summaryrefslogtreecommitdiffstats
path: root/src/regexp/regexp.go
diff options
context:
space:
mode:
Diffstat (limited to 'src/regexp/regexp.go')
-rw-r--r--src/regexp/regexp.go1285
1 files changed, 1285 insertions, 0 deletions
diff --git a/src/regexp/regexp.go b/src/regexp/regexp.go
new file mode 100644
index 0000000..7958a39
--- /dev/null
+++ b/src/regexp/regexp.go
@@ -0,0 +1,1285 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// Package regexp implements regular expression search.
+//
+// The syntax of the regular expressions accepted is the same
+// general syntax used by Perl, Python, and other languages.
+// More precisely, it is the syntax accepted by RE2 and described at
+// https://golang.org/s/re2syntax, except for \C.
+// For an overview of the syntax, run
+//
+// go doc regexp/syntax
+//
+// The regexp implementation provided by this package is
+// guaranteed to run in time linear in the size of the input.
+// (This is a property not guaranteed by most open source
+// implementations of regular expressions.) For more information
+// about this property, see
+//
+// https://swtch.com/~rsc/regexp/regexp1.html
+//
+// or any book about automata theory.
+//
+// All characters are UTF-8-encoded code points.
+// Following utf8.DecodeRune, each byte of an invalid UTF-8 sequence
+// is treated as if it encoded utf8.RuneError (U+FFFD).
+//
+// There are 16 methods of Regexp that match a regular expression and identify
+// the matched text. Their names are matched by this regular expression:
+//
+// Find(All)?(String)?(Submatch)?(Index)?
+//
+// If 'All' is present, the routine matches successive non-overlapping
+// matches of the entire expression. Empty matches abutting a preceding
+// match are ignored. The return value is a slice containing the successive
+// return values of the corresponding non-'All' routine. These routines take
+// an extra integer argument, n. If n >= 0, the function returns at most n
+// matches/submatches; otherwise, it returns all of them.
+//
+// If 'String' is present, the argument is a string; otherwise it is a slice
+// of bytes; return values are adjusted as appropriate.
+//
+// If 'Submatch' is present, the return value is a slice identifying the
+// successive submatches of the expression. Submatches are matches of
+// parenthesized subexpressions (also known as capturing groups) within the
+// regular expression, numbered from left to right in order of opening
+// parenthesis. Submatch 0 is the match of the entire expression, submatch 1 is
+// the match of the first parenthesized subexpression, and so on.
+//
+// If 'Index' is present, matches and submatches are identified by byte index
+// pairs within the input string: result[2*n:2*n+2] identifies the indexes of
+// the nth submatch. The pair for n==0 identifies the match of the entire
+// expression. If 'Index' is not present, the match is identified by the text
+// of the match/submatch. If an index is negative or text is nil, it means that
+// subexpression did not match any string in the input. For 'String' versions
+// an empty string means either no match or an empty match.
+//
+// There is also a subset of the methods that can be applied to text read
+// from a RuneReader:
+//
+// MatchReader, FindReaderIndex, FindReaderSubmatchIndex
+//
+// This set may grow. Note that regular expression matches may need to
+// examine text beyond the text returned by a match, so the methods that
+// match text from a RuneReader may read arbitrarily far into the input
+// before returning.
+//
+// (There are a few other methods that do not match this pattern.)
+package regexp
+
+import (
+ "bytes"
+ "io"
+ "regexp/syntax"
+ "strconv"
+ "strings"
+ "sync"
+ "unicode"
+ "unicode/utf8"
+)
+
+// Regexp is the representation of a compiled regular expression.
+// A Regexp is safe for concurrent use by multiple goroutines,
+// except for configuration methods, such as Longest.
+type Regexp struct {
+ expr string // as passed to Compile
+ prog *syntax.Prog // compiled program
+ onepass *onePassProg // onepass program or nil
+ numSubexp int
+ maxBitStateLen int
+ subexpNames []string
+ prefix string // required prefix in unanchored matches
+ prefixBytes []byte // prefix, as a []byte
+ prefixRune rune // first rune in prefix
+ prefixEnd uint32 // pc for last rune in prefix
+ mpool int // pool for machines
+ matchcap int // size of recorded match lengths
+ prefixComplete bool // prefix is the entire regexp
+ cond syntax.EmptyOp // empty-width conditions required at start of match
+ minInputLen int // minimum length of the input in bytes
+
+ // This field can be modified by the Longest method,
+ // but it is otherwise read-only.
+ longest bool // whether regexp prefers leftmost-longest match
+}
+
+// String returns the source text used to compile the regular expression.
+func (re *Regexp) String() string {
+ return re.expr
+}
+
+// Copy returns a new Regexp object copied from re.
+// Calling Longest on one copy does not affect another.
+//
+// Deprecated: In earlier releases, when using a Regexp in multiple goroutines,
+// giving each goroutine its own copy helped to avoid lock contention.
+// As of Go 1.12, using Copy is no longer necessary to avoid lock contention.
+// Copy may still be appropriate if the reason for its use is to make
+// two copies with different Longest settings.
+func (re *Regexp) Copy() *Regexp {
+ re2 := *re
+ return &re2
+}
+
+// Compile parses a regular expression and returns, if successful,
+// a Regexp object that can be used to match against text.
+//
+// When matching against text, the regexp returns a match that
+// begins as early as possible in the input (leftmost), and among those
+// it chooses the one that a backtracking search would have found first.
+// This so-called leftmost-first matching is the same semantics
+// that Perl, Python, and other implementations use, although this
+// package implements it without the expense of backtracking.
