1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
|
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// TODO/NICETOHAVE:
// - eliminate DW_CLS_ if not used
// - package info in compilation units
// - assign types to their packages
// - gdb uses c syntax, meaning clumsy quoting is needed for go identifiers. eg
// ptype struct '[]uint8' and qualifiers need to be quoted away
// - file:line info for variables
// - make strings a typedef so prettyprinters can see the underlying string type
package ld
import (
"cmd/internal/dwarf"
"cmd/internal/obj"
"cmd/internal/objabi"
"cmd/internal/src"
"cmd/internal/sys"
"cmd/link/internal/loader"
"cmd/link/internal/sym"
"fmt"
"internal/buildcfg"
"log"
"path"
"runtime"
"sort"
"strings"
"sync"
)
// dwctxt is a wrapper intended to satisfy the method set of
// dwarf.Context, so that functions like dwarf.PutAttrs will work with
// DIEs that use loader.Sym as opposed to *sym.Symbol. It is also
// being used as a place to store tables/maps that are useful as part
// of type conversion (this is just a convenience; it would be easy to
// split these things out into another type if need be).
type dwctxt struct {
linkctxt *Link
ldr *loader.Loader
arch *sys.Arch
// This maps type name string (e.g. "uintptr") to loader symbol for
// the DWARF DIE for that type (e.g. "go.info.type.uintptr")
tmap map[string]loader.Sym
// This maps loader symbol for the DWARF DIE symbol generated for
// a type (e.g. "go.info.uintptr") to the type symbol itself
// ("type.uintptr").
// FIXME: try converting this map (and the next one) to a single
// array indexed by loader.Sym -- this may perform better.
rtmap map[loader.Sym]loader.Sym
// This maps Go type symbol (e.g. "type.XXX") to loader symbol for
// the typedef DIE for that type (e.g. "go.info.XXX..def")
tdmap map[loader.Sym]loader.Sym
// Cache these type symbols, so as to avoid repeatedly looking them up
typeRuntimeEface loader.Sym
typeRuntimeIface loader.Sym
uintptrInfoSym loader.Sym
// Used at various points in that parallel portion of DWARF gen to
// protect against conflicting updates to globals (such as "gdbscript")
dwmu *sync.Mutex
}
// dwSym wraps a loader.Sym; this type is meant to obey the interface
// rules for dwarf.Sym from the cmd/internal/dwarf package. DwDie and
// DwAttr objects contain references to symbols via this type.
type dwSym loader.Sym
func (s dwSym) Length(dwarfContext interface{}) int64 {
l := dwarfContext.(dwctxt).ldr
return int64(len(l.Data(loader.Sym(s))))
}
func (c dwctxt) PtrSize() int {
return c.arch.PtrSize
}
func (c dwctxt) AddInt(s dwarf.Sym, size int, i int64) {
ds := loader.Sym(s.(dwSym))
dsu := c.ldr.MakeSymbolUpdater(ds)
dsu.AddUintXX(c.arch, uint64(i), size)
}
func (c dwctxt) AddBytes(s dwarf.Sym, b []byte) {
ds := loader.Sym(s.(dwSym))
dsu := c.ldr.MakeSymbolUpdater(ds)
dsu.AddBytes(b)
}
func (c dwctxt) AddString(s dwarf.Sym, v string) {
ds := loader.Sym(s.(dwSym))
dsu := c.ldr.MakeSymbolUpdater(ds)
dsu.Addstring(v)
}
func (c dwctxt) AddAddress(s dwarf.Sym, data interface{}, value int64) {
ds := loader.Sym(s.(dwSym))
dsu := c.ldr.MakeSymbolUpdater(ds)
if value != 0 {
value -= dsu.Value()
}
tgtds := loader.Sym(data.(dwSym))
dsu.AddAddrPlus(c.arch, tgtds, value)
}
func (c dwctxt) AddCURelativeAddress(s dwarf.Sym, data interface{}, value int64) {
ds := loader.Sym(s.(dwSym))
dsu := c.ldr.MakeSymbolUpdater(ds)
if value != 0 {
value -= dsu.Value()
}
tgtds := loader.Sym(data.(dwSym))
dsu.AddCURelativeAddrPlus(c.arch, tgtds, value)
}
func (c dwctxt) AddSectionOffset(s dwarf.Sym, size int, t interface{}, ofs int64) {
ds := loader.Sym(s.(dwSym))
dsu := c.ldr.MakeSymbolUpdater(ds)
tds := loader.Sym(t.(dwSym))
switch size {
default:
c.linkctxt.Errorf(ds, "invalid size %d in adddwarfref\n", size)
case c.arch.PtrSize, 4:
}
dsu.AddSymRef(c.arch, tds, ofs, objabi.R_ADDROFF, size)
}
func (c dwctxt) AddDWARFAddrSectionOffset(s dwarf.Sym, t interface{}, ofs int64) {
size := 4
if isDwarf64(c.linkctxt) {
size = 8
}
ds := loader.Sym(s.(dwSym))
dsu := c.ldr.MakeSymbolUpdater(ds)
tds := loader.Sym(t.(dwSym))
switch size {
default:
c.linkctxt.Errorf(ds, "invalid size %d in adddwarfref\n", size)
case c.arch.PtrSize, 4:
}
dsu.AddSymRef(c.arch, tds, ofs, objabi.R_DWARFSECREF, size)
}
func (c dwctxt) Logf(format string, args ...interface{}) {
c.linkctxt.Logf(format, args...)
}
// At the moment these interfaces are only used in the compiler.
func (c dwctxt) AddFileRef(s dwarf.Sym, f interface{}) {
panic("should be used only in the compiler")
}
func (c dwctxt) CurrentOffset(s dwarf.Sym) int64 {
panic("should be used only in the compiler")
}
func (c dwctxt) RecordDclReference(s dwarf.Sym, t dwarf.Sym, dclIdx int, inlIndex int) {
panic("should be used only in the compiler")
}
func (c dwctxt) RecordChildDieOffsets(s dwarf.Sym, vars []*dwarf.Var, offsets []int32) {
panic("should be used only in the compiler")
}
func isDwarf64(ctxt *Link) bool {
return ctxt.HeadType == objabi.Haix
}
// https://sourceware.org/gdb/onlinedocs/gdb/dotdebug_005fgdb_005fscripts-section.html
// Each entry inside .debug_gdb_scripts section begins with a non-null prefix
// byte that specifies the kind of entry. The following entries are supported:
const (
GdbScriptPythonFileId = 1
GdbScriptSchemeFileId = 3
GdbScriptPythonTextId = 4
GdbScriptSchemeTextId = 6
)
var gdbscript string
// dwarfSecInfo holds information about a DWARF output section,
// specifically a section symbol and a list of symbols contained in
// that section. On the syms list, the first symbol will always be the
// section symbol, then any remaining symbols (if any) will be
// sub-symbols in that section. Note that for some sections (eg:
// .debug_abbrev), the section symbol is all there is (all content is
// contained in it). For other sections (eg: .debug_info), the section
// symbol is empty and all the content is in the sub-symbols. Finally
// there are some sections (eg: .debug_ranges) where it is a mix (both
// the section symbol and the sub-symbols have content)
type dwarfSecInfo struct {
syms []loader.Sym
}
// secSym returns the section symbol for the section.
func (dsi *dwarfSecInfo) secSym() loader.Sym {
if len(dsi.syms) == 0 {
return 0
}
return dsi.syms[0]
}
// subSyms returns a list of sub-symbols for the section.
func (dsi *dwarfSecInfo) subSyms() []loader.Sym {
if len(dsi.syms) == 0 {
return []loader.Sym{}
}
return dsi.syms[1:]
}
// dwarfp stores the collected DWARF symbols created during
// dwarf generation.
var dwarfp []dwarfSecInfo
func (d *dwctxt) writeabbrev() dwarfSecInfo {
abrvs := d.ldr.CreateSymForUpdate(".debug_abbrev", 0)
abrvs.SetType(sym.SDWARFSECT)
abrvs.AddBytes(dwarf.GetAbbrev())
return dwarfSecInfo{syms: []loader.Sym{abrvs.Sym()}}
}
var dwtypes dwarf.DWDie
// newattr attaches a new attribute to the specified DIE.
//
// FIXME: at the moment attributes are stored in a linked list in a
// fairly space-inefficient way -- it might be better to instead look
// up all attrs in a single large table, then store indices into the
// table in the DIE. This would allow us to common up storage for
// attributes that are shared by many DIEs (ex: byte size of N).
func newattr(die *dwarf.DWDie, attr uint16, cls int, value int64, data interface{}) {
a := new(dwarf.DWAttr)
a.Link = die.Attr
die.Attr = a
a.Atr = attr
a.Cls = uint8(cls)
a.Value = value
a.Data = data
}
// Each DIE (except the root ones) has at least 1 attribute: its
// name. getattr moves the desired one to the front so
// frequently searched ones are found faster.
func getattr(die *dwarf.DWDie, attr uint16) *dwarf.DWAttr {
if die.Attr.Atr == attr {
return die.Attr
}
a := die.Attr
b := a.Link
for b != nil {
if b.Atr == attr {
a.Link = b.Link
b.Link = die.Attr
die.Attr = b
return b
}
a = b
b = b.Link
}
return nil
}
// Every DIE manufactured by the linker has at least an AT_name
// attribute (but it will only be written out if it is listed in the abbrev).
// The compiler does create nameless DWARF DIEs (ex: concrete subprogram
// instance).
// FIXME: it would be more efficient to bulk-allocate DIEs.
func (d *dwctxt) newdie(parent *dwarf.DWDie, abbrev int, name string) *dwarf.DWDie {
die := new(dwarf.DWDie)
die.Abbrev = abbrev
die.Link = parent.Child
parent.Child = die
newattr(die, dwarf.DW_AT_name, dwarf.DW_CLS_STRING, int64(len(name)), name)
// Sanity check: all DIEs created in the linker should be named.
if name == "" {
panic("nameless DWARF DIE")
}
var st sym.SymKind
switch abbrev {
case dwarf.DW_ABRV_FUNCTYPEPARAM, dwarf.DW_ABRV_DOTDOTDOT, dwarf.DW_ABRV_STRUCTFIELD, dwarf.DW_ABRV_ARRAYRANGE:
// There are no relocations against these dies, and their names
// are not unique, so don't create a symbol.
return die
case dwarf.DW_ABRV_COMPUNIT, dwarf.DW_ABRV_COMPUNIT_TEXTLESS:
// Avoid collisions with "real" symbol names.
name = fmt.Sprintf(".pkg.%s.%d", name, len(d.linkctxt.compUnits))
st = sym.SDWARFCUINFO
case dwarf.DW_ABRV_VARIABLE:
st = sym.SDWARFVAR
default:
// Everything else is assigned a type of SDWARFTYPE. that
// this also includes loose ends such as STRUCT_FIELD.
st = sym.SDWARFTYPE
}
ds := d.ldr.LookupOrCreateSym(dwarf.InfoPrefix+name, 0)
dsu := d.ldr.MakeSymbolUpdater(ds)
dsu.SetType(st)
d.ldr.SetAttrNotInSymbolTable(ds, true)
d.ldr.SetAttrReachable(ds, true)
die.Sym = dwSym(ds)
if abbrev >= dwarf.DW_ABRV_NULLTYPE && abbrev <= dwarf.DW_ABRV_TYPEDECL {
d.tmap[name] = ds
}
return die
}
func walktypedef(die *dwarf.DWDie) *dwarf.DWDie {
if die == nil {
return nil
}
// Resolve typedef if present.
if die.Abbrev == dwarf.DW_ABRV_TYPEDECL {
for attr := die.Attr; attr != nil; attr = attr.Link {
if attr.Atr == dwarf.DW_AT_type && attr.Cls == dwarf.DW_CLS_REFERENCE && attr.Data != nil {
return attr.Data.(*dwarf.DWDie)
}
}
}
return die
}
func (d *dwctxt) walksymtypedef(symIdx loader.Sym) loader.Sym {
// We're being given the loader symbol for the type DIE, e.g.
