVariant(s, rIdx, sym.RV_POWER_LO|sym.RV_CHECK_OVERFLOW)
+ return true
+
+ case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_TOC16_LO):
+ su := ldr.MakeSymbolUpdater(s)
+ su.SetRelocType(rIdx, objabi.R_POWER_TOC)
+ ldr.SetRelocVariant(s, rIdx, sym.RV_POWER_LO)
+ return true
+
+ case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_TOC16_HA):
+ su := ldr.MakeSymbolUpdater(s)
+ su.SetRelocType(rIdx, objabi.R_POWER_TOC)
+ ldr.SetRelocVariant(s, rIdx, sym.RV_POWER_HA|sym.RV_CHECK_OVERFLOW)
+ return true
+
+ case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_TOC16_HI):
+ su := ldr.MakeSymbolUpdater(s)
+ su.SetRelocType(rIdx, objabi.R_POWER_TOC)
+ ldr.SetRelocVariant(s, rIdx, sym.RV_POWER_HI|sym.RV_CHECK_OVERFLOW)
+ return true
+
+ case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_TOC16_DS):
+ su := ldr.MakeSymbolUpdater(s)
+ su.SetRelocType(rIdx, objabi.R_POWER_TOC)
+ ldr.SetRelocVariant(s, rIdx, sym.RV_POWER_DS|sym.RV_CHECK_OVERFLOW)
+ return true
+
+ case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_TOC16_LO_DS):
+ su := ldr.MakeSymbolUpdater(s)
+ su.SetRelocType(rIdx, objabi.R_POWER_TOC)
+ ldr.SetRelocVariant(s, rIdx, sym.RV_POWER_DS)
+ return true
+
+ case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_REL16_LO):
+ su := ldr.MakeSymbolUpdater(s)
+ su.SetRelocType(rIdx, objabi.R_PCREL)
+ ldr.SetRelocVariant(s, rIdx, sym.RV_POWER_LO)
+ su.SetRelocAdd(rIdx, r.Add()+2) // Compensate for relocation size of 2
+ return true
+
+ case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_REL16_HI):
+ su := ldr.MakeSymbolUpdater(s)
+ su.SetRelocType(rIdx, objabi.R_PCREL)
+ ldr.SetRelocVariant(s, rIdx, sym.RV_POWER_HI|sym.RV_CHECK_OVERFLOW)
+ su.SetRelocAdd(rIdx, r.Add()+2)
+ return true
+
+ case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_REL16_HA):
+ su := ldr.MakeSymbolUpdater(s)
+ su.SetRelocType(rIdx, objabi.R_PCREL)
+ ldr.SetRelocVariant(s, rIdx, sym.RV_POWER_HA|sym.RV_CHECK_OVERFLOW)
+ su.SetRelocAdd(rIdx, r.Add()+2)
+ return true
+ }
+
+ // Handle references to ELF symbols from our own object files.
+ relocs := ldr.Relocs(s)
+ r = relocs.At(rIdx)
+
+ switch r.Type() {
+ case objabi.R_ADDR:
+ if ldr.SymType(s) == sym.STEXT {
+ log.Fatalf("R_ADDR relocation in text symbol %s is unsupported\n", ldr.SymName(s))
+ }
+ if target.IsPIE() && target.IsInternal() {
+ // When internally linking, generate dynamic relocations
+ // for all typical R_ADDR relocations. The exception
+ // are those R_ADDR that are created as part of generating
+ // the dynamic relocations and must be resolved statically.
+ //
+ // There are three phases relevant to understanding this:
+ //
+ // dodata() // we are here
+ // address() // symbol address assignment
+ // reloc() // resolution of static R_ADDR relocs
+ //
+ // At this point symbol addresses have not been
+ // assigned yet (as the final size of the .rela section
+ // will affect the addresses), and so we cannot write
+ // the Elf64_Rela.r_offset now. Instead we delay it
+ // until after the 'address' phase of the linker is
+ // complete. We do this via Addaddrplus, which creates
+ // a new R_ADDR relocation which will be resolved in
+ // the 'reloc' phase.
+ //
+ // These synthetic static R_ADDR relocs must be skipped
+ // now, or else we will be caught in an infinite loop
+ // of generating synthetic relocs for our synthetic
+ // relocs.
+ //
+ // Furthermore, the rela sections contain dynamic
+ // relocations with R_ADDR relocations on
+ // Elf64_Rela.r_offset. This field should contain the
+ // symbol offset as determined by reloc(), not the
+ // final dynamically linked address as a dynamic
+ // relocation would provide.
+ switch ldr.SymName(s) {
+ case ".dynsym", ".rela", ".rela.plt", ".got.plt", ".dynamic":
+ return false
+ }
+ } else {
+ // Either internally linking a static executable,
+ // in which case we can resolve these relocations
+ // statically in the 'reloc' phase, or externally
+ // linking, in which case the relocation will be
+ // prepared in the 'reloc' phase and passed to the
+ // external linker in the 'asmb' phase.
+ if ldr.SymType(s) != sym.SDATA && ldr.SymType(s) != sym.SRODATA {
+ break
+ }
+ }
+ // Generate R_PPC64_RELATIVE relocations for best
+ // efficiency in the dynamic linker.
+ //
+ // As noted above, symbol addresses have not been
+ // assigned yet, so we can't generate the final reloc
+ // entry yet. We ultimately want:
+ //
+ // r_offset = s + r.Off
+ // r_info = R_PPC64_RELATIVE
+ // r_addend = targ + r.Add
+ //
+ // The dynamic linker will set *offset = base address +
+ // addend.