+// For POSIX leftmost-longest matching, see CompilePOSIX.
+func Compile(expr string) (*Regexp, error) {
+ return compile(expr, syntax.Perl, false)
+}
+
+// CompilePOSIX is like Compile but restricts the regular expression
+// to POSIX ERE (egrep) syntax and changes the match semantics to
+// leftmost-longest.
+//
+// That is, when matching against text, the regexp returns a match that
+// begins as early as possible in the input (leftmost), and among those
+// it chooses a match that is as long as possible.
+// This so-called leftmost-longest matching is the same semantics
+// that early regular expression implementations used and that POSIX
+// specifies.
+//
+// However, there can be multiple leftmost-longest matches, with different
+// submatch choices, and here this package diverges from POSIX.
+// Among the possible leftmost-longest matches, this package chooses
+// the one that a backtracking search would have found first, while POSIX
+// specifies that the match be chosen to maximize the length of the first
+// subexpression, then the second, and so on from left to right.
+// The POSIX rule is computationally prohibitive and not even well-defined.
+// See https://swtch.com/~rsc/regexp/regexp2.html#posix for details.
+func CompilePOSIX(expr string) (*Regexp, error) {
+ return compile(expr, syntax.POSIX, true)
+}
+
+// Longest makes future searches prefer the leftmost-longest match.
+// That is, when matching against text, the regexp returns a match that
+// begins as early as possible in the input (leftmost), and among those
+// it chooses a match that is as long as possible.
+// This method modifies the Regexp and may not be called concurrently
+// with any other methods.
+func (re *Regexp) Longest() {
+ re.longest = true
+}
+
+func compile(expr string, mode syntax.Flags, longest bool) (*Regexp, error) {
+ re, err := syntax.Parse(expr, mode)
+ if err != nil {
+ return nil, err
+ }
+ maxCap := re.MaxCap()
+ capNames := re.CapNames()
+
+ re = re.Simplify()
+ prog, err := syntax.Compile(re)
+ if err != nil {
+ return nil, err
+ }
+ matchcap := prog.NumCap
+ if matchcap < 2 {
+ matchcap = 2
+ }
+ regexp := &Regexp{
+ expr: expr,
+ prog: prog,
+ onepass: compileOnePass(prog),
+ numSubexp: maxCap,
+ subexpNames: capNames,
+ cond: prog.StartCond(),
+ longest: longest,
+ matchcap: matchcap,
+ minInputLen: minInputLen(re),
+ }
+ if regexp.onepass == nil {
+ regexp.prefix, regexp.prefixComplete = prog.Prefix()
+ regexp.maxBitStateLen = maxBitStateLen(prog)
+ } else {
+ regexp.prefix, regexp.prefixComplete, regexp.prefixEnd = onePassPrefix(prog)
+ }
+ if regexp.prefix != "" {
+ // TODO(rsc): Remove this allocation by adding
+ // IndexString to package bytes.
+ regexp.prefixBytes = []byte(regexp.prefix)
+ regexp.prefixRune, _ = utf8.DecodeRuneInString(regexp.prefix)
+ }
+
+ n := len(prog.Inst)
+ i := 0
+ for matchSize[i] != 0 && matchSize[i] < n {
+ i++
+ }
+ regexp.mpool = i
+
+ return regexp, nil
+}
+
+// Pools of *machine for use during (*Regexp).doExecute,
+// split up by the size of the execution queues.
+// matchPool[i] machines have queue size matchSize[i].
+// On a 64-bit system each queue entry is 16 bytes,
+// so matchPool[0] has 16*2*128 = 4kB queues, etc.
+// The final matchPool is a catch-all for very large queues.
+var (
+ matchSize = [...]int{128, 512, 2048, 16384, 0}
+ matchPool [len(matchSize)]sync.Pool
+)
+
+// get returns a machine to use for matching re.
+// It uses the re's machine cache if possible, to avoid
+// unnecessary allocation.
+func (re *Regexp) get() *machine {
+ m, ok := matchPool[re.mpool].Get().(*machine)
+ if !ok {
+ m = new(machine)
+ }
+ m.re = re
+ m.p = re.prog
+ if cap(m.matchcap) < re.matchcap {
+ m.matchcap = make([]int, re.matchcap)
+ for _, t := range m.pool {
+ t.cap = make([]int, re.matchcap)
+ }
+ }
+
+ // Allocate queues if needed.
+ // Or reallocate, for "large" match pool.
+ n := matchSize[re.mpool]
+ if n == 0 { // large pool
+ n = len(re.prog.Inst)
+ }
+ if len(m.q0.sparse) < n {
+ m.q0 = queue{make([]uint32, n), make([]entry, 0, n)}
+ m.q1 = queue{make([]uint32, n), make([]entry, 0, n)}
+ }
+ return m
+}
+
+// put returns a machine to the correct machine pool.
+func (re *Regexp) put(m *machine) {
+ m.re = nil
+ m.p = nil
+ m.inputs.clear()
+ matchPool[re.mpool].Put(m)
+}
+
+// minInputLen walks the regexp to find the minimum length of any matchable input
+func minInputLen(re *syntax.Regexp) int {
+ switch re.Op {
+ default:
+ return 0
+ case syntax.OpAnyChar, syntax.OpAnyCharNotNL, syntax.OpCharClass:
+ return 1
+ case syntax.OpLiteral:
+ l := 0
+ for _, r := range re.Rune {
+ if r == utf8.RuneError {
+ l++
+ } else {
+ l += utf8.RuneLen(r)
+ }
+ }
+ return l
+ case syntax.OpCapture, syntax.OpPlus:
+ return minInputLen(re.Sub[0])
+ case syntax.OpRepeat:
+ return re.Min * minInputLen(re.Sub[0])
+ case syntax.OpConcat:
+ l := 0
+ for _, sub := range re.Sub {
+ l += minInputLen(sub)
+ }
+ return l
+ case syntax.OpAlternate:
+ l := minInputLen(re.Sub[0])
+ var lnext int
+ for _, sub := range re.Sub[1:] {
+ lnext = minInputLen(sub)
+ if lnext < l {
+ l = lnext
+ }
+ }
+ return l
+ }
+}
+
+// MustCompile is like Compile but panics if the expression cannot be parsed.
