1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
|
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ld
import (
"cmd/internal/goobj"
"cmd/internal/objabi"
"cmd/internal/sys"
"cmd/link/internal/loader"
"cmd/link/internal/sym"
"fmt"
"internal/buildcfg"
"unicode"
)
var _ = fmt.Print
type deadcodePass struct {
ctxt *Link
ldr *loader.Loader
wq heap // work queue, using min-heap for better locality
ifaceMethod map[methodsig]bool // methods called from reached interface call sites
genericIfaceMethod map[string]bool // names of methods called from reached generic interface call sites
markableMethods []methodref // methods of reached types
reflectSeen bool // whether we have seen a reflect method call
dynlink bool
methodsigstmp []methodsig // scratch buffer for decoding method signatures
}
func (d *deadcodePass) init() {
d.ldr.InitReachable()
d.ifaceMethod = make(map[methodsig]bool)
d.genericIfaceMethod = make(map[string]bool)
if buildcfg.Experiment.FieldTrack {
d.ldr.Reachparent = make([]loader.Sym, d.ldr.NSym())
}
d.dynlink = d.ctxt.DynlinkingGo()
if d.ctxt.BuildMode == BuildModeShared {
// Mark all symbols defined in this library as reachable when
// building a shared library.
n := d.ldr.NDef()
for i := 1; i < n; i++ {
s := loader.Sym(i)
d.mark(s, 0)
}
return
}
var names []string
// In a normal binary, start at main.main and the init
// functions and mark what is reachable from there.
if d.ctxt.linkShared && (d.ctxt.BuildMode == BuildModeExe || d.ctxt.BuildMode == BuildModePIE) {
names = append(names, "main.main", "main..inittask")
} else {
// The external linker refers main symbol directly.
if d.ctxt.LinkMode == LinkExternal && (d.ctxt.BuildMode == BuildModeExe || d.ctxt.BuildMode == BuildModePIE) {
if d.ctxt.HeadType == objabi.Hwindows && d.ctxt.Arch.Family == sys.I386 {
*flagEntrySymbol = "_main"
} else {
*flagEntrySymbol = "main"
}
}
names = append(names, *flagEntrySymbol)
}
// runtime.unreachableMethod is a function that will throw if called.
// We redirect unreachable methods to it.
names = append(names, "runtime.unreachableMethod")
if d.ctxt.BuildMode == BuildModePlugin {
names = append(names, objabi.PathToPrefix(*flagPluginPath)+"..inittask", objabi.PathToPrefix(*flagPluginPath)+".main", "go.plugin.tabs")
// We don't keep the go.plugin.exports symbol,
// but we do keep the symbols it refers to.
exportsIdx := d.ldr.Lookup("go.plugin.exports", 0)
if exportsIdx != 0 {
relocs := d.ldr.Relocs(exportsIdx)
for i := 0; i < relocs.Count(); i++ {
d.mark(relocs.At(i).Sym(), 0)
}
}
}
if d.ctxt.Debugvlog > 1 {
d.ctxt.Logf("deadcode start names: %v\n", names)
}
for _, name := range names {
// Mark symbol as a data/ABI0 symbol.
d.mark(d.ldr.Lookup(name, 0), 0)
if abiInternalVer != 0 {
// Also mark any Go functions (internal ABI).
d.mark(d.ldr.Lookup(name, abiInternalVer), 0)
}
}
// All dynamic exports are roots.
for _, s := range d.ctxt.dynexp {
if d.ctxt.Debugvlog > 1 {
d.ctxt.Logf("deadcode start dynexp: %s<%d>\n", d.ldr.SymName(s), d.ldr.SymVersion(s))
}
d.mark(s, 0)
}
}
func (d *deadcodePass) flood() {
var methods []methodref
for !d.wq.empty() {
symIdx := d.wq.pop()
d.reflectSeen = d.reflectSeen || d.ldr.IsReflectMethod(symIdx)
isgotype := d.ldr.IsGoType(symIdx)
relocs := d.ldr.Relocs(symIdx)
var usedInIface bool
if isgotype {
if d.dynlink {
// When dynamic linking, a type may be passed across DSO
// boundary and get converted to interface at the other side.
d.ldr.SetAttrUsedInIface(symIdx, true)
}
usedInIface = d.ldr.AttrUsedInIface(symIdx)
}
methods = methods[:0]
for i := 0; i < relocs.Count(); i++ {
r := relocs.At(i)
// When build with "-linkshared", we can't tell if the interface
// method in itab will be used or not. Ignore the weak attribute.