+ //
+ // AddAddrPlus is used for r_offset and r_addend to
+ // generate new R_ADDR relocations that will update
+ // these fields in the 'reloc' phase.
+ rela := ldr.MakeSymbolUpdater(syms.Rela)
+ rela.AddAddrPlus(target.Arch, s, int64(r.Off()))
+ if r.Siz() == 8 {
+ rela.AddUint64(target.Arch, elf.R_INFO(0, uint32(elf.R_PPC64_RELATIVE)))
+ } else {
+ ldr.Errorf(s, "unexpected relocation for dynamic symbol %s", ldr.SymName(targ))
+ }
+ rela.AddAddrPlus(target.Arch, targ, int64(r.Add()))
+
+ // Not mark r done here. So we still apply it statically,
+ // so in the file content we'll also have the right offset
+ // to the relocation target. So it can be examined statically
+ // (e.g. go version).
+ return true
+ }
+
+ return false
+}
+
+func xcoffreloc1(arch *sys.Arch, out *ld.OutBuf, ldr *loader.Loader, s loader.Sym, r loader.ExtReloc, sectoff int64) bool {
+ rs := r.Xsym
+
+ emitReloc := func(v uint16, off uint64) {
+ out.Write64(uint64(sectoff) + off)
+ out.Write32(uint32(ldr.SymDynid(rs)))
+ out.Write16(v)
+ }
+
+ var v uint16
+ switch r.Type {
+ default:
+ return false
+ case objabi.R_ADDR, objabi.R_DWARFSECREF:
+ v = ld.XCOFF_R_POS
+ if r.Size == 4 {
+ v |= 0x1F << 8
+ } else {
+ v |= 0x3F << 8
+ }
+ emitReloc(v, 0)
+ case objabi.R_ADDRPOWER_TOCREL:
+ case objabi.R_ADDRPOWER_TOCREL_DS:
+ emitReloc(ld.XCOFF_R_TOCU|(0x0F<<8), 2)
+ emitReloc(ld.XCOFF_R_TOCL|(0x0F<<8), 6)
+ case objabi.R_POWER_TLS_LE:
+ // This only supports 16b relocations. It is fixed up in archreloc.
+ emitReloc(ld.XCOFF_R_TLS_LE|0x0F<<8, 2)
+ case objabi.R_CALLPOWER:
+ if r.Size != 4 {
+ return false
+ }
+ emitReloc(ld.XCOFF_R_RBR|0x19<<8, 0)
+ case objabi.R_XCOFFREF:
+ emitReloc(ld.XCOFF_R_REF|0x3F<<8, 0)
+ }
+ return true
+
+}
+
+func elfreloc1(ctxt *ld.Link, out *ld.OutBuf, ldr *loader.Loader, s loader.Sym, r loader.ExtReloc, ri int, sectoff int64) bool {
+ // Beware that bit0~bit15 start from the third byte of a instruction in Big-Endian machines.
+ rt := r.Type
+ if rt == objabi.R_ADDR || rt == objabi.R_POWER_TLS || rt == objabi.R_CALLPOWER {
+ } else {
+ if ctxt.Arch.ByteOrder == binary.BigEndian {
+ sectoff += 2
+ }
+ }
+ out.Write64(uint64(sectoff))
+
+ elfsym := ld.ElfSymForReloc(ctxt, r.Xsym)
+ switch rt {
+ default:
+ return false
+ case objabi.R_ADDR, objabi.R_DWARFSECREF:
+ switch r.Size {
+ case 4:
+ out.Write64(uint64(elf.R_PPC64_ADDR32) | uint64(elfsym)<<32)
+ case 8:
+ out.Write64(uint64(elf.R_PPC64_ADDR64) | uint64(elfsym)<<32)
+ default:
+ return false
+ }
+ case objabi.R_POWER_TLS:
+ out.Write64(uint64(elf.R_PPC64_TLS) | uint64(elfsym)<<32)
+ case objabi.R_POWER_TLS_LE:
+ out.Write64(uint64(elf.R_PPC64_TPREL16_HA) | uint64(elfsym)<<32)
+ out.Write64(uint64(r.Xadd))
+ out.Write64(uint64(sectoff + 4))
+ out.Write64(uint64(elf.R_PPC64_TPREL16_LO) | uint64(elfsym)<<32)
+ case objabi.R_POWER_TLS_IE:
+ out.Write64(uint64(elf.R_PPC64_GOT_TPREL16_HA) | uint64(elfsym)<<32)
+ out.Write64(uint64(r.Xadd))
+ out.Write64(uint64(sectoff + 4))
+ out.Write64(uint64(elf.R_PPC64_GOT_TPREL16_LO_DS) | uint64(elfsym)<<32)
+ case objabi.R_ADDRPOWER:
+ out.Write64(uint64(elf.R_PPC64_ADDR16_HA) | uint64(elfsym)<<32)
+ out.Write64(uint64(r.Xadd))
+ out.Write64(uint64(sectoff + 4))
+ out.Write64(uint64(elf.R_PPC64_ADDR16_LO) | uint64(elfsym)<<32)
+ case objabi.R_ADDRPOWER_DS:
+ out.Write64(uint64(elf.R_PPC64_ADDR16_HA) | uint64(elfsym)<<32)
+ out.Write64(uint64(r.Xadd))
+ out.Write64(uint64(sectoff + 4))
+ out.Write64(uint64(elf.R_PPC64_ADDR16_LO_DS) | uint64(elfsym)<<32)
+ case objabi.R_ADDRPOWER_GOT:
+ out.Write64(uint64(elf.R_PPC64_GOT16_HA) | uint64(elfsym)<<32)
+ out.Write64(uint64(r.Xadd))
+ out.Write64(uint64(sectoff + 4))
+ out.Write64(uint64(elf.R_PPC64_GOT16_LO_DS) | uint64(elfsym)<<32)