+// It simplifies safe initialization of global variables holding compiled regular
+// expressions.
+func MustCompile(str string) *Regexp {
+ regexp, err := Compile(str)
+ if err != nil {
+ panic(`regexp: Compile(` + quote(str) + `): ` + err.Error())
+ }
+ return regexp
+}
+
+// MustCompilePOSIX is like CompilePOSIX but panics if the expression cannot be parsed.
+// It simplifies safe initialization of global variables holding compiled regular
+// expressions.
+func MustCompilePOSIX(str string) *Regexp {
+ regexp, err := CompilePOSIX(str)
+ if err != nil {
+ panic(`regexp: CompilePOSIX(` + quote(str) + `): ` + err.Error())
+ }
+ return regexp
+}
+
+func quote(s string) string {
+ if strconv.CanBackquote(s) {
+ return "`" + s + "`"
+ }
+ return strconv.Quote(s)
+}
+
+// NumSubexp returns the number of parenthesized subexpressions in this Regexp.
+func (re *Regexp) NumSubexp() int {
+ return re.numSubexp
+}
+
+// SubexpNames returns the names of the parenthesized subexpressions
+// in this Regexp. The name for the first sub-expression is names[1],
+// so that if m is a match slice, the name for m[i] is SubexpNames()[i].
+// Since the Regexp as a whole cannot be named, names[0] is always
+// the empty string. The slice should not be modified.
+func (re *Regexp) SubexpNames() []string {
+ return re.subexpNames
+}
+
+// SubexpIndex returns the index of the first subexpression with the given name,
+// or -1 if there is no subexpression with that name.
+//
+// Note that multiple subexpressions can be written using the same name, as in
+// (?P<bob>a+)(?P<bob>b+), which declares two subexpressions named "bob".
+// In this case, SubexpIndex returns the index of the leftmost such subexpression
+// in the regular expression.
+func (re *Regexp) SubexpIndex(name string) int {
+ if name != "" {
+ for i, s := range re.subexpNames {
+ if name == s {
+ return i
+ }
+ }
+ }
+ return -1
+}
+
+const endOfText rune = -1
+
+// input abstracts different representations of the input text. It provides
+// one-character lookahead.
+type input interface {
+ step(pos int) (r rune, width int) // advance one rune
+ canCheckPrefix() bool // can we look ahead without losing info?
+ hasPrefix(re *Regexp) bool
+ index(re *Regexp, pos int) int
+ context(pos int) lazyFlag
+}
+
+// inputString scans a string.
+type inputString struct {
+ str string
+}
+
+func (i *inputString) step(pos int) (rune, int) {
+ if pos < len(i.str) {
+ c := i.str[pos]
+ if c < utf8.RuneSelf {
+ return rune(c), 1
+ }
+ return utf8.DecodeRuneInString(i.str[pos:])
+ }
+ return endOfText, 0
+}
+
+func (i *inputString) canCheckPrefix() bool {
+ return true
+}
+
+func (i *inputString) hasPrefix(re *Regexp) bool {
+ return strings.HasPrefix(i.str, re.prefix)
+}
+
+func (i *inputString) index(re *Regexp, pos int) int {
+ return strings.Index(i.str[pos:], re.prefix)
+}
+
+func (i *inputString) context(pos int) lazyFlag {
+ r1, r2 := endOfText, endOfText
+ // 0 < pos && pos <= len(i.str)
+ if uint(pos-1) < uint(len(i.str)) {
+ r1 = rune(i.str[pos-1])
+ if r1 >= utf8.RuneSelf {
+ r1, _ = utf8.DecodeLastRuneInString(i.str[:pos])
+ }
+ }
+ // 0 <= pos && pos < len(i.str)
+ if uint(pos) < uint(len(i.str)) {
+ r2 = rune(i.str[pos])
+ if r2 >= utf8.RuneSelf {
+ r2, _ = utf8.DecodeRuneInString(i.str[pos:])
+ }
+ }
+ return newLazyFlag(r1, r2)
+}
+
+// inputBytes scans a byte slice.
+type inputBytes struct {
+ str []byte
+}
+
+func (i *inputBytes) step(pos int) (rune, int) {
+ if pos < len(i.str) {
+ c := i.str[pos]
+ if c < utf8.RuneSelf {
+ return rune(c), 1
+ }
+ return utf8.DecodeRune(i.str[pos:])
+ }
+ return endOfText, 0
+}
+
+func (i *inputBytes) canCheckPrefix() bool {
+ return true
+}
+
+func (i *inputBytes) hasPrefix(re *Regexp) bool {
+ return bytes.HasPrefix(i.str, re.prefixBytes)
+}
+
+func (i *inputBytes) index(re *Regexp, pos int) int {
+ return bytes.Index(i.str[pos:], re.prefixBytes)
+}
+
+func (i *inputBytes) context(pos int) lazyFlag {
+ r1, r2 := endOfText, endOfText
+ // 0 < pos && pos <= len(i.str)
+ if uint(pos-1) < uint(len(i.str)) {
+ r1 = rune(i.str[pos-1])
+ if r1 >= utf8.RuneSelf {
+ r1, _ = utf8.DecodeLastRune(i.str[:pos])
+ }
+ }
+ // 0 <= pos && pos < len(i.str)
+ if uint(pos) < uint(len(i.str)) {
+ r2 = rune(i.str[pos])
+ if r2 >= utf8.RuneSelf {
+ r2, _ = utf8.DecodeRune(i.str[pos:])
+ }
+ }
+ return newLazyFlag(r1, r2)
+}
+
+// inputReader scans a RuneReader.