if r.Weak() && !(d.ctxt.linkShared && d.ldr.IsItab(symIdx)) {
continue
}
t := r.Type()
switch t {
case objabi.R_METHODOFF:
if i+2 >= relocs.Count() {
panic("expect three consecutive R_METHODOFF relocs")
}
if usedInIface {
methods = append(methods, methodref{src: symIdx, r: i})
// The method descriptor is itself a type descriptor, and
// it can be used to reach other types, e.g. by using
// reflect.Type.Method(i).Type.In(j). We need to traverse
// its child types with UsedInIface set. (See also the
// comment below.)
rs := r.Sym()
if !d.ldr.AttrUsedInIface(rs) {
d.ldr.SetAttrUsedInIface(rs, true)
if d.ldr.AttrReachable(rs) {
d.ldr.SetAttrReachable(rs, false)
d.mark(rs, symIdx)
}
}
}
i += 2
continue
case objabi.R_USETYPE:
// type symbol used for DWARF. we need to load the symbol but it may not
// be otherwise reachable in the program.
// do nothing for now as we still load all type symbols.
continue
case objabi.R_USEIFACE:
// R_USEIFACE is a marker relocation that tells the linker the type is
// converted to an interface, i.e. should have UsedInIface set. See the
// comment below for why we need to unset the Reachable bit and re-mark it.
rs := r.Sym()
if !d.ldr.AttrUsedInIface(rs) {
d.ldr.SetAttrUsedInIface(rs, true)
if d.ldr.AttrReachable(rs) {
d.ldr.SetAttrReachable(rs, false)
d.mark(rs, symIdx)
}
}
continue
case objabi.R_USEIFACEMETHOD:
// R_USEIFACEMETHOD is a marker relocation that marks an interface
// method as used.
rs := r.Sym()
if d.ctxt.linkShared && (d.ldr.SymType(rs) == sym.SDYNIMPORT || d.ldr.SymType(rs) == sym.Sxxx) {
// Don't decode symbol from shared library (we'll mark all exported methods anyway).
// We check for both SDYNIMPORT and Sxxx because name-mangled symbols haven't
// been resolved at this point.
continue
}
m := d.decodeIfaceMethod(d.ldr, d.ctxt.Arch, rs, r.Add())
if d.ctxt.Debugvlog > 1 {
d.ctxt.Logf("reached iface method: %v\n", m)
}
d.ifaceMethod[m] = true
continue
case objabi.R_USEGENERICIFACEMETHOD:
name := d.decodeGenericIfaceMethod(d.ldr, r.Sym())
if d.ctxt.Debugvlog > 1 {
d.ctxt.Logf("reached generic iface method: %s\n", name)
}
d.genericIfaceMethod[name] = true
continue // don't mark referenced symbol - it is not needed in the final binary.
}
rs := r.Sym()
if isgotype && usedInIface && d.ldr.IsGoType(rs) && !d.ldr.AttrUsedInIface(rs) {
// If a type is converted to an interface, it is possible to obtain an
// interface with a "child" type of it using reflection (e.g. obtain an
// interface of T from []chan T). We need to traverse its "child" types
// with UsedInIface attribute set.
// When visiting the child type (chan T in the example above), it will
// have UsedInIface set, so it in turn will mark and (re)visit its children
// (e.g. T above).
// We unset the reachable bit here, so if the child type is already visited,
// it will be visited again.
// Note that a type symbol can be visited at most twice, one without
// UsedInIface and one with. So termination is still guaranteed.
d.ldr.SetAttrUsedInIface(rs, true)
d.ldr.SetAttrReachable(rs, false)
}
d.mark(rs, symIdx)
}
naux := d.ldr.NAux(symIdx)
for i := 0; i < naux; i++ {
a := d.ldr.Aux(symIdx, i)
if a.Type() == goobj.AuxGotype {
// A symbol being reachable doesn't imply we need its
// type descriptor. Don't mark it.
continue
}
d.mark(a.Sym(), symIdx)
}
// Some host object symbols have an outer object, which acts like a
// "carrier" symbol, or it holds all the symbols for a particular
// section. We need to mark all "referenced" symbols from that carrier,
// so we make sure we're pulling in all outer symbols, and their sub
// symbols. This is not ideal, and these carrier/section symbols could
// be removed.