+ case objabi.R_ADDRPOWER_PCREL:
+ out.Write64(uint64(elf.R_PPC64_REL16_HA) | uint64(elfsym)<<32)
+ out.Write64(uint64(r.Xadd))
+ out.Write64(uint64(sectoff + 4))
+ out.Write64(uint64(elf.R_PPC64_REL16_LO) | uint64(elfsym)<<32)
+ r.Xadd += 4
+ case objabi.R_ADDRPOWER_TOCREL:
+ out.Write64(uint64(elf.R_PPC64_TOC16_HA) | uint64(elfsym)<<32)
+ out.Write64(uint64(r.Xadd))
+ out.Write64(uint64(sectoff + 4))
+ out.Write64(uint64(elf.R_PPC64_TOC16_LO) | uint64(elfsym)<<32)
+ case objabi.R_ADDRPOWER_TOCREL_DS:
+ out.Write64(uint64(elf.R_PPC64_TOC16_HA) | uint64(elfsym)<<32)
+ out.Write64(uint64(r.Xadd))
+ out.Write64(uint64(sectoff + 4))
+ out.Write64(uint64(elf.R_PPC64_TOC16_LO_DS) | uint64(elfsym)<<32)
+ case objabi.R_CALLPOWER:
+ if r.Size != 4 {
+ return false
+ }
+ out.Write64(uint64(elf.R_PPC64_REL24) | uint64(elfsym)<<32)
+
+ }
+ out.Write64(uint64(r.Xadd))
+
+ return true
+}
+
+func elfsetupplt(ctxt *ld.Link, plt, got *loader.SymbolBuilder, dynamic loader.Sym) {
+ if plt.Size() == 0 {
+ // The dynamic linker stores the address of the
+ // dynamic resolver and the DSO identifier in the two
+ // doublewords at the beginning of the .plt section
+ // before the PLT array. Reserve space for these.
+ plt.SetSize(16)
+ }
+}
+
+func machoreloc1(*sys.Arch, *ld.OutBuf, *loader.Loader, loader.Sym, loader.ExtReloc, int64) bool {
+ return false
+}
+
+// Return the value of .TOC. for symbol s
+func symtoc(ldr *loader.Loader, syms *ld.ArchSyms, s loader.Sym) int64 {
+ v := ldr.SymVersion(s)
+ if out := ldr.OuterSym(s); out != 0 {
+ v = ldr.SymVersion(out)
+ }
+
+ toc := syms.DotTOC[v]
+ if toc == 0 {
+ ldr.Errorf(s, "TOC-relative relocation in object without .TOC.")
+ return 0
+ }
+
+ return ldr.SymValue(toc)
+}
+
+// archreloctoc relocates a TOC relative symbol.
+func archreloctoc(ldr *loader.Loader, target *ld.Target, syms *ld.ArchSyms, r loader.Reloc, s loader.Sym, val int64) int64 {
+ rs := r.Sym()
+ var o1, o2 uint32
+ var t int64
+ useAddi := false
+
+ if target.IsBigEndian() {
+ o1 = uint32(val >> 32)
+ o2 = uint32(val)
+ } else {
+ o1 = uint32(val)
+ o2 = uint32(val >> 32)
+ }
+
+ // On AIX, TOC data accesses are always made indirectly against R2 (a sequence of addis+ld+load/store). If the
+ // The target of the load is known, the sequence can be written into addis+addi+load/store. On Linux,
+ // TOC data accesses are always made directly against R2 (e.g addis+load/store).
+ if target.IsAIX() {
+ if !strings.HasPrefix(ldr.SymName(rs), "TOC.") {
+ ldr.Errorf(s, "archreloctoc called for a symbol without TOC anchor")
+ }
+ relocs := ldr.Relocs(rs)
+ tarSym := relocs.At(0).Sym()
+
+ if target.IsInternal() && tarSym != 0 && ldr.AttrReachable(tarSym) && ldr.SymSect(tarSym).Seg == &ld.Segdata {
+ t = ldr.SymValue(tarSym) + r.Add() - ldr.SymValue(syms.TOC)
+ // change ld to addi in the second instruction
+ o2 = (o2 & 0x03FF0000) | 0xE<<26
+ useAddi = true
+ } else {
+ t = ldr.SymValue(rs) + r.Add() - ldr.SymValue(syms.TOC)
+ }
+ } else {
+ t = ldr.SymValue(rs) + r.Add() - symtoc(ldr, syms, s)
+ }
+
+ if t != int64(int32(t)) {
+ ldr.Errorf(s, "TOC relocation for %s is too big to relocate %s: 0x%x", ldr.SymName(s), rs, t)
+ }
+
+ if t&0x8000 != 0 {
+ t += 0x10000
+ }
+
+ o1 |= uint32((t >> 16) & 0xFFFF)
+
+ switch r.Type() {
+ case objabi.R_ADDRPOWER_TOCREL_DS:
+ if useAddi {
+ o2 |= uint32(t) & 0xFFFF
+ } else {
+ if t&3 != 0 {
+ ldr.Errorf(s, "bad DS reloc for %s: %d", ldr.SymName(s), ldr.SymValue(rs))
+ }
+ o2 |= uint32(t) & 0xFFFC
+ }
+ case objabi.R_ADDRPOWER_TOCREL:
+ o2 |= uint32(t) & 0xffff
+ default:
+ return -1
+ }
+
+ if target.IsBigEndian() {
+ return int64(o1)<<32 | int64(o2)
+ }
+ return int64(o2)<<32 | int64(o1)
+}
+
+// archrelocaddr relocates a symbol address.