+type inputReader struct {
+ r io.RuneReader
+ atEOT bool
+ pos int
+}
+
+func (i *inputReader) step(pos int) (rune, int) {
+ if !i.atEOT && pos != i.pos {
+ return endOfText, 0
+
+ }
+ r, w, err := i.r.ReadRune()
+ if err != nil {
+ i.atEOT = true
+ return endOfText, 0
+ }
+ i.pos += w
+ return r, w
+}
+
+func (i *inputReader) canCheckPrefix() bool {
+ return false
+}
+
+func (i *inputReader) hasPrefix(re *Regexp) bool {
+ return false
+}
+
+func (i *inputReader) index(re *Regexp, pos int) int {
+ return -1
+}
+
+func (i *inputReader) context(pos int) lazyFlag {
+ return 0 // not used
+}
+
+// LiteralPrefix returns a literal string that must begin any match
+// of the regular expression re. It returns the boolean true if the
+// literal string comprises the entire regular expression.
+func (re *Regexp) LiteralPrefix() (prefix string, complete bool) {
+ return re.prefix, re.prefixComplete
+}
+
+// MatchReader reports whether the text returned by the RuneReader
+// contains any match of the regular expression re.
+func (re *Regexp) MatchReader(r io.RuneReader) bool {
+ return re.doMatch(r, nil, "")
+}
+
+// MatchString reports whether the string s
+// contains any match of the regular expression re.
+func (re *Regexp) MatchString(s string) bool {
+ return re.doMatch(nil, nil, s)
+}
+
+// Match reports whether the byte slice b
+// contains any match of the regular expression re.
+func (re *Regexp) Match(b []byte) bool {
+ return re.doMatch(nil, b, "")
+}
+
+// MatchReader reports whether the text returned by the RuneReader
+// contains any match of the regular expression pattern.
+// More complicated queries need to use Compile and the full Regexp interface.
+func MatchReader(pattern string, r io.RuneReader) (matched bool, err error) {
+ re, err := Compile(pattern)
+ if err != nil {
+ return false, err
+ }
+ return re.MatchReader(r), nil
+}
+
+// MatchString reports whether the string s
+// contains any match of the regular expression pattern.
+// More complicated queries need to use Compile and the full Regexp interface.
+func MatchString(pattern string, s string) (matched bool, err error) {
+ re, err := Compile(pattern)
+ if err != nil {
+ return false, err
+ }
+ return re.MatchString(s), nil
+}
+
+// Match reports whether the byte slice b
+// contains any match of the regular expression pattern.
+// More complicated queries need to use Compile and the full Regexp interface.
+func Match(pattern string, b []byte) (matched bool, err error) {
+ re, err := Compile(pattern)
+ if err != nil {
+ return false, err
+ }
+ return re.Match(b), nil
+}
+
+// ReplaceAllString returns a copy of src, replacing matches of the Regexp
+// with the replacement string repl. Inside repl, $ signs are interpreted as
+// in Expand, so for instance $1 represents the text of the first submatch.
+func (re *Regexp) ReplaceAllString(src, repl string) string {
+ n := 2
+ if strings.Contains(repl, "$") {
+ n = 2 * (re.numSubexp + 1)
+ }
+ b := re.replaceAll(nil, src, n, func(dst []byte, match []int) []byte {
+ return re.expand(dst, repl, nil, src, match)
+ })
+ return string(b)
+}
+
+// ReplaceAllLiteralString returns a copy of src, replacing matches of the Regexp
+// with the replacement string repl. The replacement repl is substituted directly,
+// without using Expand.
+func (re *Regexp) ReplaceAllLiteralString(src, repl string) string {
+ return string(re.replaceAll(nil, src, 2, func(dst []byte, match []int) []byte {
+ return append(dst, repl...)
+ }))
+}
+
+// ReplaceAllStringFunc returns a copy of src in which all matches of the
+// Regexp have been replaced by the return value of function repl applied
+// to the matched substring. The replacement returned by repl is substituted
+// directly, without using Expand.
+func (re *Regexp) ReplaceAllStringFunc(src string, repl func(string) string) string {
+ b := re.replaceAll(nil, src, 2, func(dst []byte, match []int) []byte {
+ return append(dst, repl(src[match[0]:match[1]])...)
+ })
+ return string(b)
+}
+
+func (re *Regexp) replaceAll(bsrc []byte, src string, nmatch int, repl func(dst []byte, m []int) []byte) []byte {
+ lastMatchEnd := 0 // end position of the most recent match
+ searchPos := 0 // position where we next look for a match
+ var buf []byte
+ var endPos int
+ if bsrc != nil {
+ endPos = len(bsrc)
+ } else {
+ endPos = len(src)
+ }
+ if nmatch > re.prog.NumCap {
+ nmatch = re.prog.NumCap
+ }
+
+ var dstCap [2]int
+ for searchPos <= endPos {
+ a := re.doExecute(nil, bsrc, src, searchPos, nmatch, dstCap[:0])
+ if len(a) == 0 {
+ break // no more matches
+ }
+
+ // Copy the unmatched characters before this match.