// "go.info.type.uintptr". Map that first to the type symbol (e.g.
// "type.uintptr") and then to the typedef DIE for the type.
// FIXME: this seems clunky, maybe there is a better way to do this.
if ts, ok := d.rtmap[symIdx]; ok {
if def, ok := d.tdmap[ts]; ok {
return def
}
d.linkctxt.Errorf(ts, "internal error: no entry for sym %d in tdmap\n", ts)
return 0
}
d.linkctxt.Errorf(symIdx, "internal error: no entry for sym %d in rtmap\n", symIdx)
return 0
}
// Find child by AT_name using hashtable if available or linear scan
// if not.
func findchild(die *dwarf.DWDie, name string) *dwarf.DWDie {
var prev *dwarf.DWDie
for ; die != prev; prev, die = die, walktypedef(die) {
for a := die.Child; a != nil; a = a.Link {
if name == getattr(a, dwarf.DW_AT_name).Data {
return a
}
}
continue
}
return nil
}
// find looks up the loader symbol for the DWARF DIE generated for the
// type with the specified name.
func (d *dwctxt) find(name string) loader.Sym {
return d.tmap[name]
}
func (d *dwctxt) mustFind(name string) loader.Sym {
r := d.find(name)
if r == 0 {
Exitf("dwarf find: cannot find %s", name)
}
return r
}
func (d *dwctxt) adddwarfref(sb *loader.SymbolBuilder, t loader.Sym, size int) {
switch size {
default:
d.linkctxt.Errorf(sb.Sym(), "invalid size %d in adddwarfref\n", size)
case d.arch.PtrSize, 4:
}
sb.AddSymRef(d.arch, t, 0, objabi.R_DWARFSECREF, size)
}
func (d *dwctxt) newrefattr(die *dwarf.DWDie, attr uint16, ref loader.Sym) {
if ref == 0 {
return
}
newattr(die, attr, dwarf.DW_CLS_REFERENCE, 0, dwSym(ref))
}
func (d *dwctxt) dtolsym(s dwarf.Sym) loader.Sym {
if s == nil {
return 0
}
dws := loader.Sym(s.(dwSym))
return dws
}
func (d *dwctxt) putdie(syms []loader.Sym, die *dwarf.DWDie) []loader.Sym {
s := d.dtolsym(die.Sym)
if s == 0 {
s = syms[len(syms)-1]
} else {
syms = append(syms, s)
}
sDwsym := dwSym(s)
dwarf.Uleb128put(d, sDwsym, int64(die.Abbrev))
dwarf.PutAttrs(d, sDwsym, die.Abbrev, die.Attr)
if dwarf.HasChildren(die) {
for die := die.Child; die != nil; die = die.Link {
syms = d.putdie(syms, die)
}
dsu := d.ldr.MakeSymbolUpdater(syms[len(syms)-1])
dsu.AddUint8(0)
}
return syms
}
func reverselist(list **dwarf.DWDie) {
curr := *list
var prev *dwarf.DWDie
for curr != nil {
next := curr.Link
curr.Link = prev
prev = curr
curr = next
}
*list = prev
}
func reversetree(list **dwarf.DWDie) {
reverselist(list)
for die := *list; die != nil; die = die.Link {
if dwarf.HasChildren(die) {
reversetree(&die.Child)
}
}
}
func newmemberoffsetattr(die *dwarf.DWDie, offs int32) {
newattr(die, dwarf.DW_AT_data_member_location, dwarf.DW_CLS_CONSTANT, int64(offs), nil)
}
func (d *dwctxt) lookupOrDiag(n string) loader.Sym {
symIdx := d.ldr.Lookup(n, 0)
if symIdx == 0 {
Exitf("dwarf: missing type: %s", n)
}
if len(d.ldr.Data(symIdx)) == 0 {
Exitf("dwarf: missing type (no data): %s", n)
}
return symIdx
}
func (d *dwctxt) dotypedef(parent *dwarf.DWDie, name string, def *dwarf.DWDie) *dwarf.DWDie {
// Only emit typedefs for real names.
if strings.HasPrefix(name, "map[") {
return nil
}
if strings.HasPrefix(name, "struct {") {
return nil
}
// cmd/compile uses "noalg.struct {...}" as type name when hash and eq algorithm generation of
// this struct type is suppressed.
if strings.HasPrefix(name, "noalg.struct {") {
return nil
}
if strings.HasPrefix(name, "chan ") {
return nil
}
if name[0] == '[' || name[0] == '*' {
return nil
}
if def == nil {
Errorf(nil, "dwarf: bad def in dotypedef")
}
// Create a new loader symbol for the typedef. We no longer
// do lookups of typedef symbols by name, so this is going
// to be an anonymous symbol (we want this for perf reasons).
tds := d.ldr.CreateExtSym("", 0)
tdsu := d.ldr.MakeSymbolUpdater(tds)
tdsu.SetType(sym.SDWARFTYPE)
def.Sym = dwSym(tds)
d.ldr.SetAttrNotInSymbolTable(tds, true)
d.ldr.SetAttrReachable(tds, true)
// The typedef entry must be created after the def,
// so that future lookups will find the typedef instead
// of the real definition. This hooks the typedef into any
// circular definition loops, so that gdb can understand them.
die := d.newdie(parent, dwarf.DW_ABRV_TYPEDECL, name)
d.newrefattr(die, dwarf.DW_AT_type, tds)
return die
}
// Define gotype, for composite ones recurse into constituents.
func (d *dwctxt) defgotype(gotype loader.Sym) loader.Sym {
if gotype == 0 {
return d.mustFind("<unspecified>")
}
// If we already have a tdmap entry for the gotype, return it.
if ds, ok := d.tdmap[gotype]; ok {
return ds
}
sn := d.ldr.SymName(gotype)
if !strings.HasPrefix(sn, "type.") {
d.linkctxt.Errorf(gotype, "dwarf: type name doesn't start with \"type.\"")
return d.mustFind("<unspecified>")
}
name := sn[5:] // could also decode from Type.string
sdie := d.find(name)
if sdie != 0 {
return sdie
}
gtdwSym := d.newtype(gotype)
d.tdmap[gotype] = loader.Sym(gtdwSym.Sym.(dwSym))
return loader.Sym(gtdwSym.Sym.(dwSym))
}
func (d *dwctxt) newtype(gotype loader.Sym) *dwarf.DWDie {
sn := d.ldr.SymName(gotype)
name := sn[5:] // could also decode from Type.string
tdata := d.ldr.Data(gotype)
kind := decodetypeKind(d.arch, tdata)
bytesize := decodetypeSize(d.arch, tdata)
var die, typedefdie *dwarf.DWDie
switch kind {
case objabi.KindBool:
die = d.newdie(&dwtypes, dwarf.DW_ABRV_BASETYPE, name)
newattr(die, dwarf.DW_AT_encoding, dwarf.DW_CLS_CONSTANT, dwarf.DW_ATE_boolean, 0)
newattr(die, dwarf.DW_AT_byte_size, dwarf.DW_CLS_CONSTANT, bytesize, 0)
case objabi.KindInt,
objabi.KindInt8,
objabi.KindInt16,
objabi.KindInt32,
objabi.KindInt64:
die = d.newdie(&dwtypes, dwarf.DW_ABRV_BASETYPE, name)
newattr(die, dwarf.DW_AT_encoding, dwarf.DW_CLS_CONSTANT, dwarf.DW_ATE_signed, 0)
newattr(die, dwarf.DW_AT_byte_size, dwarf.DW_CLS_CONSTANT, bytesize, 0)
case objabi.KindUint,
objabi.KindUint8,
objabi.KindUint16,
objabi.KindUint32,
objabi.KindUint64,
objabi.KindUintptr:
die = d.newdie(&dwtypes, dwarf.DW_ABRV_BASETYPE, name)
newattr(die, dwarf.DW_AT_encoding, dwarf.DW_CLS_CONSTANT, dwarf.DW_ATE_unsigned, 0)
newattr(die, dwarf.DW_AT_byte_size, dwarf.DW_CLS_CONSTANT, bytesize, 0)
case objabi.KindFloat32,
objabi.KindFloat64:
die = d.newdie(&dwtypes, dwarf.DW_ABRV_BASETYPE, name)
newattr(die, dwarf.DW_AT_encoding, dwarf.DW_CLS_CONSTANT, dwarf.DW_ATE_float, 0)
newattr(die, dwarf.DW_AT_byte_size, dwarf.DW_CLS_CONSTANT, bytesize, 0)
case objabi.KindComplex64,
objabi.KindComplex128:
die = d.newdie(&dwtypes, dwarf.DW_ABRV_BASETYPE, name)
newattr(die, dwarf.DW_AT_encoding, dwarf.DW_CLS_CONSTANT, dwarf.DW_ATE_complex_float, 0)
newattr(die, dwarf.DW_AT_byte_size, dwarf.DW_CLS_CONSTANT, bytesize, 0)
case objabi.KindArray:
die = d.newdie(&dwtypes, dwarf.DW_ABRV_ARRAYTYPE, name)
typedefdie = d.dotypedef(&dwtypes, name, die)
newattr(die, dwarf.DW_AT_byte_size, dwarf.DW_CLS_CONSTANT, bytesize, 0)
s := decodetypeArrayElem(d.ldr, d.arch, gotype)
d.newrefattr(die, dwarf.DW_AT_type, d.defgotype(s))
fld := d.newdie(die, dwarf.DW_ABRV_ARRAYRANGE, "range")
// use actual length not upper bound; correct for 0-length arrays.
newattr(fld, dwarf.DW_AT_count, dwarf.DW_CLS_CONSTANT, decodetypeArrayLen(d.ldr, d.arch, gotype), 0)
d.newrefattr(fld, dwarf.DW_AT_type, d.uintptrInfoSym)
case objabi.KindChan:
die = d.newdie(&dwtypes, dwarf.DW_ABRV_CHANTYPE, name)
s := decodetypeChanElem(d.ldr, d.arch, gotype)
d.newrefattr(die, dwarf.DW_AT_go_elem, d.defgotype(s))
// Save elem type for synthesizechantypes. We could synthesize here
// but that would change the order of DIEs we output.
d.newrefattr(die, dwarf.DW_AT_type, s)
case objabi.KindFunc:
die = d.newdie(&dwtypes, dwarf.DW_ABRV_FUNCTYPE, name)
newattr(die, dwarf.DW_AT_byte_size, dwarf.DW_CLS_CONSTANT, bytesize, 0)
typedefdie = d.dotypedef(&dwtypes, name, die)
data := d.ldr.Data(gotype)
// FIXME: add caching or reuse reloc slice.
relocs := d.ldr.Relocs(gotype)
nfields := decodetypeFuncInCount(d.arch, data)
for i := 0; i < nfields; i++ {
s := decodetypeFuncInType(d.ldr, d.arch, gotype, &relocs, i)
sn := d.ldr.SymName(s)
fld := d.newdie(die, dwarf.DW_ABRV_FUNCTYPEPARAM, sn[5:])
d.newrefattr(fld, dwarf.DW_AT_type, d.defgotype(s))
}
if decodetypeFuncDotdotdot(d.arch, data) {
d.newdie(die, dwarf.DW_ABRV_DOTDOTDOT, "...")