+// This code is for linux only.
+func archrelocaddr(ldr *loader.Loader, target *ld.Target, syms *ld.ArchSyms, r loader.Reloc, s loader.Sym, val int64) int64 {
+ rs := r.Sym()
+ if target.IsAIX() {
+ ldr.Errorf(s, "archrelocaddr called for %s relocation\n", ldr.SymName(rs))
+ }
+ var o1, o2 uint32
+ if target.IsBigEndian() {
+ o1 = uint32(val >> 32)
+ o2 = uint32(val)
+ } else {
+ o1 = uint32(val)
+ o2 = uint32(val >> 32)
+ }
+
+ // We are spreading a 31-bit address across two instructions, putting the
+ // high (adjusted) part in the low 16 bits of the first instruction and the
+ // low part in the low 16 bits of the second instruction, or, in the DS case,
+ // bits 15-2 (inclusive) of the address into bits 15-2 of the second
+ // instruction (it is an error in this case if the low 2 bits of the address
+ // are non-zero).
+
+ t := ldr.SymAddr(rs) + r.Add()
+ if t < 0 || t >= 1<<31 {
+ ldr.Errorf(s, "relocation for %s is too big (>=2G): 0x%x", ldr.SymName(s), ldr.SymValue(rs))
+ }
+ if t&0x8000 != 0 {
+ t += 0x10000
+ }
+
+ switch r.Type() {
+ case objabi.R_ADDRPOWER:
+ o1 |= (uint32(t) >> 16) & 0xffff
+ o2 |= uint32(t) & 0xffff
+ case objabi.R_ADDRPOWER_DS:
+ o1 |= (uint32(t) >> 16) & 0xffff
+ if t&3 != 0 {
+ ldr.Errorf(s, "bad DS reloc for %s: %d", ldr.SymName(s), ldr.SymValue(rs))
+ }
+ o2 |= uint32(t) & 0xfffc
+ default:
+ return -1
+ }
+
+ if target.IsBigEndian() {
+ return int64(o1)<<32 | int64(o2)
+ }
+ return int64(o2)<<32 | int64(o1)
+}
+
+// Determine if the code was compiled so that the TOC register R2 is initialized and maintained
+func r2Valid(ctxt *ld.Link) bool {
+ switch ctxt.BuildMode {
+ case ld.BuildModeCArchive, ld.BuildModeCShared, ld.BuildModePIE, ld.BuildModeShared, ld.BuildModePlugin:
+ return true
+ }
+ // -linkshared option
+ return ctxt.IsSharedGoLink()
+}
+
+// resolve direct jump relocation r in s, and add trampoline if necessary
+func trampoline(ctxt *ld.Link, ldr *loader.Loader, ri int, rs, s loader.Sym) {
+
+ // Trampolines are created if the branch offset is too large and the linker cannot insert a call stub to handle it.
+ // For internal linking, trampolines are always created for long calls.
+ // For external linking, the linker can insert a call stub to handle a long call, but depends on having the TOC address in
+ // r2. For those build modes with external linking where the TOC address is not maintained in r2, trampolines must be created.
+ if ctxt.IsExternal() && r2Valid(ctxt) {
+ // The TOC pointer is valid. The external linker will insert trampolines.
+ return
+ }
+
+ relocs := ldr.Relocs(s)
+ r := relocs.At(ri)
+ var t int64
+ // ldr.SymValue(rs) == 0 indicates a cross-package jump to a function that is not yet
+ // laid out. Conservatively use a trampoline. This should be rare, as we lay out packages
+ // in dependency order.
+ if ldr.SymValue(rs) != 0 {
+ t = ldr.SymValue(rs) + r.Add() - (ldr.SymValue(s) + int64(r.Off()))
+ }
+ switch r.Type() {
+ case objabi.R_CALLPOWER:
+
+ // If branch offset is too far then create a trampoline.
+
+ if (ctxt.IsExternal() && ldr.SymSect(s) != ldr.SymSect(rs)) || (ctxt.IsInternal() && int64(int32(t<<6)>>6) != t) || ldr.SymValue(rs) == 0 || (*ld.FlagDebugTramp > 1 && ldr.SymPkg(s) != ldr.SymPkg(rs)) {
+ var tramp loader.Sym
+ for i := 0; ; i++ {
+
+ // Using r.Add as part of the name is significant in functions like duffzero where the call
+ // target is at some offset within the function. Calls to duff+8 and duff+256 must appear as
+ // distinct trampolines.
+
+ oName := ldr.SymName(rs)
+ name := oName
+ if r.Add() == 0 {
+ name += fmt.Sprintf("-tramp%d", i)
+ } else {
+ name += fmt.Sprintf("%+x-tramp%d", r.Add(), i)
+ }
+
+ // Look up the trampoline in case it already exists
+
+ tramp = ldr.LookupOrCreateSym(name, int(ldr.SymVersion(rs)))
+ if oName == "runtime.deferreturn" {
+ ldr.SetIsDeferReturnTramp(tramp, true)
+ }
+ if ldr.SymValue(tramp) == 0 {
+ break
+ }
+ // Note, the trampoline is always called directly. The addend of the original relocation is accounted for in the
+ // trampoline itself.
+ t = ldr.SymValue(tramp) - (ldr.SymValue(s) + int64(r.Off()))
+
+ // With internal linking, the trampoline can be used if it is not too far.
+ // With external linking, the trampoline must be in this section for it to be reused.