+ if bsrc != nil {
+ buf = append(buf, bsrc[lastMatchEnd:a[0]]...)
+ } else {
+ buf = append(buf, src[lastMatchEnd:a[0]]...)
+ }
+
+ // Now insert a copy of the replacement string, but not for a
+ // match of the empty string immediately after another match.
+ // (Otherwise, we get double replacement for patterns that
+ // match both empty and nonempty strings.)
+ if a[1] > lastMatchEnd || a[0] == 0 {
+ buf = repl(buf, a)
+ }
+ lastMatchEnd = a[1]
+
+ // Advance past this match; always advance at least one character.
+ var width int
+ if bsrc != nil {
+ _, width = utf8.DecodeRune(bsrc[searchPos:])
+ } else {
+ _, width = utf8.DecodeRuneInString(src[searchPos:])
+ }
+ if searchPos+width > a[1] {
+ searchPos += width
+ } else if searchPos+1 > a[1] {
+ // This clause is only needed at the end of the input
+ // string. In that case, DecodeRuneInString returns width=0.
+ searchPos++
+ } else {
+ searchPos = a[1]
+ }
+ }
+
+ // Copy the unmatched characters after the last match.
+ if bsrc != nil {
+ buf = append(buf, bsrc[lastMatchEnd:]...)
+ } else {
+ buf = append(buf, src[lastMatchEnd:]...)
+ }
+
+ return buf
+}
+
+// ReplaceAll returns a copy of src, replacing matches of the Regexp
+// with the replacement text repl. Inside repl, $ signs are interpreted as
+// in Expand, so for instance $1 represents the text of the first submatch.
+func (re *Regexp) ReplaceAll(src, repl []byte) []byte {
+ n := 2
+ if bytes.IndexByte(repl, '$') >= 0 {
+ n = 2 * (re.numSubexp + 1)
+ }
+ srepl := ""
+ b := re.replaceAll(src, "", n, func(dst []byte, match []int) []byte {
+ if len(srepl) != len(repl) {
+ srepl = string(repl)
+ }
+ return re.expand(dst, srepl, src, "", match)
+ })
+ return b
+}
+
+// ReplaceAllLiteral returns a copy of src, replacing matches of the Regexp
+// with the replacement bytes repl. The replacement repl is substituted directly,
+// without using Expand.
+func (re *Regexp) ReplaceAllLiteral(src, repl []byte) []byte {
+ return re.replaceAll(src, "", 2, func(dst []byte, match []int) []byte {
+ return append(dst, repl...)
+ })
+}
+
+// ReplaceAllFunc returns a copy of src in which all matches of the
+// Regexp have been replaced by the return value of function repl applied
+// to the matched byte slice. The replacement returned by repl is substituted
+// directly, without using Expand.
+func (re *Regexp) ReplaceAllFunc(src []byte, repl func([]byte) []byte) []byte {
+ return re.replaceAll(src, "", 2, func(dst []byte, match []int) []byte {
+ return append(dst, repl(src[match[0]:match[1]])...)
+ })
+}
+
+// Bitmap used by func special to check whether a character needs to be escaped.
+var specialBytes [16]byte
+
+// special reports whether byte b needs to be escaped by QuoteMeta.
+func special(b byte) bool {
+ return b < utf8.RuneSelf && specialBytes[b%16]&(1<<(b/16)) != 0
+}
+
+func init() {
+ for _, b := range []byte(`\.+*?()|[]{}^$`) {
+ specialBytes[b%16] |= 1 << (b / 16)
+ }
+}
+
+// QuoteMeta returns a string that escapes all regular expression metacharacters
+// inside the argument text; the returned string is a regular expression matching
+// the literal text.
+func QuoteMeta(s string) string {
+ // A byte loop is correct because all metacharacters are ASCII.
+ var i int
+ for i = 0; i < len(s); i++ {
+ if special(s[i]) {
+ break
+ }
+ }
+ // No meta characters found, so return original string.
+ if i >= len(s) {
+ return s
+ }
+
+ b := make([]byte, 2*len(s)-i)
+ copy(b, s[:i])
+ j := i
+ for ; i < len(s); i++ {
+ if special(s[i]) {
+ b[j] = '\\'
+ j++
+ }
+ b[j] = s[i]
+ j++
+ }
+ return string(b[:j])
+}
+
+// The number of capture values in the program may correspond
+// to fewer capturing expressions than are in the regexp.
+// For example, "(a){0}" turns into an empty program, so the
+// maximum capture in the program is 0 but we need to return
+// an expression for \1. Pad appends -1s to the slice a as needed.
+func (re *Regexp) pad(a []int) []int {
+ if a == nil {
+ // No match.
+ return nil
+ }
+ n := (1 + re.numSubexp) * 2
+ for len(a) < n {
+ a = append(a, -1)
+ }
+ return a
+}
+
+// allMatches calls deliver at most n times
+// with the location of successive matches in the input text.
+// The input text is b if non-nil, otherwise s.
+func (re *Regexp) allMatches(s string, b []byte, n int, deliver func([]int)) {
+ var end int
+ if b == nil {
+ end = len(s)
+ } else {
+ end = len(b)
+ }
+
+ for pos, i, prevMatchEnd := 0, 0, -1; i < n && pos <= end; {
+ matches := re.doExecute(nil, b, s, pos, re.prog.NumCap, nil)
+ if len(matches) == 0 {
+ break
+ }
+
+ accept := true
+ if matches[1] == pos {
+ // We've found an empty match.