}
nfields = decodetypeFuncOutCount(d.arch, data)
for i := 0; i < nfields; i++ {
s := decodetypeFuncOutType(d.ldr, d.arch, gotype, &relocs, i)
sn := d.ldr.SymName(s)
fld := d.newdie(die, dwarf.DW_ABRV_FUNCTYPEPARAM, sn[5:])
d.newrefattr(fld, dwarf.DW_AT_type, d.defptrto(d.defgotype(s)))
}
case objabi.KindInterface:
die = d.newdie(&dwtypes, dwarf.DW_ABRV_IFACETYPE, name)
typedefdie = d.dotypedef(&dwtypes, name, die)
data := d.ldr.Data(gotype)
nfields := int(decodetypeIfaceMethodCount(d.arch, data))
var s loader.Sym
if nfields == 0 {
s = d.typeRuntimeEface
} else {
s = d.typeRuntimeIface
}
d.newrefattr(die, dwarf.DW_AT_type, d.defgotype(s))
case objabi.KindMap:
die = d.newdie(&dwtypes, dwarf.DW_ABRV_MAPTYPE, name)
s := decodetypeMapKey(d.ldr, d.arch, gotype)
d.newrefattr(die, dwarf.DW_AT_go_key, d.defgotype(s))
s = decodetypeMapValue(d.ldr, d.arch, gotype)
d.newrefattr(die, dwarf.DW_AT_go_elem, d.defgotype(s))
// Save gotype for use in synthesizemaptypes. We could synthesize here,
// but that would change the order of the DIEs.
d.newrefattr(die, dwarf.DW_AT_type, gotype)
case objabi.KindPtr:
die = d.newdie(&dwtypes, dwarf.DW_ABRV_PTRTYPE, name)
typedefdie = d.dotypedef(&dwtypes, name, die)
s := decodetypePtrElem(d.ldr, d.arch, gotype)
d.newrefattr(die, dwarf.DW_AT_type, d.defgotype(s))
case objabi.KindSlice:
die = d.newdie(&dwtypes, dwarf.DW_ABRV_SLICETYPE, name)
typedefdie = d.dotypedef(&dwtypes, name, die)
newattr(die, dwarf.DW_AT_byte_size, dwarf.DW_CLS_CONSTANT, bytesize, 0)
s := decodetypeArrayElem(d.ldr, d.arch, gotype)
elem := d.defgotype(s)
d.newrefattr(die, dwarf.DW_AT_go_elem, elem)
case objabi.KindString:
die = d.newdie(&dwtypes, dwarf.DW_ABRV_STRINGTYPE, name)
newattr(die, dwarf.DW_AT_byte_size, dwarf.DW_CLS_CONSTANT, bytesize, 0)
case objabi.KindStruct:
die = d.newdie(&dwtypes, dwarf.DW_ABRV_STRUCTTYPE, name)
typedefdie = d.dotypedef(&dwtypes, name, die)
newattr(die, dwarf.DW_AT_byte_size, dwarf.DW_CLS_CONSTANT, bytesize, 0)
nfields := decodetypeStructFieldCount(d.ldr, d.arch, gotype)
for i := 0; i < nfields; i++ {
f := decodetypeStructFieldName(d.ldr, d.arch, gotype, i)
s := decodetypeStructFieldType(d.ldr, d.arch, gotype, i)
if f == "" {
sn := d.ldr.SymName(s)
f = sn[5:] // skip "type."
}
fld := d.newdie(die, dwarf.DW_ABRV_STRUCTFIELD, f)
d.newrefattr(fld, dwarf.DW_AT_type, d.defgotype(s))
offset := decodetypeStructFieldOffset(d.ldr, d.arch, gotype, i)
newmemberoffsetattr(fld, int32(offset))
if decodetypeStructFieldEmbedded(d.ldr, d.arch, gotype, i) {
newattr(fld, dwarf.DW_AT_go_embedded_field, dwarf.DW_CLS_FLAG, 1, 0)
}
}
case objabi.KindUnsafePointer:
die = d.newdie(&dwtypes, dwarf.DW_ABRV_BARE_PTRTYPE, name)
default:
d.linkctxt.Errorf(gotype, "dwarf: definition of unknown kind %d", kind)
die = d.newdie(&dwtypes, dwarf.DW_ABRV_TYPEDECL, name)
d.newrefattr(die, dwarf.DW_AT_type, d.mustFind("<unspecified>"))
}
newattr(die, dwarf.DW_AT_go_kind, dwarf.DW_CLS_CONSTANT, int64(kind), 0)
if d.ldr.AttrReachable(gotype) {
newattr(die, dwarf.DW_AT_go_runtime_type, dwarf.DW_CLS_GO_TYPEREF, 0, dwSym(gotype))
}
// Sanity check.
if _, ok := d.rtmap[gotype]; ok {
log.Fatalf("internal error: rtmap entry already installed\n")
}
ds := loader.Sym(die.Sym.(dwSym))
if typedefdie != nil {
ds = loader.Sym(typedefdie.Sym.(dwSym))
}
d.rtmap[ds] = gotype
if _, ok := prototypedies[sn]; ok {
prototypedies[sn] = die
}
if typedefdie != nil {
return typedefdie
}
return die
}
func (d *dwctxt) nameFromDIESym(dwtypeDIESym loader.Sym) string {
sn := d.ldr.SymName(dwtypeDIESym)
return sn[len(dwarf.InfoPrefix):]
}
func (d *dwctxt) defptrto(dwtype loader.Sym) loader.Sym {
// FIXME: it would be nice if the compiler attached an aux symbol
// ref from the element type to the pointer type -- it would be
// more efficient to do it this way as opposed to via name lookups.
ptrname := "*" + d.nameFromDIESym(dwtype)
if die := d.find(ptrname); die != 0 {
return die
}
pdie := d.newdie(&dwtypes, dwarf.DW_ABRV_PTRTYPE, ptrname)
d.newrefattr(pdie, dwarf.DW_AT_type, dwtype)
// The DWARF info synthesizes pointer types that don't exist at the
// language level, like *hash<...> and *bucket<...>, and the data
// pointers of slices. Link to the ones we can find.
gts := d.ldr.Lookup("type."+ptrname, 0)
if gts != 0 && d.ldr.AttrReachable(gts) {
newattr(pdie, dwarf.DW_AT_go_runtime_type, dwarf.DW_CLS_GO_TYPEREF, 0, dwSym(gts))
}
if gts != 0 {
ds := loader.Sym(pdie.Sym.(dwSym))
d.rtmap[ds] = gts
d.tdmap[gts] = ds
}
return d.dtolsym(pdie.Sym)
}
// Copies src's children into dst. Copies attributes by value.
// DWAttr.data is copied as pointer only. If except is one of
// the top-level children, it will not be copied.
func (d *dwctxt) copychildrenexcept(ctxt *Link, dst *dwarf.DWDie, src *dwarf.DWDie, except *dwarf.DWDie) {
for src = src.Child; src != nil; src = src.Link {
if src == except {
continue
}
c := d.newdie(dst, src.Abbrev, getattr(src, dwarf.DW_AT_name).Data.(string))
for a := src.Attr; a != nil; a = a.Link {
newattr(c, a.Atr, int(a.Cls), a.Value, a.Data)
}
d.copychildrenexcept(ctxt, c, src, nil)
}
reverselist(&dst.Child)
}
func (d *dwctxt) copychildren(ctxt *Link, dst *dwarf.DWDie, src *dwarf.DWDie) {
d.copychildrenexcept(ctxt, dst, src, nil)
}
// Search children (assumed to have TAG_member) for the one named
// field and set its AT_type to dwtype
func (d *dwctxt) substitutetype(structdie *dwarf.DWDie, field string, dwtype loader.Sym) {
child := findchild(structdie, field)
if child == nil {
Exitf("dwarf substitutetype: %s does not have member %s",
getattr(structdie, dwarf.DW_AT_name).Data, field)
return
}
a := getattr(child, dwarf.DW_AT_type)
if a != nil {
a.Data = dwSym(dwtype)
} else {
d.newrefattr(child, dwarf.DW_AT_type, dwtype)
}
}
func (d *dwctxt) findprotodie(ctxt *Link, name string) *dwarf.DWDie {
die, ok := prototypedies[name]
if ok && die == nil {
d.defgotype(d.lookupOrDiag(name))
die = prototypedies[name]
}
if die == nil {
log.Fatalf("internal error: DIE generation failed for %s\n", name)
}
return die
}
func (d *dwctxt) synthesizestringtypes(ctxt *Link, die *dwarf.DWDie) {
prototype := walktypedef(d.findprotodie(ctxt, "type.runtime.stringStructDWARF"))
if prototype == nil {
return
}
for ; die != nil; die = die.Link {
if die.Abbrev != dwarf.DW_ABRV_STRINGTYPE {
continue
}
d.copychildren(ctxt, die, prototype)
}
}
func (d *dwctxt) synthesizeslicetypes(ctxt *Link, die *dwarf.DWDie) {
prototype := walktypedef(d.findprotodie(ctxt, "type.runtime.slice"))
if prototype == nil {
return
}
for ; die != nil; die = die.Link {
if die.Abbrev != dwarf.DW_ABRV_SLICETYPE {
continue
}
d.copychildren(ctxt, die, prototype)
elem := loader.Sym(getattr(die, dwarf.DW_AT_go_elem).Data.(dwSym))
d.substitutetype(die, "array", d.defptrto(elem))
}
}
func mkinternaltypename(base string, arg1 string, arg2 string) string {
if arg2 == "" {
return fmt.Sprintf("%s<%s>", base, arg1)
}
return fmt.Sprintf("%s<%s,%s>", base, arg1, arg2)
}
// synthesizemaptypes is way too closely married to runtime/hashmap.c
const (
MaxKeySize = 128
MaxValSize = 128
BucketSize = 8
)
func (d *dwctxt) mkinternaltype(ctxt *Link, abbrev int, typename, keyname, valname string, f func(*dwarf.DWDie)) loader.Sym {
name := mkinternaltypename(typename, keyname, valname)
symname := dwarf.InfoPrefix + name
s := d.ldr.Lookup(symname, 0)
if s != 0 && d.ldr.SymType(s) == sym.SDWARFTYPE {
return s
}
die := d.newdie(&dwtypes, abbrev, name)
f(die)
return d.dtolsym(die.Sym)
}
func (d *dwctxt) synthesizemaptypes(ctxt *Link, die *dwarf.DWDie) {
hash := walktypedef(d.findprotodie(ctxt, "type.runtime.hmap"))
bucket := walktypedef(d.findprotodie(ctxt, "type.runtime.bmap"))
if hash == nil {
return
}
for ; die != nil; die = die.Link {
if die.Abbrev != dwarf.DW_ABRV_MAPTYPE {
continue
}
gotype := loader.Sym(getattr(die, dwarf.DW_AT_type).Data.(dwSym))
keytype := decodetypeMapKey(d.ldr, d.arch, gotype)
valtype := decodetypeMapValue(d.ldr, d.arch, gotype)
keydata := d.ldr.Data(keytype)
valdata := d.ldr.Data(valtype)
keysize, valsize := decodetypeSize(d.arch, keydata), decodetypeSize(d.arch, valdata)
keytype, valtype = d.walksymtypedef(d.defgotype(keytype)), d.walksymtypedef(d.defgotype(valtype))
// compute size info like hashmap.c does.