+ if (ctxt.IsInternal() && int64(int32(t<<6)>>6) == t) || (ctxt.IsExternal() && ldr.SymSect(s) == ldr.SymSect(tramp)) {
+ break
+ }
+ }
+ if ldr.SymType(tramp) == 0 {
+ trampb := ldr.MakeSymbolUpdater(tramp)
+ ctxt.AddTramp(trampb)
+ gentramp(ctxt, ldr, trampb, rs, r.Add())
+ }
+ sb := ldr.MakeSymbolUpdater(s)
+ relocs := sb.Relocs()
+ r := relocs.At(ri)
+ r.SetSym(tramp)
+ r.SetAdd(0) // This was folded into the trampoline target address
+ }
+ default:
+ ctxt.Errorf(s, "trampoline called with non-jump reloc: %d (%s)", r.Type(), sym.RelocName(ctxt.Arch, r.Type()))
+ }
+}
+
+func gentramp(ctxt *ld.Link, ldr *loader.Loader, tramp *loader.SymbolBuilder, target loader.Sym, offset int64) {
+ tramp.SetSize(16) // 4 instructions
+ P := make([]byte, tramp.Size())
+ var o1, o2 uint32
+
+ if ctxt.IsAIX() {
+ // On AIX, the address is retrieved with a TOC symbol.
+ // For internal linking, the "Linux" way might still be used.
+ // However, all text symbols are accessed with a TOC symbol as
+ // text relocations aren't supposed to be possible.
+ // So, keep using the external linking way to be more AIX friendly.
+ o1 = uint32(0x3c000000) | 12<<21 | 2<<16 // addis r12, r2, toctargetaddr hi
+ o2 = uint32(0xe8000000) | 12<<21 | 12<<16 // ld r12, r12, toctargetaddr lo
+
+ toctramp := ldr.CreateSymForUpdate("TOC."+ldr.SymName(tramp.Sym()), 0)
+ toctramp.SetType(sym.SXCOFFTOC)
+ toctramp.AddAddrPlus(ctxt.Arch, target, offset)
+
+ r, _ := tramp.AddRel(objabi.R_ADDRPOWER_TOCREL_DS)
+ r.SetOff(0)
+ r.SetSiz(8) // generates 2 relocations: HA + LO
+ r.SetSym(toctramp.Sym())
+ } else {
+ // Used for default build mode for an executable
+ // Address of the call target is generated using
+ // relocation and doesn't depend on r2 (TOC).
+ o1 = uint32(0x3c000000) | 12<<21 // lis r12,targetaddr hi
+ o2 = uint32(0x38000000) | 12<<21 | 12<<16 // addi r12,r12,targetaddr lo
+
+ // ELFv2 save/restore functions use R0/R12 in special ways, therefore trampolines
+ // as generated here will not always work correctly.
+ if strings.HasPrefix(ldr.SymName(target), "runtime.elf_") {
+ log.Fatalf("Internal linker does not support trampolines to ELFv2 ABI"+
+ " register save/restore function %s", ldr.SymName(target))
+ }
+
+ t := ldr.SymValue(target)
+ if t == 0 || r2Valid(ctxt) || ctxt.IsExternal() {
+ // Target address is unknown, generate relocations
+ r, _ := tramp.AddRel(objabi.R_ADDRPOWER)
+ if r2Valid(ctxt) {
+ // Use a TOC relative address if R2 holds the TOC pointer
+ o1 |= uint32(2 << 16) // Transform lis r31,ha into addis r31,r2,ha
+ r.SetType(objabi.R_ADDRPOWER_TOCREL)
+ }
+ r.SetOff(0)
+ r.SetSiz(8) // generates 2 relocations: HA + LO
+ r.SetSym(target)
+ r.SetAdd(offset)
+ } else {
+ // The target address is known, resolve it
+ t += offset
+ o1 |= (uint32(t) + 0x8000) >> 16 // HA
+ o2 |= uint32(t) & 0xFFFF // LO
+ }
+ }
+
+ o3 := uint32(0x7c0903a6) | 12<<21 // mtctr r12
+ o4 := uint32(0x4e800420) // bctr
+ ctxt.Arch.ByteOrder.PutUint32(P, o1)
+ ctxt.Arch.ByteOrder.PutUint32(P[4:], o2)
+ ctxt.Arch.ByteOrder.PutUint32(P[8:], o3)
+ ctxt.Arch.ByteOrder.PutUint32(P[12:], o4)
+ tramp.SetData(P)
+}
+
+func archreloc(target *ld.Target, ldr *loader.Loader, syms *ld.ArchSyms, r loader.Reloc, s loader.Sym, val int64) (relocatedOffset int64, nExtReloc int, ok bool) {
+ rs := r.Sym()
+ if target.IsExternal() {
+ // On AIX, relocations (except TLS ones) must be also done to the
+ // value with the current addresses.
+ switch rt := r.Type(); rt {
+ default:
+ if !target.IsAIX() {
+ return val, nExtReloc, false
+ }
+ case objabi.R_POWER_TLS:
+ nExtReloc = 1
+ return val, nExtReloc, true
+ case objabi.R_POWER_TLS_LE, objabi.R_POWER_TLS_IE:
+ if target.IsAIX() && rt == objabi.R_POWER_TLS_LE {
+ // Fixup val, an addis/addi pair of instructions, which generate a 32b displacement
+ // from the threadpointer (R13), into a 16b relocation. XCOFF only supports 16b
+ // TLS LE relocations. Likewise, verify this is an addis/addi sequence.