+ if matches[0] == prevMatchEnd {
+ // We don't allow an empty match right
+ // after a previous match, so ignore it.
+ accept = false
+ }
+ var width int
+ if b == nil {
+ is := inputString{str: s}
+ _, width = is.step(pos)
+ } else {
+ ib := inputBytes{str: b}
+ _, width = ib.step(pos)
+ }
+ if width > 0 {
+ pos += width
+ } else {
+ pos = end + 1
+ }
+ } else {
+ pos = matches[1]
+ }
+ prevMatchEnd = matches[1]
+
+ if accept {
+ deliver(re.pad(matches))
+ i++
+ }
+ }
+}
+
+// Find returns a slice holding the text of the leftmost match in b of the regular expression.
+// A return value of nil indicates no match.
+func (re *Regexp) Find(b []byte) []byte {
+ var dstCap [2]int
+ a := re.doExecute(nil, b, "", 0, 2, dstCap[:0])
+ if a == nil {
+ return nil
+ }
+ return b[a[0]:a[1]:a[1]]
+}
+
+// FindIndex returns a two-element slice of integers defining the location of
+// the leftmost match in b of the regular expression. The match itself is at
+// b[loc[0]:loc[1]].
+// A return value of nil indicates no match.
+func (re *Regexp) FindIndex(b []byte) (loc []int) {
+ a := re.doExecute(nil, b, "", 0, 2, nil)
+ if a == nil {
+ return nil
+ }
+ return a[0:2]
+}
+
+// FindString returns a string holding the text of the leftmost match in s of the regular
+// expression. If there is no match, the return value is an empty string,
+// but it will also be empty if the regular expression successfully matches
+// an empty string. Use FindStringIndex or FindStringSubmatch if it is
+// necessary to distinguish these cases.
+func (re *Regexp) FindString(s string) string {
+ var dstCap [2]int
+ a := re.doExecute(nil, nil, s, 0, 2, dstCap[:0])
+ if a == nil {
+ return ""
+ }
+ return s[a[0]:a[1]]
+}
+
+// FindStringIndex returns a two-element slice of integers defining the
+// location of the leftmost match in s of the regular expression. The match
+// itself is at s[loc[0]:loc[1]].
+// A return value of nil indicates no match.
+func (re *Regexp) FindStringIndex(s string) (loc []int) {
+ a := re.doExecute(nil, nil, s, 0, 2, nil)
+ if a == nil {
+ return nil
+ }
+ return a[0:2]
+}
+
+// FindReaderIndex returns a two-element slice of integers defining the
+// location of the leftmost match of the regular expression in text read from
+// the RuneReader. The match text was found in the input stream at
+// byte offset loc[0] through loc[1]-1.
+// A return value of nil indicates no match.
+func (re *Regexp) FindReaderIndex(r io.RuneReader) (loc []int) {
+ a := re.doExecute(r, nil, "", 0, 2, nil)
+ if a == nil {
+ return nil
+ }
+ return a[0:2]
+}
+
+// FindSubmatch returns a slice of slices holding the text of the leftmost
+// match of the regular expression in b and the matches, if any, of its
+// subexpressions, as defined by the 'Submatch' descriptions in the package
+// comment.
+// A return value of nil indicates no match.
+func (re *Regexp) FindSubmatch(b []byte) [][]byte {
+ var dstCap [4]int
+ a := re.doExecute(nil, b, "", 0, re.prog.NumCap, dstCap[:0])
+ if a == nil {
+ return nil
+ }
+ ret := make([][]byte, 1+re.numSubexp)
+ for i := range ret {
+ if 2*i < len(a) && a[2*i] >= 0 {
+ ret[i] = b[a[2*i]:a[2*i+1]:a[2*i+1]]
+ }
+ }
+ return ret
+}
+
+// Expand appends template to dst and returns the result; during the
+// append, Expand replaces variables in the template with corresponding
+// matches drawn from src. The match slice should have been returned by
+// FindSubmatchIndex.
+//
+// In the template, a variable is denoted by a substring of the form
+// $name or ${name}, where name is a non-empty sequence of letters,
+// digits, and underscores. A purely numeric name like $1 refers to
+// the submatch with the corresponding index; other names refer to
+// capturing parentheses named with the (?P<name>...) syntax. A
+// reference to an out of range or unmatched index or a name that is not
+// present in the regular expression is replaced with an empty slice.
+//
+// In the $name form, name is taken to be as long as possible: $1x is
+// equivalent to ${1x}, not ${1}x, and, $10 is equivalent to ${10}, not ${1}0.
+//
+// To insert a literal $ in the output, use $$ in the template.
+func (re *Regexp) Expand(dst []byte, template []byte, src []byte, match []int) []byte {
+ return re.expand(dst, string(template), src, "", match)
+}
+
+// ExpandString is like Expand but the template and source are strings.
+// It appends to and returns a byte slice in order to give the calling
+// code control over allocation.
+func (re *Regexp) ExpandString(dst []byte, template string, src string, match []int) []byte {
+ return re.expand(dst, template, nil, src, match)
+}
+
+func (re *Regexp) expand(dst []byte, template string, bsrc []byte, src string, match []int) []byte {
+ for len(template) > 0 {
+ before, after, ok := strings.Cut(template, "$")
+ if !ok {
+ break
+ }
+ dst = append(dst, before...)
+ template = after
+ if template != "" && template[0] == '$' {
+ // Treat $$ as $.