indirectKey, indirectVal := false, false
if keysize > MaxKeySize {
keysize = int64(d.arch.PtrSize)
indirectKey = true
}
if valsize > MaxValSize {
valsize = int64(d.arch.PtrSize)
indirectVal = true
}
// Construct type to represent an array of BucketSize keys
keyname := d.nameFromDIESym(keytype)
dwhks := d.mkinternaltype(ctxt, dwarf.DW_ABRV_ARRAYTYPE, "[]key", keyname, "", func(dwhk *dwarf.DWDie) {
newattr(dwhk, dwarf.DW_AT_byte_size, dwarf.DW_CLS_CONSTANT, BucketSize*keysize, 0)
t := keytype
if indirectKey {
t = d.defptrto(keytype)
}
d.newrefattr(dwhk, dwarf.DW_AT_type, t)
fld := d.newdie(dwhk, dwarf.DW_ABRV_ARRAYRANGE, "size")
newattr(fld, dwarf.DW_AT_count, dwarf.DW_CLS_CONSTANT, BucketSize, 0)
d.newrefattr(fld, dwarf.DW_AT_type, d.uintptrInfoSym)
})
// Construct type to represent an array of BucketSize values
valname := d.nameFromDIESym(valtype)
dwhvs := d.mkinternaltype(ctxt, dwarf.DW_ABRV_ARRAYTYPE, "[]val", valname, "", func(dwhv *dwarf.DWDie) {
newattr(dwhv, dwarf.DW_AT_byte_size, dwarf.DW_CLS_CONSTANT, BucketSize*valsize, 0)
t := valtype
if indirectVal {
t = d.defptrto(valtype)
}
d.newrefattr(dwhv, dwarf.DW_AT_type, t)
fld := d.newdie(dwhv, dwarf.DW_ABRV_ARRAYRANGE, "size")
newattr(fld, dwarf.DW_AT_count, dwarf.DW_CLS_CONSTANT, BucketSize, 0)
d.newrefattr(fld, dwarf.DW_AT_type, d.uintptrInfoSym)
})
// Construct bucket<K,V>
dwhbs := d.mkinternaltype(ctxt, dwarf.DW_ABRV_STRUCTTYPE, "bucket", keyname, valname, func(dwhb *dwarf.DWDie) {
// Copy over all fields except the field "data" from the generic
// bucket. "data" will be replaced with keys/values below.
d.copychildrenexcept(ctxt, dwhb, bucket, findchild(bucket, "data"))
fld := d.newdie(dwhb, dwarf.DW_ABRV_STRUCTFIELD, "keys")
d.newrefattr(fld, dwarf.DW_AT_type, dwhks)
newmemberoffsetattr(fld, BucketSize)
fld = d.newdie(dwhb, dwarf.DW_ABRV_STRUCTFIELD, "values")
d.newrefattr(fld, dwarf.DW_AT_type, dwhvs)
newmemberoffsetattr(fld, BucketSize+BucketSize*int32(keysize))
fld = d.newdie(dwhb, dwarf.DW_ABRV_STRUCTFIELD, "overflow")
d.newrefattr(fld, dwarf.DW_AT_type, d.defptrto(d.dtolsym(dwhb.Sym)))
newmemberoffsetattr(fld, BucketSize+BucketSize*(int32(keysize)+int32(valsize)))
if d.arch.RegSize > d.arch.PtrSize {
fld = d.newdie(dwhb, dwarf.DW_ABRV_STRUCTFIELD, "pad")
d.newrefattr(fld, dwarf.DW_AT_type, d.uintptrInfoSym)
newmemberoffsetattr(fld, BucketSize+BucketSize*(int32(keysize)+int32(valsize))+int32(d.arch.PtrSize))
}
newattr(dwhb, dwarf.DW_AT_byte_size, dwarf.DW_CLS_CONSTANT, BucketSize+BucketSize*keysize+BucketSize*valsize+int64(d.arch.RegSize), 0)
})
// Construct hash<K,V>
dwhs := d.mkinternaltype(ctxt, dwarf.DW_ABRV_STRUCTTYPE, "hash", keyname, valname, func(dwh *dwarf.DWDie) {
d.copychildren(ctxt, dwh, hash)
d.substitutetype(dwh, "buckets", d.defptrto(dwhbs))
d.substitutetype(dwh, "oldbuckets", d.defptrto(dwhbs))
newattr(dwh, dwarf.DW_AT_byte_size, dwarf.DW_CLS_CONSTANT, getattr(hash, dwarf.DW_AT_byte_size).Value, nil)
})
// make map type a pointer to hash<K,V>
d.newrefattr(die, dwarf.DW_AT_type, d.defptrto(dwhs))
}
}
func (d *dwctxt) synthesizechantypes(ctxt *Link, die *dwarf.DWDie) {
sudog := walktypedef(d.findprotodie(ctxt, "type.runtime.sudog"))
waitq := walktypedef(d.findprotodie(ctxt, "type.runtime.waitq"))
hchan := walktypedef(d.findprotodie(ctxt, "type.runtime.hchan"))
if sudog == nil || waitq == nil || hchan == nil {
return
}
sudogsize := int(getattr(sudog, dwarf.DW_AT_byte_size).Value)
for ; die != nil; die = die.Link {
if die.Abbrev != dwarf.DW_ABRV_CHANTYPE {
continue
}
elemgotype := loader.Sym(getattr(die, dwarf.DW_AT_type).Data.(dwSym))
tname := d.ldr.SymName(elemgotype)
elemname := tname[5:]
elemtype := d.walksymtypedef(d.defgotype(d.lookupOrDiag(tname)))
// sudog<T>
dwss := d.mkinternaltype(ctxt, dwarf.DW_ABRV_STRUCTTYPE, "sudog", elemname, "", func(dws *dwarf.DWDie) {
d.copychildren(ctxt, dws, sudog)
d.substitutetype(dws, "elem", d.defptrto(elemtype))
newattr(dws, dwarf.DW_AT_byte_size, dwarf.DW_CLS_CONSTANT, int64(sudogsize), nil)
})
// waitq<T>
dwws := d.mkinternaltype(ctxt, dwarf.DW_ABRV_STRUCTTYPE, "waitq", elemname, "", func(dww *dwarf.DWDie) {
d.copychildren(ctxt, dww, waitq)
d.substitutetype(dww, "first", d.defptrto(dwss))
d.substitutetype(dww, "last", d.defptrto(dwss))
newattr(dww, dwarf.DW_AT_byte_size, dwarf.DW_CLS_CONSTANT, getattr(waitq, dwarf.DW_AT_byte_size).Value, nil)
})
// hchan<T>
dwhs := d.mkinternaltype(ctxt, dwarf.DW_ABRV_STRUCTTYPE, "hchan", elemname, "", func(dwh *dwarf.DWDie) {
d.copychildren(ctxt, dwh, hchan)
d.substitutetype(dwh, "recvq", dwws)
d.substitutetype(dwh, "sendq", dwws)
newattr(dwh, dwarf.DW_AT_byte_size, dwarf.DW_CLS_CONSTANT, getattr(hchan, dwarf.DW_AT_byte_size).Value, nil)
})
d.newrefattr(die, dwarf.DW_AT_type, d.defptrto(dwhs))
}
}
// createUnitLength creates the initial length field with value v and update
// offset of unit_length if needed.
func (d *dwctxt) createUnitLength(su *loader.SymbolBuilder, v uint64) {
if isDwarf64(d.linkctxt) {
su.AddUint32(d.arch, 0xFFFFFFFF)
}
d.addDwarfAddrField(su, v)
}
// addDwarfAddrField adds a DWARF field in DWARF 64bits or 32bits.
func (d *dwctxt) addDwarfAddrField(sb *loader.SymbolBuilder, v uint64) {
if isDwarf64(d.linkctxt) {
sb.AddUint(d.arch, v)
} else {
sb.AddUint32(d.arch, uint32(v))
}
}
// addDwarfAddrRef adds a DWARF pointer in DWARF 64bits or 32bits.
func (d *dwctxt) addDwarfAddrRef(sb *loader.SymbolBuilder, t loader.Sym) {
if isDwarf64(d.linkctxt) {
d.adddwarfref(sb, t, 8)
} else {
d.adddwarfref(sb, t, 4)
}
}
// calcCompUnitRanges calculates the PC ranges of the compilation units.
func (d *dwctxt) calcCompUnitRanges() {
var prevUnit *sym.CompilationUnit
for _, s := range d.linkctxt.Textp {
sym := loader.Sym(s)
fi := d.ldr.FuncInfo(sym)
if !fi.Valid() {
continue
}
// Skip linker-created functions (ex: runtime.addmoduledata), since they
// don't have DWARF to begin with.
unit := d.ldr.SymUnit(sym)
if unit == nil {
continue
}
// Update PC ranges.
//
// We don't simply compare the end of the previous
// symbol with the start of the next because there's
// often a little padding between them. Instead, we
// only create boundaries between symbols from
// different units.
sval := d.ldr.SymValue(sym)
u0val := d.ldr.SymValue(loader.Sym(unit.Textp[0]))
if prevUnit != unit {
unit.PCs = append(unit.PCs, dwarf.Range{Start: sval - u0val})
prevUnit = unit
}
unit.PCs[len(unit.PCs)-1].End = sval - u0val + int64(len(d.ldr.Data(sym)))
}
}
func movetomodule(ctxt *Link, parent *dwarf.DWDie) {
die := ctxt.runtimeCU.DWInfo.Child
if die == nil {
ctxt.runtimeCU.DWInfo.Child = parent.Child
return
}
for die.Link != nil {
die = die.Link
}
die.Link = parent.Child
}
/*
* Generate a sequence of opcodes that is as short as possible.
* See section 6.2.5
*/
const (
LINE_BASE = -4
LINE_RANGE = 10
PC_RANGE = (255 - OPCODE_BASE) / LINE_RANGE
OPCODE_BASE = 11
)
/*
* Walk prog table, emit line program and build DIE tree.
*/
func getCompilationDir() string {
// OSX requires this be set to something, but it's not easy to choose
// a value. Linking takes place in a temporary directory, so there's
// no point including it here. Paths in the file table are usually
// absolute, in which case debuggers will ignore this value. -trimpath
// produces relative paths, but we don't know where they start, so
// all we can do here is try not to make things worse.
return "."