+ const expectedOpcodes = 0x3C00000038000000
+ const expectedOpmasks = 0xFC000000FC000000
+ if uint64(val)&expectedOpmasks != expectedOpcodes {
+ ldr.Errorf(s, "relocation for %s+%d is not an addis/addi pair: %16x", ldr.SymName(rs), r.Off(), uint64(val))
+ }
+ nval := (int64(uint32(0x380d0000)) | val&0x03e00000) << 32 // addi rX, r13, $0
+ nval |= int64(0x60000000) // nop
+ val = nval
+ nExtReloc = 1
+ } else {
+ nExtReloc = 2
+ }
+ return val, nExtReloc, true
+ case objabi.R_ADDRPOWER,
+ objabi.R_ADDRPOWER_DS,
+ objabi.R_ADDRPOWER_TOCREL,
+ objabi.R_ADDRPOWER_TOCREL_DS,
+ objabi.R_ADDRPOWER_GOT,
+ objabi.R_ADDRPOWER_PCREL:
+ nExtReloc = 2 // need two ELF relocations, see elfreloc1
+ if !target.IsAIX() {
+ return val, nExtReloc, true
+ }
+ case objabi.R_CALLPOWER:
+ nExtReloc = 1
+ if !target.IsAIX() {
+ return val, nExtReloc, true
+ }
+ }
+ }
+
+ switch r.Type() {
+ case objabi.R_ADDRPOWER_TOCREL, objabi.R_ADDRPOWER_TOCREL_DS:
+ return archreloctoc(ldr, target, syms, r, s, val), nExtReloc, true
+ case objabi.R_ADDRPOWER, objabi.R_ADDRPOWER_DS:
+ return archrelocaddr(ldr, target, syms, r, s, val), nExtReloc, true
+ case objabi.R_CALLPOWER:
+ // Bits 6 through 29 = (S + A - P) >> 2
+
+ t := ldr.SymValue(rs) + r.Add() - (ldr.SymValue(s) + int64(r.Off()))
+
+ tgtName := ldr.SymName(rs)
+
+ // If we are linking PIE or shared code, all golang generated object files have an extra 2 instruction prologue
+ // to regenerate the TOC pointer from R12. The exception are two special case functions tested below. Note,
+ // local call offsets for externally generated objects are accounted for when converting into golang relocs.
+ if !ldr.AttrExternal(rs) && ldr.AttrShared(rs) && tgtName != "runtime.duffzero" && tgtName != "runtime.duffcopy" {
+ // Furthermore, only apply the offset if the target looks like the start of a function call.
+ if r.Add() == 0 && ldr.SymType(rs) == sym.STEXT {
+ t += 8
+ }
+ }
+
+ if t&3 != 0 {
+ ldr.Errorf(s, "relocation for %s+%d is not aligned: %d", ldr.SymName(rs), r.Off(), t)
+ }
+ // If branch offset is too far then create a trampoline.
+
+ if int64(int32(t<<6)>>6) != t {
+ ldr.Errorf(s, "direct call too far: %s %x", ldr.SymName(rs), t)
+ }
+ return val | int64(uint32(t)&^0xfc000003), nExtReloc, true
+ case objabi.R_POWER_TOC: // S + A - .TOC.
+ return ldr.SymValue(rs) + r.Add() - symtoc(ldr, syms, s), nExtReloc, true
+
+ case objabi.R_ADDRPOWER_PCREL: // S + A - P
+ t := ldr.SymValue(rs) + r.Add() - (ldr.SymValue(s) + int64(r.Off()))
+ ha := uint16(((t + 0x8000) >> 16) & 0xFFFF)
+ l := uint16(t)
+ if target.IsBigEndian() {
+ val |= int64(l)
+ val |= int64(ha) << 32
+ } else {
+ val |= int64(ha)
+ val |= int64(l) << 32
+ }
+ return val, nExtReloc, true
+
+ case objabi.R_POWER_TLS:
+ const OP_ADD = 31<<26 | 266<<1
+ const MASK_OP_ADD = 0x3F<<26 | 0x1FF<<1
+ if val&MASK_OP_ADD != OP_ADD {
+ ldr.Errorf(s, "R_POWER_TLS reloc only supports XO form ADD, not %08X", val)
+ }
+ // Verify RB is R13 in ADD RA,RB,RT.
+ if (val>>11)&0x1F != 13 {
+ // If external linking is made to support this, it may expect the linker to rewrite RB.
+ ldr.Errorf(s, "R_POWER_TLS reloc requires R13 in RB (%08X).", uint32(val))
+ }
+ return val, nExtReloc, true
+
+ case objabi.R_POWER_TLS_IE:
+ // Convert TLS_IE relocation to TLS_LE if supported.
+ if !(target.IsPIE() && target.IsElf()) {
+ log.Fatalf("cannot handle R_POWER_TLS_IE (sym %s) when linking non-PIE, non-ELF binaries internally", ldr.SymName(s))
+ }
+
+ // We are an ELF binary, we can safely convert to TLS_LE from:
+ // addis to, r2, x@got@tprel@ha
+ // ld to, to, x@got@tprel@l(to)
+ //
+ // to TLS_LE by converting to:
+ // addis to, r0, x@tprel@ha
+ // addi to, to, x@tprel@l(to)
+
+ const OP_ADDI = 14 << 26
+ const OP_MASK = 0x3F << 26
+ const OP_RA_MASK = 0x1F << 16
+ uval := uint64(val)
+ // convert r2 to r0, and ld to addi
+ if target.IsBigEndian() {
+ uval = uval &^ (OP_RA_MASK << 32)
+ uval = (uval &^ OP_MASK) | OP_ADDI
+ } else {
+ uval = uval &^ (OP_RA_MASK)
+ uval = (uval &^ (OP_MASK << 32)) | (OP_ADDI << 32)
+ }
+ val = int64(uval)
+ // Treat this like an R_POWER_TLS_LE relocation now.