if d.ldr.IsExternal(symIdx) {
d.mark(d.ldr.OuterSym(symIdx), symIdx)
d.mark(d.ldr.SubSym(symIdx), symIdx)
}
if len(methods) != 0 {
if !isgotype {
panic("method found on non-type symbol")
}
// Decode runtime type information for type methods
// to help work out which methods can be called
// dynamically via interfaces.
methodsigs := d.decodetypeMethods(d.ldr, d.ctxt.Arch, symIdx, &relocs)
if len(methods) != len(methodsigs) {
panic(fmt.Sprintf("%q has %d method relocations for %d methods", d.ldr.SymName(symIdx), len(methods), len(methodsigs)))
}
for i, m := range methodsigs {
methods[i].m = m
if d.ctxt.Debugvlog > 1 {
d.ctxt.Logf("markable method: %v of sym %v %s\n", m, symIdx, d.ldr.SymName(symIdx))
}
}
d.markableMethods = append(d.markableMethods, methods...)
}
}
}
func (d *deadcodePass) mark(symIdx, parent loader.Sym) {
if symIdx != 0 && !d.ldr.AttrReachable(symIdx) {
d.wq.push(symIdx)
d.ldr.SetAttrReachable(symIdx, true)
if buildcfg.Experiment.FieldTrack && d.ldr.Reachparent[symIdx] == 0 {
d.ldr.Reachparent[symIdx] = parent
}
if *flagDumpDep {
to := d.ldr.SymName(symIdx)
if to != "" {
if d.ldr.AttrUsedInIface(symIdx) {
to += " <UsedInIface>"
}
from := "_"
if parent != 0 {
from = d.ldr.SymName(parent)
if d.ldr.AttrUsedInIface(parent) {
from += " <UsedInIface>"
}
}
fmt.Printf("%s -> %s\n", from, to)
}
}
}
}
func (d *deadcodePass) markMethod(m methodref) {
relocs := d.ldr.Relocs(m.src)
d.mark(relocs.At(m.r).Sym(), m.src)
d.mark(relocs.At(m.r+1).Sym(), m.src)
d.mark(relocs.At(m.r+2).Sym(), m.src)
}
// deadcode marks all reachable symbols.
//
// The basis of the dead code elimination is a flood fill of symbols,
// following their relocations, beginning at *flagEntrySymbol.
//
// This flood fill is wrapped in logic for pruning unused methods.
// All methods are mentioned by relocations on their receiver's *rtype.
// These relocations are specially defined as R_METHODOFF by the compiler
// so we can detect and manipulated them here.
//
// There are three ways a method of a reachable type can be invoked:
//
// 1. direct call
// 2. through a reachable interface type
// 3. reflect.Value.Method (or MethodByName), or reflect.Type.Method
// (or MethodByName)
//
// The first case is handled by the flood fill, a directly called method
// is marked as reachable.
//
// The second case is handled by decomposing all reachable interface
// types into method signatures. Each encountered method is compared
// against the interface method signatures, if it matches it is marked
// as reachable. This is extremely conservative, but easy and correct.
//
// The third case is handled by looking to see if any of:
// - reflect.Value.Method or MethodByName is reachable
// - reflect.Type.Method or MethodByName is called (through the
// REFLECTMETHOD attribute marked by the compiler).
//
// If any of these happen, all bets are off and all exported methods
// of reachable types are marked reachable.
//
// Any unreached text symbols are removed from ctxt.Textp.
func deadcode(ctxt *Link) {
ldr := ctxt.loader
d := deadcodePass{ctxt: ctxt, ldr: ldr}
d.init()
d.flood()
methSym := ldr.Lookup("reflect.Value.Method", abiInternalVer)
methByNameSym := ldr.Lookup("reflect.Value.MethodByName", abiInternalVer)
if ctxt.DynlinkingGo() {
// Exported methods may satisfy interfaces we don't know
// about yet when dynamically linking.
d.reflectSeen = true
}
for {
// Methods might be called via reflection. Give up on
// static analysis, mark all exported methods of
// all reachable types as reachable.
d.reflectSeen = d.reflectSeen || (methSym != 0 && ldr.AttrReachable(methSym)) || (methByNameSym != 0 && ldr.AttrReachable(methByNameSym))
// Mark all methods that could satisfy a discovered
// interface as reachable. We recheck old marked interfaces
// as new types (with new methods) may have been discovered
// in the last pass.