}
func (d *dwctxt) importInfoSymbol(dsym loader.Sym) {
d.ldr.SetAttrReachable(dsym, true)
d.ldr.SetAttrNotInSymbolTable(dsym, true)
dst := d.ldr.SymType(dsym)
if dst != sym.SDWARFCONST && dst != sym.SDWARFABSFCN {
log.Fatalf("error: DWARF info sym %d/%s with incorrect type %s", dsym, d.ldr.SymName(dsym), d.ldr.SymType(dsym).String())
}
relocs := d.ldr.Relocs(dsym)
for i := 0; i < relocs.Count(); i++ {
r := relocs.At(i)
if r.Type() != objabi.R_DWARFSECREF {
continue
}
rsym := r.Sym()
// If there is an entry for the symbol in our rtmap, then it
// means we've processed the type already, and can skip this one.
if _, ok := d.rtmap[rsym]; ok {
// type already generated
continue
}
// FIXME: is there a way we could avoid materializing the
// symbol name here?
sn := d.ldr.SymName(rsym)
tn := sn[len(dwarf.InfoPrefix):]
ts := d.ldr.Lookup("type."+tn, 0)
d.defgotype(ts)
}
}
func expandFile(fname string) string {
if strings.HasPrefix(fname, src.FileSymPrefix) {
fname = fname[len(src.FileSymPrefix):]
}
return expandGoroot(fname)
}
// writeDirFileTables emits the portion of the DWARF line table
// prologue containing the include directories and file names,
// described in section 6.2.4 of the DWARF 4 standard. It walks the
// filepaths for the unit to discover any common directories, which
// are emitted to the directory table first, then the file table is
// emitted after that.
func (d *dwctxt) writeDirFileTables(unit *sym.CompilationUnit, lsu *loader.SymbolBuilder) {
type fileDir struct {
base string
dir int
}
dirNums := make(map[string]int)
dirs := []string{""}
files := []fileDir{}
// Preprocess files to collect directories. This assumes that the
// file table is already de-duped.
for i, name := range unit.FileTable {
name := expandFile(name)
if len(name) == 0 {
// Can't have empty filenames, and having a unique
// filename is quite useful for debugging.
name = fmt.Sprintf("<missing>_%d", i)
}
// Note the use of "path" here and not "filepath". The compiler
// hard-codes to use "/" in DWARF paths (even for Windows), so we
// want to maintain that here.
file := path.Base(name)
dir := path.Dir(name)
dirIdx, ok := dirNums[dir]
if !ok && dir != "." {
dirIdx = len(dirNums) + 1
dirNums[dir] = dirIdx
dirs = append(dirs, dir)
}
files = append(files, fileDir{base: file, dir: dirIdx})
// We can't use something that may be dead-code
// eliminated from a binary here. proc.go contains
// main and the scheduler, so it's not going anywhere.
if i := strings.Index(name, "runtime/proc.go"); i >= 0 && unit.Lib.Pkg == "runtime" {
d.dwmu.Lock()
if gdbscript == "" {
k := strings.Index(name, "runtime/proc.go")
gdbscript = name[:k] + "runtime/runtime-gdb.py"
}
d.dwmu.Unlock()
}
}
// Emit directory section. This is a series of nul terminated
// strings, followed by a single zero byte.
lsDwsym := dwSym(lsu.Sym())
for k := 1; k < len(dirs); k++ {
d.AddString(lsDwsym, dirs[k])
}
lsu.AddUint8(0) // terminator
// Emit file section.
for k := 0; k < len(files); k++ {
d.AddString(lsDwsym, files[k].base)
dwarf.Uleb128put(d, lsDwsym, int64(files[k].dir))
lsu.AddUint8(0) // mtime
lsu.AddUint8(0) // length
}
lsu.AddUint8(0) // terminator
}
// writelines collects up and chains together the symbols needed to
// form the DWARF line table for the specified compilation unit,
// returning a list of symbols. The returned list will include an
// initial symbol containing the line table header and prologue (with
// file table), then a series of compiler-emitted line table symbols
// (one per live function), and finally an epilog symbol containing an
// end-of-sequence operator. The prologue and epilog symbols are passed
// in (having been created earlier); here we add content to them.
func (d *dwctxt) writelines(unit *sym.CompilationUnit, lineProlog loader.Sym) []loader.Sym {
is_stmt := uint8(1) // initially = recommended default_is_stmt = 1, tracks is_stmt toggles.
unitstart := int64(-1)
headerstart := int64(-1)
headerend := int64(-1)
syms := make([]loader.Sym, 0, len(unit.Textp)+2)
syms = append(syms, lineProlog)
lsu := d.ldr.MakeSymbolUpdater(lineProlog)
lsDwsym := dwSym(lineProlog)
newattr(unit.DWInfo, dwarf.DW_AT_stmt_list, dwarf.DW_CLS_PTR, 0, lsDwsym)
// Write .debug_line Line Number Program Header (sec 6.2.4)
// Fields marked with (*) must be changed for 64-bit dwarf
unitLengthOffset := lsu.Size()
d.createUnitLength(lsu, 0) // unit_length (*), filled in at end
unitstart = lsu.Size()
lsu.AddUint16(d.arch, 2) // dwarf version (appendix F) -- version 3 is incompatible w/ XCode 9.0's dsymutil, latest supported on OSX 10.12 as of 2018-05
headerLengthOffset := lsu.Size()
d.addDwarfAddrField(lsu, 0) // header_length (*), filled in at end
headerstart = lsu.Size()
// cpos == unitstart + 4 + 2 + 4
lsu.AddUint8(1) // minimum_instruction_length
lsu.AddUint8(is_stmt) // default_is_stmt
lsu.AddUint8(LINE_BASE & 0xFF) // line_base
lsu.AddUint8(LINE_RANGE) // line_range
lsu.AddUint8(OPCODE_BASE) // opcode_base
lsu.AddUint8(0) // standard_opcode_lengths[1]
lsu.AddUint8(1) // standard_opcode_lengths[2]
lsu.AddUint8(1) // standard_opcode_lengths[3]
lsu.AddUint8(1) // standard_opcode_lengths[4]
lsu.AddUint8(1) // standard_opcode_lengths[5]
lsu.AddUint8(0) // standard_opcode_lengths[6]
lsu.AddUint8(0) // standard_opcode_lengths[7]
lsu.AddUint8(0) // standard_opcode_lengths[8]
lsu.AddUint8(1) // standard_opcode_lengths[9]
lsu.AddUint8(0) // standard_opcode_lengths[10]
// Call helper to emit dir and file sections.
d.writeDirFileTables(unit, lsu)
// capture length at end of file names.
headerend = lsu.Size()
unitlen := lsu.Size() - unitstart
// Output the state machine for each function remaining.
for _, s := range unit.Textp {
fnSym := loader.Sym(s)
_, _, _, lines := d.ldr.GetFuncDwarfAuxSyms(fnSym)
// Chain the line symbol onto the list.
if lines != 0 {
syms = append(syms, lines)
unitlen += int64(len(d.ldr.Data(lines)))
}
}
if d.linkctxt.HeadType == objabi.Haix {
addDwsectCUSize(".debug_line", unit.Lib.Pkg, uint64(unitlen))
}
if isDwarf64(d.linkctxt) {
lsu.SetUint(d.arch, unitLengthOffset+4, uint64(unitlen)) // +4 because of 0xFFFFFFFF
lsu.SetUint(d.arch, headerLengthOffset, uint64(headerend-headerstart))
} else {
lsu.SetUint32(d.arch, unitLengthOffset, uint32(unitlen))
lsu.SetUint32(d.arch, headerLengthOffset, uint32(headerend-headerstart))
}
return syms
}
// writepcranges generates the DW_AT_ranges table for compilation unit
// "unit", and returns a collection of ranges symbols (one for the
// compilation unit DIE itself and the remainder from functions in the unit).
func (d *dwctxt) writepcranges(unit *sym.CompilationUnit, base loader.Sym, pcs []dwarf.Range, rangeProlog loader.Sym) []loader.Sym {
syms := make([]loader.Sym, 0, len(unit.RangeSyms)+1)
syms = append(syms, rangeProlog)
rsu := d.ldr.MakeSymbolUpdater(rangeProlog)
rDwSym := dwSym(rangeProlog)
// Create PC ranges for the compilation unit DIE.
newattr(unit.DWInfo, dwarf.DW_AT_ranges, dwarf.DW_CLS_PTR, rsu.Size(), rDwSym)
newattr(unit.DWInfo, dwarf.DW_AT_low_pc, dwarf.DW_CLS_ADDRESS, 0, dwSym(base))
dwarf.PutBasedRanges(d, rDwSym, pcs)
// Collect up the ranges for functions in the unit.
rsize := uint64(rsu.Size())
for _, ls := range unit.RangeSyms {
s := loader.Sym(ls)
syms = append(syms, s)
rsize += uint64(d.ldr.SymSize(s))
}
if d.linkctxt.HeadType == objabi.Haix {
addDwsectCUSize(".debug_ranges", unit.Lib.Pkg, rsize)
}
return syms
}
/*
* Emit .debug_frame
*/
const (
dataAlignmentFactor = -4
)
// appendPCDeltaCFA appends per-PC CFA deltas to b and returns the final slice.
func appendPCDeltaCFA(arch *sys.Arch, b []byte, deltapc, cfa int64) []byte {
b = append(b, dwarf.DW_CFA_def_cfa_offset_sf)
b = dwarf.AppendSleb128(b, cfa/dataAlignmentFactor)
switch {
case deltapc < 0x40:
b = append(b, uint8(dwarf.DW_CFA_advance_loc+deltapc))
case deltapc < 0x100:
b = append(b, dwarf.DW_CFA_advance_loc1)
b = append(b, uint8(deltapc))
case deltapc < 0x10000:
b = append(b, dwarf.DW_CFA_advance_loc2, 0, 0)
arch.ByteOrder.PutUint16(b[len(b)-2:], uint16(deltapc))
default:
b = append(b, dwarf.DW_CFA_advance_loc4, 0, 0, 0, 0)
arch.ByteOrder.PutUint32(b[len(b)-4:], uint32(deltapc))
}
return b
}
func (d *dwctxt) writeframes(fs loader.Sym) dwarfSecInfo {
fsd := dwSym(fs)
fsu := d.ldr.MakeSymbolUpdater(fs)
fsu.SetType(sym.SDWARFSECT)
isdw64 := isDwarf64(d.linkctxt)
haslr := d.linkctxt.Arch.HasLR
// Length field is 4 bytes on Dwarf32 and 12 bytes on Dwarf64
lengthFieldSize := int64(4)
if isdw64 {
lengthFieldSize += 8
}
// Emit the CIE, Section 6.4.1
cieReserve := uint32(16)
if haslr {
cieReserve = 32
}
if isdw64 {
cieReserve += 4 // 4 bytes added for cid
}
d.createUnitLength(fsu, uint64(cieReserve)) // initial length, must be multiple of thearch.ptrsize
d.addDwarfAddrField(fsu, ^uint64(0)) // cid
fsu.AddUint8(3) // dwarf version (appendix F)
fsu.AddUint8(0) // augmentation ""
dwarf.Uleb128put(d, fsd, 1) // code_alignment_factor
dwarf.Sleb128put(d, fsd, dataAlignmentFactor) // all CFI offset calculations include multiplication with this factor
dwarf.Uleb128put(d, fsd, int64(thearch.Dwarfreglr)) // return_address_register
fsu.AddUint8(dwarf.DW_CFA_def_cfa) // Set the current frame address..
dwarf.Uleb128put(d, fsd, int64(thearch.Dwarfregsp)) // ...to use the value in the platform's SP register (defined in l.go)...
if haslr {
dwarf.Uleb128put(d, fsd, int64(0)) // ...plus a 0 offset.
fsu.AddUint8(dwarf.DW_CFA_same_value) // The platform's link register is unchanged during the prologue.
dwarf.Uleb128put(d, fsd, int64(thearch.Dwarfreglr))
fsu.AddUint8(dwarf.DW_CFA_val_offset) // The previous value...
dwarf.Uleb128put(d, fsd, int64(thearch.Dwarfregsp)) // ...of the platform's SP register...
dwarf.Uleb128put(d, fsd, int64(0)) // ...is CFA+0.