+ fallthrough
+
+ case objabi.R_POWER_TLS_LE:
+ // The thread pointer points 0x7000 bytes after the start of the
+ // thread local storage area as documented in section "3.7.2 TLS
+ // Runtime Handling" of "Power Architecture 64-Bit ELF V2 ABI
+ // Specification".
+ v := ldr.SymValue(rs) - 0x7000
+ if target.IsAIX() {
+ // On AIX, the thread pointer points 0x7800 bytes after
+ // the TLS.
+ v -= 0x800
+ }
+
+ var o1, o2 uint32
+ if int64(int32(v)) != v {
+ ldr.Errorf(s, "TLS offset out of range %d", v)
+ }
+ if target.IsBigEndian() {
+ o1 = uint32(val >> 32)
+ o2 = uint32(val)
+ } else {
+ o1 = uint32(val)
+ o2 = uint32(val >> 32)
+ }
+
+ o1 |= uint32(((v + 0x8000) >> 16) & 0xFFFF)
+ o2 |= uint32(v & 0xFFFF)
+
+ if target.IsBigEndian() {
+ return int64(o1)<<32 | int64(o2), nExtReloc, true
+ }
+ return int64(o2)<<32 | int64(o1), nExtReloc, true
+ }
+
+ return val, nExtReloc, false
+}
+
+func archrelocvariant(target *ld.Target, ldr *loader.Loader, r loader.Reloc, rv sym.RelocVariant, s loader.Sym, t int64, p []byte) (relocatedOffset int64) {
+ rs := r.Sym()
+ switch rv & sym.RV_TYPE_MASK {
+ default:
+ ldr.Errorf(s, "unexpected relocation variant %d", rv)
+ fallthrough
+
+ case sym.RV_NONE:
+ return t
+
+ case sym.RV_POWER_LO:
+ if rv&sym.RV_CHECK_OVERFLOW != 0 {
+ // Whether to check for signed or unsigned
+ // overflow depends on the instruction
+ var o1 uint32
+ if target.IsBigEndian() {
+ o1 = binary.BigEndian.Uint32(p[r.Off()-2:])
+
+ } else {
+ o1 = binary.LittleEndian.Uint32(p[r.Off():])
+ }
+ switch o1 >> 26 {
+ case 24, // ori
+ 26, // xori
+ 28: // andi
+ if t>>16 != 0 {
+ goto overflow
+ }
+
+ default:
+ if int64(int16(t)) != t {
+ goto overflow
+ }
+ }
+ }
+
+ return int64(int16(t))
+
+ case sym.RV_POWER_HA:
+ t += 0x8000
+ fallthrough
+
+ // Fallthrough
+ case sym.RV_POWER_HI:
+ t >>= 16
+
+ if rv&sym.RV_CHECK_OVERFLOW != 0 {
+ // Whether to check for signed or unsigned
+ // overflow depends on the instruction
+ var o1 uint32
+ if target.IsBigEndian() {
+ o1 = binary.BigEndian.Uint32(p[r.Off()-2:])
+ } else {
+ o1 = binary.LittleEndian.Uint32(p[r.Off():])
+ }
+ switch o1 >> 26 {
+ case 25, // oris
+ 27, // xoris
+ 29: // andis
+ if t>>16 != 0 {
+ goto overflow
+ }
+
+ default:
+ if int64(int16(t)) != t {
+ goto overflow
+ }
+ }
+ }
+
+ return int64(int16(t))
+
+ case sym.RV_POWER_DS:
+ var o1 uint32
+ if target.IsBigEndian() {
+ o1 = uint32(binary.BigEndian.Uint16(p[r.Off():]))
+ } else {
+ o1 = uint32(binary.LittleEndian.Uint16(p[r.Off():]))
+ }
+ if t&3 != 0 {
+ ldr.Errorf(s, "relocation for %s+%d is not aligned: %d", ldr.SymName(rs), r.Off(), t)
+ }
+ if (rv&sym.RV_CHECK_OVERFLOW != 0) && int64(int16(t)) != t {
+ goto overflow
+ }
+ return int64(o1)&0x3 | int64(int16(t))
+ }
+
+overflow:
+ ldr.Errorf(s, "relocation for %s+%d is too big: %d", ldr.SymName(rs), r.Off(), t)
+ return t
+}
+
+func extreloc(target *ld.Target, ldr *loader.Loader, r loader.Reloc, s loader.Sym) (loader.ExtReloc, bool) {
+ switch r.Type() {
+ case objabi.R_POWER_TLS, objabi.R_POWER_TLS_LE, objabi.R_POWER_TLS_IE, objabi.R_CALLPOWER:
+ return ld.ExtrelocSimple(ldr, r), true
+ case objabi.R_ADDRPOWER,
+ objabi.R_ADDRPOWER_DS,
+ objabi.R_ADDRPOWER_TOCREL,
+ objabi.R_ADDRPOWER_TOCREL_DS,
+ objabi.R_ADDRPOWER_GOT,
+ objabi.R_ADDRPOWER_PCREL:
+ return ld.ExtrelocViaOuterSym(ldr, r, s), true
+ }
+ return loader.ExtReloc{}, false
+}
+
+func addpltsym(ctxt *ld.Link, ldr *loader.Loader, s loader.Sym) {
+ if ldr.SymPlt(s) >= 0 {
+ return
+ }
+
+ ld.Adddynsym(ldr, &ctxt.Target, &ctxt.ArchSyms, s)
+
+ if ctxt.IsELF {
+ plt := ldr.MakeSymbolUpdater(ctxt.PLT)
+ rela := ldr.MakeSymbolUpdater(ctxt.RelaPLT)
+ if plt.Size() == 0 {
+ panic("plt is not set up")
+ }
+
+ // Create the glink resolver if necessary
+ glink := ensureglinkresolver(ctxt, ldr)
+
+ // Write symbol resolver stub (just a branch to the
+ // glink resolver stub)
+ rel, _ := glink.AddRel(objabi.R_CALLPOWER)
+ rel.SetOff(int32(glink.Size()))
+ rel.SetSiz(4)
+ rel.SetSym(glink.Sym())
+ glink.AddUint32(ctxt.Arch, 0x48000000) // b .glink
+
+ // In the ppc64 ABI, the dynamic linker is responsible
+ // for writing the entire PLT. We just need to
+ // reserve 8 bytes for each PLT entry and generate a
+ // JMP_SLOT dynamic relocation for it.
