diff options
Diffstat (limited to 'src/crypto/internal/nistec/fiat/p256_invert.go')
-rw-r--r-- | src/crypto/internal/nistec/fiat/p256_invert.go | 84 |
1 files changed, 84 insertions, 0 deletions
diff --git a/src/crypto/internal/nistec/fiat/p256_invert.go b/src/crypto/internal/nistec/fiat/p256_invert.go new file mode 100644 index 0000000..d0101e1 --- /dev/null +++ b/src/crypto/internal/nistec/fiat/p256_invert.go @@ -0,0 +1,84 @@ +// Copyright 2021 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +// Code generated by addchain. DO NOT EDIT. + +package fiat + +// Invert sets e = 1/x, and returns e. +// +// If x == 0, Invert returns e = 0. +func (e *P256Element) Invert(x *P256Element) *P256Element { + // Inversion is implemented as exponentiation with exponent p − 2. + // The sequence of 12 multiplications and 255 squarings is derived from the + // following addition chain generated with github.com/mmcloughlin/addchain v0.4.0. + // + // _10 = 2*1 + // _11 = 1 + _10 + // _110 = 2*_11 + // _111 = 1 + _110 + // _111000 = _111 << 3 + // _111111 = _111 + _111000 + // x12 = _111111 << 6 + _111111 + // x15 = x12 << 3 + _111 + // x16 = 2*x15 + 1 + // x32 = x16 << 16 + x16 + // i53 = x32 << 15 + // x47 = x15 + i53 + // i263 = ((i53 << 17 + 1) << 143 + x47) << 47 + // return (x47 + i263) << 2 + 1 + // + + var z = new(P256Element).Set(e) + var t0 = new(P256Element) + var t1 = new(P256Element) + + z.Square(x) + z.Mul(x, z) + z.Square(z) + z.Mul(x, z) + t0.Square(z) + for s := 1; s < 3; s++ { + t0.Square(t0) + } + t0.Mul(z, t0) + t1.Square(t0) + for s := 1; s < 6; s++ { + t1.Square(t1) + } + t0.Mul(t0, t1) + for s := 0; s < 3; s++ { + t0.Square(t0) + } + z.Mul(z, t0) + t0.Square(z) + t0.Mul(x, t0) + t1.Square(t0) + for s := 1; s < 16; s++ { + t1.Square(t1) + } + t0.Mul(t0, t1) + for s := 0; s < 15; s++ { + t0.Square(t0) + } + z.Mul(z, t0) + for s := 0; s < 17; s++ { + t0.Square(t0) + } + t0.Mul(x, t0) + for s := 0; s < 143; s++ { + t0.Square(t0) + } + t0.Mul(z, t0) + for s := 0; s < 47; s++ { + t0.Square(t0) + } + z.Mul(z, t0) + for s := 0; s < 2; s++ { + z.Square(z) + } + z.Mul(x, z) + + return e.Set(z) +} |