} else {
dwarf.Uleb128put(d, fsd, int64(d.arch.PtrSize)) // ...plus the word size (because the call instruction implicitly adds one word to the frame).
fsu.AddUint8(dwarf.DW_CFA_offset_extended) // The previous value...
dwarf.Uleb128put(d, fsd, int64(thearch.Dwarfreglr)) // ...of the return address...
dwarf.Uleb128put(d, fsd, int64(-d.arch.PtrSize)/dataAlignmentFactor) // ...is saved at [CFA - (PtrSize/4)].
}
pad := int64(cieReserve) + lengthFieldSize - int64(len(d.ldr.Data(fs)))
if pad < 0 {
Exitf("dwarf: cieReserve too small by %d bytes.", -pad)
}
internalExec := d.linkctxt.BuildMode == BuildModeExe && d.linkctxt.IsInternal()
addAddrPlus := loader.GenAddAddrPlusFunc(internalExec)
fsu.AddBytes(zeros[:pad])
var deltaBuf []byte
pcsp := obj.NewPCIter(uint32(d.arch.MinLC))
for _, s := range d.linkctxt.Textp {
fn := loader.Sym(s)
fi := d.ldr.FuncInfo(fn)
if !fi.Valid() {
continue
}
fpcsp := d.ldr.Pcsp(s)
// Emit a FDE, Section 6.4.1.
// First build the section contents into a byte buffer.
deltaBuf = deltaBuf[:0]
if haslr && fi.TopFrame() {
// Mark the link register as having an undefined value.
// This stops call stack unwinders progressing any further.
// TODO: similar mark on non-LR architectures.
deltaBuf = append(deltaBuf, dwarf.DW_CFA_undefined)
deltaBuf = dwarf.AppendUleb128(deltaBuf, uint64(thearch.Dwarfreglr))
}
for pcsp.Init(d.linkctxt.loader.Data(fpcsp)); !pcsp.Done; pcsp.Next() {
nextpc := pcsp.NextPC
// pciterinit goes up to the end of the function,
// but DWARF expects us to stop just before the end.
if int64(nextpc) == int64(len(d.ldr.Data(fn))) {
nextpc--
if nextpc < pcsp.PC {
continue
}
}
spdelta := int64(pcsp.Value)
if !haslr {
// Return address has been pushed onto stack.
spdelta += int64(d.arch.PtrSize)
}
if haslr && !fi.TopFrame() {
// TODO(bryanpkc): This is imprecise. In general, the instruction
// that stores the return address to the stack frame is not the
// same one that allocates the frame.
if pcsp.Value > 0 {
// The return address is preserved at (CFA-frame_size)
// after a stack frame has been allocated.
deltaBuf = append(deltaBuf, dwarf.DW_CFA_offset_extended_sf)
deltaBuf = dwarf.AppendUleb128(deltaBuf, uint64(thearch.Dwarfreglr))
deltaBuf = dwarf.AppendSleb128(deltaBuf, -spdelta/dataAlignmentFactor)
} else {
// The return address is restored into the link register
// when a stack frame has been de-allocated.
deltaBuf = append(deltaBuf, dwarf.DW_CFA_same_value)
deltaBuf = dwarf.AppendUleb128(deltaBuf, uint64(thearch.Dwarfreglr))
}
}
deltaBuf = appendPCDeltaCFA(d.arch, deltaBuf, int64(nextpc)-int64(pcsp.PC), spdelta)
}
pad := int(Rnd(int64(len(deltaBuf)), int64(d.arch.PtrSize))) - len(deltaBuf)
deltaBuf = append(deltaBuf, zeros[:pad]...)
// Emit the FDE header, Section 6.4.1.
// 4 bytes: length, must be multiple of thearch.ptrsize
// 4/8 bytes: Pointer to the CIE above, at offset 0
// ptrsize: initial location
// ptrsize: address range
fdeLength := uint64(4 + 2*d.arch.PtrSize + len(deltaBuf))
if isdw64 {
fdeLength += 4 // 4 bytes added for CIE pointer
}
d.createUnitLength(fsu, fdeLength)
if d.linkctxt.LinkMode == LinkExternal {
d.addDwarfAddrRef(fsu, fs)
} else {
d.addDwarfAddrField(fsu, 0) // CIE offset
}
addAddrPlus(fsu, d.arch, s, 0)
fsu.AddUintXX(d.arch, uint64(len(d.ldr.Data(fn))), d.arch.PtrSize) // address range
fsu.AddBytes(deltaBuf)
if d.linkctxt.HeadType == objabi.Haix {
addDwsectCUSize(".debug_frame", d.ldr.SymPkg(fn), fdeLength+uint64(lengthFieldSize))
}
}
return dwarfSecInfo{syms: []loader.Sym{fs}}
}
/*
* Walk DWarfDebugInfoEntries, and emit .debug_info
*/
const (
COMPUNITHEADERSIZE = 4 + 2 + 4 + 1
)
// appendSyms appends the syms from 'src' into 'syms' and returns the
// result. This can go away once we do away with sym.LoaderSym
// entirely.
func appendSyms(syms []loader.Sym, src []sym.LoaderSym) []loader.Sym {
for _, s := range src {
syms = append(syms, loader.Sym(s))
}
return syms
}
func (d *dwctxt) writeUnitInfo(u *sym.CompilationUnit, abbrevsym loader.Sym, infoEpilog loader.Sym) []loader.Sym {
syms := []loader.Sym{}
if len(u.Textp) == 0 && u.DWInfo.Child == nil && len(u.VarDIEs) == 0 {
return syms
}
compunit := u.DWInfo
s := d.dtolsym(compunit.Sym)
su := d.ldr.MakeSymbolUpdater(s)
// Write .debug_info Compilation Unit Header (sec 7.5.1)
// Fields marked with (*) must be changed for 64-bit dwarf
// This must match COMPUNITHEADERSIZE above.
d.createUnitLength(su, 0) // unit_length (*), will be filled in later.
su.AddUint16(d.arch, 4) // dwarf version (appendix F)
// debug_abbrev_offset (*)
d.addDwarfAddrRef(su, abbrevsym)
su.AddUint8(uint8(d.arch.PtrSize)) // address_size
ds := dwSym(s)
dwarf.Uleb128put(d, ds, int64(compunit.Abbrev))
dwarf.PutAttrs(d, ds, compunit.Abbrev, compunit.Attr)
// This is an under-estimate; more will be needed for type DIEs.
cu := make([]loader.Sym, 0, len(u.AbsFnDIEs)+len(u.FuncDIEs))
cu = append(cu, s)
cu = appendSyms(cu, u.AbsFnDIEs)
cu = appendSyms(cu, u.FuncDIEs)
if u.Consts != 0 {
cu = append(cu, loader.Sym(u.Consts))
}
cu = appendSyms(cu, u.VarDIEs)
var cusize int64
for _, child := range cu {
cusize += int64(len(d.ldr.Data(child)))
}
for die := compunit.Child; die != nil; die = die.Link {
l := len(cu)
lastSymSz := int64(len(d.ldr.Data(cu[l-1])))
cu = d.putdie(cu, die)
if lastSymSz != int64(len(d.ldr.Data(cu[l-1]))) {
// putdie will sometimes append directly to the last symbol of the list
cusize = cusize - lastSymSz + int64(len(d.ldr.Data(cu[l-1])))
}
for _, child := range cu[l:] {
cusize += int64(len(d.ldr.Data(child)))
}
}
culu := d.ldr.MakeSymbolUpdater(infoEpilog)
culu.AddUint8(0) // closes compilation unit DIE
cu = append(cu, infoEpilog)
cusize++
// Save size for AIX symbol table.
if d.linkctxt.HeadType == objabi.Haix {
addDwsectCUSize(".debug_info", d.getPkgFromCUSym(s), uint64(cusize))
}
if isDwarf64(d.linkctxt) {
cusize -= 12 // exclude the length field.
su.SetUint(d.arch, 4, uint64(cusize)) // 4 because of 0XFFFFFFFF
} else {
cusize -= 4 // exclude the length field.
su.SetUint32(d.arch, 0, uint32(cusize))
}
return append(syms, cu...)
}
func (d *dwctxt) writegdbscript() dwarfSecInfo {
// TODO (aix): make it available
if d.linkctxt.HeadType == objabi.Haix {
return dwarfSecInfo{}
}
if d.linkctxt.LinkMode == LinkExternal && d.linkctxt.HeadType == objabi.Hwindows && d.linkctxt.BuildMode == BuildModeCArchive {
// gcc on Windows places .debug_gdb_scripts in the wrong location, which
// causes the program not to run. See https://golang.org/issue/20183
// Non c-archives can avoid this issue via a linker script
// (see fix near writeGDBLinkerScript).
// c-archive users would need to specify the linker script manually.
// For UX it's better not to deal with this.
return dwarfSecInfo{}
}
if gdbscript == "" {
return dwarfSecInfo{}
}
gs := d.ldr.CreateSymForUpdate(".debug_gdb_scripts", 0)
gs.SetType(sym.SDWARFSECT)
gs.AddUint8(GdbScriptPythonFileId)
gs.Addstring(gdbscript)
return dwarfSecInfo{syms: []loader.Sym{gs.Sym()}}
}
// FIXME: might be worth looking replacing this map with a function
// that switches based on symbol instead.
var prototypedies map[string]*dwarf.DWDie
func dwarfEnabled(ctxt *Link) bool {
if *FlagW { // disable dwarf
return false
}
if *FlagS && ctxt.HeadType != objabi.Hdarwin {
return false
}
if ctxt.HeadType == objabi.Hplan9 || ctxt.HeadType == objabi.Hjs {
return false
}
if ctxt.LinkMode == LinkExternal {
switch {
case ctxt.IsELF:
case ctxt.HeadType == objabi.Hdarwin:
case ctxt.HeadType == objabi.Hwindows:
case ctxt.HeadType == objabi.Haix:
res, err := dwarf.IsDWARFEnabledOnAIXLd(ctxt.extld())
if err != nil {
Exitf("%v", err)
}
return res
default:
return false
}
}
return true
}
// mkBuiltinType populates the dwctxt2 sym lookup maps for the
// newly created builtin type DIE 'typeDie'.
func (d *dwctxt) mkBuiltinType(ctxt *Link, abrv int, tname string) *dwarf.DWDie {
// create type DIE
die := d.newdie(&dwtypes, abrv, tname)
// Look up type symbol.
gotype := d.lookupOrDiag("type." + tname)
// Map from die sym to type sym
ds := loader.Sym(die.Sym.(dwSym))
d.rtmap[ds] = gotype
// Map from type to def sym
d.tdmap[gotype] = ds
return die
}
// dwarfVisitFunction takes a function (text) symbol and processes the
// subprogram DIE for the function and picks up any other DIEs
// (absfns, types) that it references.
func (d *dwctxt) dwarfVisitFunction(fnSym loader.Sym, unit *sym.CompilationUnit) {
// The DWARF subprogram DIE symbol is listed as an aux sym
// of the text (fcn) symbol, so ask the loader to retrieve it,
// as well as the associated range symbol.
infosym, _, rangesym, _ := d.ldr.GetFuncDwarfAuxSyms(fnSym)
if infosym == 0 {
return
}
d.ldr.SetAttrNotInSymbolTable(infosym, true)
d.ldr.SetAttrReachable(infosym, true)
unit.FuncDIEs = append(unit.FuncDIEs, sym.LoaderSym(infosym))
if rangesym != 0 {
d.ldr.SetAttrNotInSymbolTable(rangesym, true)
d.ldr.SetAttrReachable(rangesym, true)
unit.RangeSyms = append(unit.RangeSyms, sym.LoaderSym(rangesym))
}
// Walk the relocations of the subprogram DIE symbol to discover
// references to abstract function DIEs, Go type DIES, and
// (via R_USETYPE relocs) types that were originally assigned to
// locals/params but were optimized away.
drelocs := d.ldr.Relocs(infosym)
for ri := 0; ri < drelocs.Count(); ri++ {
r := drelocs.At(ri)
// Look for "use type" relocs.
if r.Type() == objabi.R_USETYPE {
d.defgotype(r.Sym())
continue
}
if r.Type() != objabi.R_DWARFSECREF {
continue
}
rsym := r.Sym()
rst := d.ldr.SymType(rsym)
// Look for abstract function references.
if rst == sym.SDWARFABSFCN {
if !d.ldr.AttrOnList(rsym) {
// abstract function
d.ldr.SetAttrOnList(rsym, true)
unit.AbsFnDIEs = append(unit.AbsFnDIEs, sym.LoaderSym(rsym))
d.importInfoSymbol(rsym)
}
continue
}
// Look for type references.
if rst != sym.SDWARFTYPE && rst != sym.Sxxx {
continue
}
if _, ok := d.rtmap[rsym]; ok {
// type already generated
continue
}
rsn := d.ldr.SymName(rsym)
tn := rsn[len(dwarf.InfoPrefix):]
ts := d.ldr.Lookup("type."+tn, 0)
d.defgotype(ts)
}
}
// dwarfGenerateDebugInfo generated debug info entries for all types,
// variables and functions in the program.