rem := d.markableMethods[:0]
for _, m := range d.markableMethods {
if (d.reflectSeen && (m.isExported() || d.dynlink)) || d.ifaceMethod[m.m] || d.genericIfaceMethod[m.m.name] {
d.markMethod(m)
} else {
rem = append(rem, m)
}
}
d.markableMethods = rem
if d.wq.empty() {
// No new work was discovered. Done.
break
}
d.flood()
}
}
// methodsig is a typed method signature (name + type).
type methodsig struct {
name string
typ loader.Sym // type descriptor symbol of the function
}
// methodref holds the relocations from a receiver type symbol to its
// method. There are three relocations, one for each of the fields in
// the reflect.method struct: mtyp, ifn, and tfn.
type methodref struct {
m methodsig
src loader.Sym // receiver type symbol
r int // the index of R_METHODOFF relocations
}
func (m methodref) isExported() bool {
for _, r := range m.m.name {
return unicode.IsUpper(r)
}
panic("methodref has no signature")
}
// decodeMethodSig decodes an array of method signature information.
// Each element of the array is size bytes. The first 4 bytes is a
// nameOff for the method name, and the next 4 bytes is a typeOff for
// the function type.
//
// Conveniently this is the layout of both runtime.method and runtime.imethod.
func (d *deadcodePass) decodeMethodSig(ldr *loader.Loader, arch *sys.Arch, symIdx loader.Sym, relocs *loader.Relocs, off, size, count int) []methodsig {
if cap(d.methodsigstmp) < count {
d.methodsigstmp = append(d.methodsigstmp[:0], make([]methodsig, count)...)
}
var methods = d.methodsigstmp[:count]
for i := 0; i < count; i++ {
methods[i].name = decodetypeName(ldr, symIdx, relocs, off)
methods[i].typ = decodeRelocSym(ldr, symIdx, relocs, int32(off+4))
off += size
}
return methods
}
// Decode the method of interface type symbol symIdx at offset off.
func (d *deadcodePass) decodeIfaceMethod(ldr *loader.Loader, arch *sys.Arch, symIdx loader.Sym, off int64) methodsig {
p := ldr.Data(symIdx)
if p == nil {
panic(fmt.Sprintf("missing symbol %q", ldr.SymName(symIdx)))
}
if decodetypeKind(arch, p)&kindMask != kindInterface {
panic(fmt.Sprintf("symbol %q is not an interface", ldr.SymName(symIdx)))
}
relocs := ldr.Relocs(symIdx)
var m methodsig
m.name = decodetypeName(ldr, symIdx, &relocs, int(off))
m.typ = decodeRelocSym(ldr, symIdx, &relocs, int32(off+4))
return m
}
// Decode the method name stored in symbol symIdx. The symbol should contain just the bytes of a method name.
func (d *deadcodePass) decodeGenericIfaceMethod(ldr *loader.Loader, symIdx loader.Sym) string {
return string(ldr.Data(symIdx))
}
func (d *deadcodePass) decodetypeMethods(ldr *loader.Loader, arch *sys.Arch, symIdx loader.Sym, relocs *loader.Relocs) []methodsig {
p := ldr.Data(symIdx)
if !decodetypeHasUncommon(arch, p) {
panic(fmt.Sprintf("no methods on %q", ldr.SymName(symIdx)))
}
off := commonsize(arch) // reflect.rtype
switch decodetypeKind(arch, p) & kindMask {
case kindStruct: // reflect.structType
off += 4 * arch.PtrSize
case kindPtr: // reflect.ptrType
off += arch.PtrSize
case kindFunc: // reflect.funcType
off += arch.PtrSize // 4 bytes, pointer aligned
case kindSlice: // reflect.sliceType
off += arch.PtrSize
case kindArray: // reflect.arrayType
off += 3 * arch.PtrSize
case kindChan: // reflect.chanType
off += 2 * arch.PtrSize
case kindMap: // reflect.mapType
off += 4*arch.PtrSize + 8
case kindInterface: // reflect.interfaceType
off += 3 * arch.PtrSize
default:
// just Sizeof(rtype)
}
mcount := int(decodeInuxi(arch, p[off+4:], 2))
moff := int(decodeInuxi(arch, p[off+4+2+2:], 4))
off += moff // offset to array of reflect.method values
const sizeofMethod = 4 * 4 // sizeof reflect.method in program
return d.decodeMethodSig(ldr, arch, symIdx, relocs, off, sizeofMethod, mcount)
}
|