+ dst = append(dst, '$')
+ template = template[1:]
+ continue
+ }
+ name, num, rest, ok := extract(template)
+ if !ok {
+ // Malformed; treat $ as raw text.
+ dst = append(dst, '$')
+ continue
+ }
+ template = rest
+ if num >= 0 {
+ if 2*num+1 < len(match) && match[2*num] >= 0 {
+ if bsrc != nil {
+ dst = append(dst, bsrc[match[2*num]:match[2*num+1]]...)
+ } else {
+ dst = append(dst, src[match[2*num]:match[2*num+1]]...)
+ }
+ }
+ } else {
+ for i, namei := range re.subexpNames {
+ if name == namei && 2*i+1 < len(match) && match[2*i] >= 0 {
+ if bsrc != nil {
+ dst = append(dst, bsrc[match[2*i]:match[2*i+1]]...)
+ } else {
+ dst = append(dst, src[match[2*i]:match[2*i+1]]...)
+ }
+ break
+ }
+ }
+ }
+ }
+ dst = append(dst, template...)
+ return dst
+}
+
+// extract returns the name from a leading "name" or "{name}" in str.
+// (The $ has already been removed by the caller.)
+// If it is a number, extract returns num set to that number; otherwise num = -1.
+func extract(str string) (name string, num int, rest string, ok bool) {
+ if str == "" {
+ return
+ }
+ brace := false
+ if str[0] == '{' {
+ brace = true
+ str = str[1:]
+ }
+ i := 0
+ for i < len(str) {
+ rune, size := utf8.DecodeRuneInString(str[i:])
+ if !unicode.IsLetter(rune) && !unicode.IsDigit(rune) && rune != '_' {
+ break
+ }
+ i += size
+ }
+ if i == 0 {
+ // empty name is not okay
+ return
+ }
+ name = str[:i]
+ if brace {
+ if i >= len(str) || str[i] != '}' {
+ // missing closing brace
+ return
+ }
+ i++
+ }
+
+ // Parse number.
+ num = 0
+ for i := 0; i < len(name); i++ {
+ if name[i] < '0' || '9' < name[i] || num >= 1e8 {
+ num = -1
+ break
+ }
+ num = num*10 + int(name[i]) - '0'
+ }
+ // Disallow leading zeros.
+ if name[0] == '0' && len(name) > 1 {
+ num = -1
+ }
+
+ rest = str[i:]
+ ok = true
+ return
+}
+
+// FindSubmatchIndex returns a slice holding the index pairs identifying the
+// leftmost match of the regular expression in b and the matches, if any, of
+// its subexpressions, as defined by the 'Submatch' and 'Index' descriptions
+// in the package comment.
+// A return value of nil indicates no match.
+func (re *Regexp) FindSubmatchIndex(b []byte) []int {
+ return re.pad(re.doExecute(nil, b, "", 0, re.prog.NumCap, nil))
+}
+
+// FindStringSubmatch returns a slice of strings holding the text of the
+// leftmost match of the regular expression in s and the matches, if any, of
+// its subexpressions, as defined by the 'Submatch' description in the
+// package comment.
+// A return value of nil indicates no match.
+func (re *Regexp) FindStringSubmatch(s string) []string {
+ var dstCap [4]int
+ a := re.doExecute(nil, nil, s, 0, re.prog.NumCap, dstCap[:0])
+ if a == nil {
+ return nil
+ }
+ ret := make([]string, 1+re.numSubexp)
+ for i := range ret {
+ if 2*i < len(a) && a[2*i] >= 0 {
+ ret[i] = s[a[2*i]:a[2*i+1]]
+ }
+ }
+ return ret
+}
+
+// FindStringSubmatchIndex returns a slice holding the index pairs
+// identifying the leftmost match of the regular expression in s and the
+// matches, if any, of its subexpressions, as defined by the 'Submatch' and
+// 'Index' descriptions in the package comment.
+// A return value of nil indicates no match.
+func (re *Regexp) FindStringSubmatchIndex(s string) []int {
+ return re.pad(re.doExecute(nil, nil, s, 0, re.prog.NumCap, nil))
+}
+
+// FindReaderSubmatchIndex returns a slice holding the index pairs
+// identifying the leftmost match of the regular expression of text read by
+// the RuneReader, and the matches, if any, of its subexpressions, as defined
+// by the 'Submatch' and 'Index' descriptions in the package comment. A
+// return value of nil indicates no match.
+func (re *Regexp) FindReaderSubmatchIndex(r io.RuneReader) []int {
+ return re.pad(re.doExecute(r, nil, "", 0, re.prog.NumCap, nil))
+}
+
+const startSize = 10 // The size at which to start a slice in the 'All' routines.
+
+// FindAll is the 'All' version of Find; it returns a slice of all successive
+// matches of the expression, as defined by the 'All' description in the
+// package comment.
+// A return value of nil indicates no match.
+func (re *Regexp) FindAll(b []byte, n int) [][]byte {
+ if n < 0 {
+ n = len(b) + 1
+ }
+ var result [][]byte
+ re.allMatches("", b, n, func(match []int) {
+ if result == nil {
+ result = make([][]byte, 0, startSize)
+ }
+ result = append(result, b[match[0]:match[1]:match[1]])
+ })
+ return result
+}
+
+// FindAllIndex is the 'All' version of FindIndex; it returns a slice of all
+// successive matches of the expression, as defined by the 'All' description
+// in the package comment.
+// A return value of nil indicates no match.