// Along with dwarfGenerateDebugSyms they are the two main entry points into
// dwarf generation: dwarfGenerateDebugInfo does all the work that should be
// done before symbol names are mangled while dwarfGenerateDebugSyms does
// all the work that can only be done after addresses have been assigned to
// text symbols.
func dwarfGenerateDebugInfo(ctxt *Link) {
if !dwarfEnabled(ctxt) {
return
}
d := &dwctxt{
linkctxt: ctxt,
ldr: ctxt.loader,
arch: ctxt.Arch,
tmap: make(map[string]loader.Sym),
tdmap: make(map[loader.Sym]loader.Sym),
rtmap: make(map[loader.Sym]loader.Sym),
}
d.typeRuntimeEface = d.lookupOrDiag("type.runtime.eface")
d.typeRuntimeIface = d.lookupOrDiag("type.runtime.iface")
if ctxt.HeadType == objabi.Haix {
// Initial map used to store package size for each DWARF section.
dwsectCUSize = make(map[string]uint64)
}
// For ctxt.Diagnostic messages.
newattr(&dwtypes, dwarf.DW_AT_name, dwarf.DW_CLS_STRING, int64(len("dwtypes")), "dwtypes")
// Unspecified type. There are no references to this in the symbol table.
d.newdie(&dwtypes, dwarf.DW_ABRV_NULLTYPE, "<unspecified>")
// Some types that must exist to define other ones (uintptr in particular
// is needed for array size)
d.mkBuiltinType(ctxt, dwarf.DW_ABRV_BARE_PTRTYPE, "unsafe.Pointer")
die := d.mkBuiltinType(ctxt, dwarf.DW_ABRV_BASETYPE, "uintptr")
newattr(die, dwarf.DW_AT_encoding, dwarf.DW_CLS_CONSTANT, dwarf.DW_ATE_unsigned, 0)
newattr(die, dwarf.DW_AT_byte_size, dwarf.DW_CLS_CONSTANT, int64(d.arch.PtrSize), 0)
newattr(die, dwarf.DW_AT_go_kind, dwarf.DW_CLS_CONSTANT, objabi.KindUintptr, 0)
newattr(die, dwarf.DW_AT_go_runtime_type, dwarf.DW_CLS_ADDRESS, 0, dwSym(d.lookupOrDiag("type.uintptr")))
d.uintptrInfoSym = d.mustFind("uintptr")
// Prototypes needed for type synthesis.
prototypedies = map[string]*dwarf.DWDie{
"type.runtime.stringStructDWARF": nil,
"type.runtime.slice": nil,
"type.runtime.hmap": nil,
"type.runtime.bmap": nil,
"type.runtime.sudog": nil,
"type.runtime.waitq": nil,
"type.runtime.hchan": nil,
}
// Needed by the prettyprinter code for interface inspection.
for _, typ := range []string{
"type.runtime._type",
"type.runtime.arraytype",
"type.runtime.chantype",
"type.runtime.functype",
"type.runtime.maptype",
"type.runtime.ptrtype",
"type.runtime.slicetype",
"type.runtime.structtype",
"type.runtime.interfacetype",
"type.runtime.itab",
"type.runtime.imethod"} {
d.defgotype(d.lookupOrDiag(typ))
}
// fake root DIE for compile unit DIEs
var dwroot dwarf.DWDie
flagVariants := make(map[string]bool)
for _, lib := range ctxt.Library {
consts := d.ldr.Lookup(dwarf.ConstInfoPrefix+lib.Pkg, 0)
for _, unit := range lib.Units {
// We drop the constants into the first CU.
if consts != 0 {
unit.Consts = sym.LoaderSym(consts)
d.importInfoSymbol(consts)
consts = 0
}
ctxt.compUnits = append(ctxt.compUnits, unit)
// We need at least one runtime unit.
if unit.Lib.Pkg == "runtime" {
ctxt.runtimeCU = unit
}
cuabrv := dwarf.DW_ABRV_COMPUNIT
if len(unit.Textp) == 0 {
cuabrv = dwarf.DW_ABRV_COMPUNIT_TEXTLESS
}
unit.DWInfo = d.newdie(&dwroot, cuabrv, unit.Lib.Pkg)
newattr(unit.DWInfo, dwarf.DW_AT_language, dwarf.DW_CLS_CONSTANT, int64(dwarf.DW_LANG_Go), 0)
// OS X linker requires compilation dir or absolute path in comp unit name to output debug info.
compDir := getCompilationDir()
// TODO: Make this be the actual compilation directory, not
// the linker directory. If we move CU construction into the
// compiler, this should happen naturally.
newattr(unit.DWInfo, dwarf.DW_AT_comp_dir, dwarf.DW_CLS_STRING, int64(len(compDir)), compDir)
var peData []byte
if producerExtra := d.ldr.Lookup(dwarf.CUInfoPrefix+"producer."+unit.Lib.Pkg, 0); producerExtra != 0 {
peData = d.ldr.Data(producerExtra)
}
producer := "Go cmd/compile " + buildcfg.Version
if len(peData) > 0 {
// We put a semicolon before the flags to clearly
// separate them from the version, which can be long
// and have lots of weird things in it in development
// versions. We promise not to put a semicolon in the
// version, so it should be safe for readers to scan
// forward to the semicolon.
producer += "; " + string(peData)
flagVariants[string(peData)] = true
} else {
flagVariants[""] = true
}
newattr(unit.DWInfo, dwarf.DW_AT_producer, dwarf.DW_CLS_STRING, int64(len(producer)), producer)
var pkgname string
if pnSymIdx := d.ldr.Lookup(dwarf.CUInfoPrefix+"packagename."+unit.Lib.Pkg, 0); pnSymIdx != 0 {
pnsData := d.ldr.Data(pnSymIdx)
pkgname = string(pnsData)
}
newattr(unit.DWInfo, dwarf.DW_AT_go_package_name, dwarf.DW_CLS_STRING, int64(len(pkgname)), pkgname)
// Scan all functions in this compilation unit, create
// DIEs for all referenced types, find all referenced
// abstract functions, visit range symbols. Note that
// Textp has been dead-code-eliminated already.
for _, s := range unit.Textp {
d.dwarfVisitFunction(loader.Sym(s), unit)
}
}
}
// Fix for 31034: if the objects feeding into this link were compiled
// with different sets of flags, then don't issue an error if
// the -strictdups checks fail.
if checkStrictDups > 1 && len(flagVariants) > 1 {
checkStrictDups = 1
}
// Make a pass through all data symbols, looking for those
// corresponding to reachable, Go-generated, user-visible
// global variables. For each global of this sort, locate
// the corresponding compiler-generated DIE symbol and tack
// it onto the list associated with the unit.
// Also looks for dictionary symbols and generates DIE symbols for each
// type they reference.
for idx := loader.Sym(1); idx < loader.Sym(d.ldr.NDef()); idx++ {
if !d.ldr.AttrReachable(idx) ||
d.ldr.AttrNotInSymbolTable(idx) ||
d.ldr.SymVersion(idx) >= sym.SymVerStatic {
continue
}
t := d.ldr.SymType(idx)
switch t {
case sym.SRODATA, sym.SDATA, sym.SNOPTRDATA, sym.STYPE, sym.SBSS, sym.SNOPTRBSS, sym.STLSBSS:
// ok
default:
continue
}
// Skip things with no type, unless it's a dictionary
gt := d.ldr.SymGoType(idx)
if gt == 0 {
if t == sym.SRODATA {
if d.ldr.IsDict(idx) {
// This is a dictionary, make sure that all types referenced by this dictionary are reachable
relocs := d.ldr.Relocs(idx)
for i := 0; i < relocs.Count(); i++ {
reloc := relocs.At(i)
if reloc.Type() == objabi.R_USEIFACE {
d.defgotype(reloc.Sym())
}
}
}
}
continue
}
// Skip file local symbols (this includes static tmps, stack
// object symbols, and local symbols in assembler src files).
if d.ldr.IsFileLocal(idx) {
continue
}
sn := d.ldr.SymName(idx)
if sn == "" {
// skip aux symbols
continue
}
// Find compiler-generated DWARF info sym for global in question,
// and tack it onto the appropriate unit. Note that there are
// circumstances under which we can't find the compiler-generated
// symbol-- this typically happens as a result of compiler options
// (e.g. compile package X with "-dwarf=0").
// FIXME: use an aux sym or a relocation here instead of a
// name lookup.
varDIE := d.ldr.Lookup(dwarf.InfoPrefix+sn, 0)
if varDIE != 0 {
unit := d.ldr.SymUnit(idx)
d.defgotype(gt)
unit.VarDIEs = append(unit.VarDIEs, sym.LoaderSym(varDIE))
}
}
d.synthesizestringtypes(ctxt, dwtypes.Child)
d.synthesizeslicetypes(ctxt, dwtypes.Child)
d.synthesizemaptypes(ctxt, dwtypes.Child)
d.synthesizechantypes(ctxt, dwtypes.Child)
}
// dwarfGenerateDebugSyms constructs debug_line, debug_frame, and
// debug_loc. It also writes out the debug_info section using symbols
// generated in dwarfGenerateDebugInfo2.
func dwarfGenerateDebugSyms(ctxt *Link) {
if !dwarfEnabled(ctxt) {
return
}
d := &dwctxt{
linkctxt: ctxt,
ldr: ctxt.loader,
arch: ctxt.Arch,
dwmu: new(sync.Mutex),
}
d.dwarfGenerateDebugSyms()
}
// dwUnitSyms stores input and output symbols for DWARF generation
// for a given compilation unit.
type dwUnitSyms struct {
// Inputs for a given unit.
lineProlog loader.Sym
rangeProlog loader.Sym
infoEpilog loader.Sym
// Outputs for a given unit.
linesyms []loader.Sym
infosyms []loader.Sym
locsyms []loader.Sym
rangessyms []loader.Sym
}
// dwUnitPortion assembles the DWARF content for a given compilation
// unit: debug_info, debug_lines, debug_ranges, debug_loc (debug_frame
// is handled elsewere). Order is important; the calls to writelines
// and writepcranges below make updates to the compilation unit DIE,
// hence they have to happen before the call to writeUnitInfo.
func (d *dwctxt) dwUnitPortion(u *sym.CompilationUnit, abbrevsym loader.Sym, us *dwUnitSyms) {
if u.DWInfo.Abbrev != dwarf.DW_ABRV_COMPUNIT_TEXTLESS {
us.linesyms = d.writelines(u, us.lineProlog)
base := loader.Sym(u.Textp[0])
us.rangessyms = d.writepcranges(u, base, u.PCs, us.rangeProlog)
us.locsyms = d.collectUnitLocs(u)
}
us.infosyms = d.writeUnitInfo(u, abbrevsym, us.infoEpilog)
}
func (d *dwctxt) dwarfGenerateDebugSyms() {
abbrevSec := d.writeabbrev()
dwarfp = append(dwarfp, abbrevSec)
d.calcCompUnitRanges()
sort.Sort(compilationUnitByStartPC(d.linkctxt.compUnits))
// newdie adds DIEs to the *beginning* of the parent's DIE list.