+ //
+ // TODO(austin): ABI v1 is different
+ ldr.SetPlt(s, int32(plt.Size()))
+
+ plt.Grow(plt.Size() + 8)
+ plt.SetSize(plt.Size() + 8)
+
+ rela.AddAddrPlus(ctxt.Arch, plt.Sym(), int64(ldr.SymPlt(s)))
+ rela.AddUint64(ctxt.Arch, elf.R_INFO(uint32(ldr.SymDynid(s)), uint32(elf.R_PPC64_JMP_SLOT)))
+ rela.AddUint64(ctxt.Arch, 0)
+ } else {
+ ctxt.Errorf(s, "addpltsym: unsupported binary format")
+ }
+}
+
+// Generate the glink resolver stub if necessary and return the .glink section
+func ensureglinkresolver(ctxt *ld.Link, ldr *loader.Loader) *loader.SymbolBuilder {
+ glink := ldr.CreateSymForUpdate(".glink", 0)
+ if glink.Size() != 0 {
+ return glink
+ }
+
+ // This is essentially the resolver from the ppc64 ELFv2 ABI.
+ // At entry, r12 holds the address of the symbol resolver stub
+ // for the target routine and the argument registers hold the
+ // arguments for the target routine.
+ //
+ // PC-rel offsets are computed once the final codesize of the
+ // resolver is known.
+ //
+ // This stub is PIC, so first get the PC of label 1 into r11.
+ glink.AddUint32(ctxt.Arch, 0x7c0802a6) // mflr r0
+ glink.AddUint32(ctxt.Arch, 0x429f0005) // bcl 20,31,1f
+ glink.AddUint32(ctxt.Arch, 0x7d6802a6) // 1: mflr r11
+ glink.AddUint32(ctxt.Arch, 0x7c0803a6) // mtlr r0
+
+ // Compute the .plt array index from the entry point address
+ // into r0. This is computed relative to label 1 above.
+ glink.AddUint32(ctxt.Arch, 0x38000000) // li r0,-(res_0-1b)
+ glink.AddUint32(ctxt.Arch, 0x7c006214) // add r0,r0,r12
+ glink.AddUint32(ctxt.Arch, 0x7c0b0050) // sub r0,r0,r11
+ glink.AddUint32(ctxt.Arch, 0x7800f082) // srdi r0,r0,2
+
+ // Load the PC-rel offset of ".plt - 1b", and add it to 1b.
+ // This is stored after this stub and before the resolvers.
+ glink.AddUint32(ctxt.Arch, 0xe98b0000) // ld r12,res_0-1b-8(r11)
+ glink.AddUint32(ctxt.Arch, 0x7d6b6214) // add r11,r11,r12
+
+ // Load r12 = dynamic resolver address and r11 = DSO
+ // identifier from the first two doublewords of the PLT.
+ glink.AddUint32(ctxt.Arch, 0xe98b0000) // ld r12,0(r11)
+ glink.AddUint32(ctxt.Arch, 0xe96b0008) // ld r11,8(r11)
+
+ // Jump to the dynamic resolver
+ glink.AddUint32(ctxt.Arch, 0x7d8903a6) // mtctr r12
+ glink.AddUint32(ctxt.Arch, 0x4e800420) // bctr
+
+ // Store the PC-rel offset to the PLT
+ r, _ := glink.AddRel(objabi.R_PCREL)
+ r.SetSym(ctxt.PLT)
+ r.SetSiz(8)
+ r.SetOff(int32(glink.Size()))
+ r.SetAdd(glink.Size()) // Adjust the offset to be relative to label 1 above.
+ glink.AddUint64(ctxt.Arch, 0) // The offset to the PLT.
+
+ // Resolve PC-rel offsets above now the final size of the stub is known.
+ res0m1b := glink.Size() - 8 // res_0 - 1b
+ glink.SetUint32(ctxt.Arch, 16, 0x38000000|uint32(uint16(-res0m1b)))
+ glink.SetUint32(ctxt.Arch, 32, 0xe98b0000|uint32(uint16(res0m1b-8)))
+
+ // The symbol resolvers must immediately follow.
+ // res_0:
+
+ // Add DT_PPC64_GLINK .dynamic entry, which points to 32 bytes
+ // before the first symbol resolver stub.
+ du := ldr.MakeSymbolUpdater(ctxt.Dynamic)
+ ld.Elfwritedynentsymplus(ctxt, du, elf.DT_PPC64_GLINK, glink.Sym(), glink.Size()-32)
+
+ return glink
+}