+func (re *Regexp) FindAllIndex(b []byte, n int) [][]int {
+ if n < 0 {
+ n = len(b) + 1
+ }
+ var result [][]int
+ re.allMatches("", b, n, func(match []int) {
+ if result == nil {
+ result = make([][]int, 0, startSize)
+ }
+ result = append(result, match[0:2])
+ })
+ return result
+}
+
+// FindAllString is the 'All' version of FindString; it returns a slice of all
+// successive matches of the expression, as defined by the 'All' description
+// in the package comment.
+// A return value of nil indicates no match.
+func (re *Regexp) FindAllString(s string, n int) []string {
+ if n < 0 {
+ n = len(s) + 1
+ }
+ var result []string
+ re.allMatches(s, nil, n, func(match []int) {
+ if result == nil {
+ result = make([]string, 0, startSize)
+ }
+ result = append(result, s[match[0]:match[1]])
+ })
+ return result
+}
+
+// FindAllStringIndex is the 'All' version of FindStringIndex; it returns a
+// slice of all successive matches of the expression, as defined by the 'All'
+// description in the package comment.
+// A return value of nil indicates no match.
+func (re *Regexp) FindAllStringIndex(s string, n int) [][]int {
+ if n < 0 {
+ n = len(s) + 1
+ }
+ var result [][]int
+ re.allMatches(s, nil, n, func(match []int) {
+ if result == nil {
+ result = make([][]int, 0, startSize)
+ }
+ result = append(result, match[0:2])
+ })
+ return result
+}
+
+// FindAllSubmatch is the 'All' version of FindSubmatch; it returns a slice
+// of all successive matches of the expression, as defined by the 'All'
+// description in the package comment.
+// A return value of nil indicates no match.
+func (re *Regexp) FindAllSubmatch(b []byte, n int) [][][]byte {
+ if n < 0 {
+ n = len(b) + 1
+ }
+ var result [][][]byte
+ re.allMatches("", b, n, func(match []int) {
+ if result == nil {
+ result = make([][][]byte, 0, startSize)
+ }
+ slice := make([][]byte, len(match)/2)
+ for j := range slice {
+ if match[2*j] >= 0 {
+ slice[j] = b[match[2*j]:match[2*j+1]:match[2*j+1]]
+ }
+ }
+ result = append(result, slice)
+ })
+ return result
+}
+
+// FindAllSubmatchIndex is the 'All' version of FindSubmatchIndex; it returns
+// a slice of all successive matches of the expression, as defined by the
+// 'All' description in the package comment.
+// A return value of nil indicates no match.
+func (re *Regexp) FindAllSubmatchIndex(b []byte, n int) [][]int {
+ if n < 0 {
+ n = len(b) + 1
+ }
+ var result [][]int
+ re.allMatches("", b, n, func(match []int) {
+ if result == nil {
+ result = make([][]int, 0, startSize)
+ }
+ result = append(result, match)
+ })
+ return result
+}
+
+// FindAllStringSubmatch is the 'All' version of FindStringSubmatch; it
+// returns a slice of all successive matches of the expression, as defined by
+// the 'All' description in the package comment.
+// A return value of nil indicates no match.
+func (re *Regexp) FindAllStringSubmatch(s string, n int) [][]string {
+ if n < 0 {
+ n = len(s) + 1
+ }
+ var result [][]string
+ re.allMatches(s, nil, n, func(match []int) {
+ if result == nil {
+ result = make([][]string, 0, startSize)
+ }
+ slice := make([]string, len(match)/2)
+ for j := range slice {
+ if match[2*j] >= 0 {
+ slice[j] = s[match[2*j]:match[2*j+1]]
+ }
+ }
+ result = append(result, slice)
+ })
+ return result
+}
+
+// FindAllStringSubmatchIndex is the 'All' version of
+// FindStringSubmatchIndex; it returns a slice of all successive matches of
+// the expression, as defined by the 'All' description in the package
+// comment.
+// A return value of nil indicates no match.
+func (re *Regexp) FindAllStringSubmatchIndex(s string, n int) [][]int {
+ if n < 0 {
+ n = len(s) + 1
+ }
+ var result [][]int
+ re.allMatches(s, nil, n, func(match []int) {
+ if result == nil {
+ result = make([][]int, 0, startSize)
+ }
+ result = append(result, match)
+ })
+ return result
+}
+
+// Split slices s into substrings separated by the expression and returns a slice of
+// the substrings between those expression matches.
+//
+// The slice returned by this method consists of all the substrings of s
+// not contained in the slice returned by FindAllString. When called on an expression
+// that contains no metacharacters, it is equivalent to strings.SplitN.
+//
+// Example:
+//
+// s := regexp.MustCompile("a*").Split("abaabaccadaaae", 5)
+// // s: ["", "b", "b", "c", "cadaaae"]
+//
+// The count determines the number of substrings to return:
+//
+// n > 0: at most n substrings; the last substring will be the unsplit remainder.
+// n == 0: the result is nil (zero substrings)
+// n < 0: all substrings
+func (re *Regexp) Split(s string, n int) []string {
+
+ if n == 0 {
+ return nil
+ }
+
+ if len(re.expr) > 0 && len(s) == 0 {
+ return []string{""}
+ }
+
+ matches := re.FindAllStringIndex(s, n)
+ strings := make([]string, 0, len(matches))
+
+ beg := 0
+ end := 0
+ for _, match := range matches {
+ if n > 0 && len(strings) >= n-1 {
+ break
+ }
+
+ end = match[0]
+ if match[1] != 0 {
+ strings = append(strings, s[beg:end])
+ }
+ beg = match[1]
+ }
+
+ if end != len(s) {
+ strings = append(strings, s[beg:])
+ }
+
+ return strings
+}