// Now that we're done creating DIEs, reverse the trees so DIEs
// appear in the order they were created.
for _, u := range d.linkctxt.compUnits {
reversetree(&u.DWInfo.Child)
}
reversetree(&dwtypes.Child)
movetomodule(d.linkctxt, &dwtypes)
mkSecSym := func(name string) loader.Sym {
s := d.ldr.CreateSymForUpdate(name, 0)
s.SetType(sym.SDWARFSECT)
s.SetReachable(true)
return s.Sym()
}
mkAnonSym := func(kind sym.SymKind) loader.Sym {
s := d.ldr.MakeSymbolUpdater(d.ldr.CreateExtSym("", 0))
s.SetType(kind)
s.SetReachable(true)
return s.Sym()
}
// Create the section symbols.
frameSym := mkSecSym(".debug_frame")
locSym := mkSecSym(".debug_loc")
lineSym := mkSecSym(".debug_line")
rangesSym := mkSecSym(".debug_ranges")
infoSym := mkSecSym(".debug_info")
// Create the section objects
lineSec := dwarfSecInfo{syms: []loader.Sym{lineSym}}
locSec := dwarfSecInfo{syms: []loader.Sym{locSym}}
rangesSec := dwarfSecInfo{syms: []loader.Sym{rangesSym}}
frameSec := dwarfSecInfo{syms: []loader.Sym{frameSym}}
infoSec := dwarfSecInfo{syms: []loader.Sym{infoSym}}
// Create any new symbols that will be needed during the
// parallel portion below.
ncu := len(d.linkctxt.compUnits)
unitSyms := make([]dwUnitSyms, ncu)
for i := 0; i < ncu; i++ {
us := &unitSyms[i]
us.lineProlog = mkAnonSym(sym.SDWARFLINES)
us.rangeProlog = mkAnonSym(sym.SDWARFRANGE)
us.infoEpilog = mkAnonSym(sym.SDWARFFCN)
}
var wg sync.WaitGroup
sema := make(chan struct{}, runtime.GOMAXPROCS(0))
// Kick off generation of .debug_frame, since it doesn't have
// any entanglements and can be started right away.
wg.Add(1)
go func() {
sema <- struct{}{}
defer func() {
<-sema
wg.Done()
}()
frameSec = d.writeframes(frameSym)
}()
// Create a goroutine per comp unit to handle the generation that
// unit's portion of .debug_line, .debug_loc, .debug_ranges, and
// .debug_info.
wg.Add(len(d.linkctxt.compUnits))
for i := 0; i < ncu; i++ {
go func(u *sym.CompilationUnit, us *dwUnitSyms) {
sema <- struct{}{}
defer func() {
<-sema
wg.Done()
}()
d.dwUnitPortion(u, abbrevSec.secSym(), us)
}(d.linkctxt.compUnits[i], &unitSyms[i])
}
wg.Wait()
markReachable := func(syms []loader.Sym) []loader.Sym {
for _, s := range syms {
d.ldr.SetAttrNotInSymbolTable(s, true)
d.ldr.SetAttrReachable(s, true)
}
return syms
}
// Stitch together the results.
for i := 0; i < ncu; i++ {
r := &unitSyms[i]
lineSec.syms = append(lineSec.syms, markReachable(r.linesyms)...)
infoSec.syms = append(infoSec.syms, markReachable(r.infosyms)...)
locSec.syms = append(locSec.syms, markReachable(r.locsyms)...)
rangesSec.syms = append(rangesSec.syms, markReachable(r.rangessyms)...)
}
dwarfp = append(dwarfp, lineSec)
dwarfp = append(dwarfp, frameSec)
gdbScriptSec := d.writegdbscript()
if gdbScriptSec.secSym() != 0 {
dwarfp = append(dwarfp, gdbScriptSec)
}
dwarfp = append(dwarfp, infoSec)
if len(locSec.syms) > 1 {
dwarfp = append(dwarfp, locSec)
}
dwarfp = append(dwarfp, rangesSec)
// Check to make sure we haven't listed any symbols more than once
// in the info section. This used to be done by setting and
// checking the OnList attribute in "putdie", but that strategy
// was not friendly for concurrency.
seen := loader.MakeBitmap(d.ldr.NSym())
for _, s := range infoSec.syms {
if seen.Has(s) {
log.Fatalf("symbol %s listed multiple times", d.ldr.SymName(s))
}
seen.Set(s)
}
}
func (d *dwctxt) collectUnitLocs(u *sym.CompilationUnit) []loader.Sym {
syms := []loader.Sym{}
for _, fn := range u.FuncDIEs {
relocs := d.ldr.Relocs(loader.Sym(fn))
for i := 0; i < relocs.Count(); i++ {
reloc := relocs.At(i)
if reloc.Type() != objabi.R_DWARFSECREF {
continue
}
rsym := reloc.Sym()
if d.ldr.SymType(rsym) == sym.SDWARFLOC {
syms = append(syms, rsym)
// One location list entry per function, but many relocations to it. Don't duplicate.
break
}
}
}
return syms
}
/*
* Elf.
*/
func dwarfaddshstrings(ctxt *Link, shstrtab *loader.SymbolBuilder) {
if *FlagW { // disable dwarf
return
}
secs := []string{"abbrev", "frame", "info", "loc", "line", "gdb_scripts", "ranges"}
for _, sec := range secs {
shstrtab.Addstring(".debug_" + sec)
if ctxt.IsExternal() {
shstrtab.Addstring(elfRelType + ".debug_" + sec)
} else {
shstrtab.Addstring(".zdebug_" + sec)
}
}
}
func dwarfaddelfsectionsyms(ctxt *Link) {
if *FlagW { // disable dwarf
return
}
if ctxt.LinkMode != LinkExternal {
return
}
ldr := ctxt.loader
for _, si := range dwarfp {
s := si.secSym()
sect := ldr.SymSect(si.secSym())
putelfsectionsym(ctxt, ctxt.Out, s, sect.Elfsect.(*ElfShdr).shnum)
}
}
// dwarfcompress compresses the DWARF sections. Relocations are applied
// on the fly. After this, dwarfp will contain a different (new) set of
// symbols, and sections may have been replaced.
func dwarfcompress(ctxt *Link) {
// compressedSect is a helper type for parallelizing compression.
type compressedSect struct {
index int
compressed []byte
syms []loader.Sym
}
supported := ctxt.IsELF || ctxt.IsWindows() || ctxt.IsDarwin()
if !ctxt.compressDWARF || !supported || ctxt.IsExternal() {
return
}
var compressedCount int
resChannel := make(chan compressedSect)
for i := range dwarfp {
go func(resIndex int, syms []loader.Sym) {
resChannel <- compressedSect{resIndex, compressSyms(ctxt, syms), syms}
}(compressedCount, dwarfp[i].syms)
compressedCount++
}
res := make([]compressedSect, compressedCount)
for ; compressedCount > 0; compressedCount-- {
r := <-resChannel
res[r.index] = r
}
ldr := ctxt.loader
var newDwarfp []dwarfSecInfo
Segdwarf.Sections = Segdwarf.Sections[:0]
for _, z := range res {
s := z.syms[0]
if z.compressed == nil {
// Compression didn't help.
ds := dwarfSecInfo{syms: z.syms}
newDwarfp = append(newDwarfp, ds)
Segdwarf.Sections = append(Segdwarf.Sections, ldr.SymSect(s))
} else {
var compressedSegName string
if ctxt.IsELF {
compressedSegName = ldr.SymSect(s).Name
} else {
compressedSegName = ".zdebug_" + ldr.SymSect(s).Name[len(".debug_"):]
}
sect := addsection(ctxt.loader, ctxt.Arch, &Segdwarf, compressedSegName, 04)
sect.Align = int32(ctxt.Arch.Alignment)
sect.Length = uint64(len(z.compressed))
sect.Compressed = true
newSym := ldr.MakeSymbolBuilder(compressedSegName)
ldr.SetAttrReachable(s, true)
newSym.SetData(z.compressed)
newSym.SetSize(int64(len(z.compressed)))
ldr.SetSymSect(newSym.Sym(), sect)
ds := dwarfSecInfo{syms: []loader.Sym{newSym.Sym()}}
newDwarfp = append(newDwarfp, ds)
// compressed symbols are no longer needed.
for _, s := range z.syms {
ldr.SetAttrReachable(s, false)
ldr.FreeSym(s)
}
}
}
dwarfp = newDwarfp
// Re-compute the locations of the compressed DWARF symbols
// and sections, since the layout of these within the file is
// based on Section.Vaddr and Symbol.Value.
pos := Segdwarf.Vaddr
var prevSect *sym.Section
for _, si := range dwarfp {
for _, s := range si.syms {
ldr.SetSymValue(s, int64(pos))
sect := ldr.SymSect(s)
if sect != prevSect {
sect.Vaddr = uint64(pos)
prevSect = sect
}
if ldr.SubSym(s) != 0 {
log.Fatalf("%s: unexpected sub-symbols", ldr.SymName(s))
}
pos += uint64(ldr.SymSize(s))
if ctxt.IsWindows() {
pos = uint64(Rnd(int64(pos), PEFILEALIGN))
}
}
}
Segdwarf.Length = pos - Segdwarf.Vaddr
}
type compilationUnitByStartPC []*sym.CompilationUnit
func (v compilationUnitByStartPC) Len() int { return len(v) }
func (v compilationUnitByStartPC) Swap(i, j int) { v[i], v[j] = v[j], v[i] }
func (v compilationUnitByStartPC) Less(i, j int) bool {
switch {
case len(v[i].Textp) == 0 && len(v[j].Textp) == 0:
return v[i].Lib.Pkg < v[j].Lib.Pkg
case len(v[i].Textp) != 0 && len(v[j].Textp) == 0:
return true
case len(v[i].Textp) == 0 && len(v[j].Textp) != 0:
return false
default:
return v[i].PCs[0].Start < v[j].PCs[0].Start
}
}
// getPkgFromCUSym returns the package name for the compilation unit
// represented by s.
// The prefix dwarf.InfoPrefix+".pkg." needs to be removed in order to get
// the package name.
func (d *dwctxt) getPkgFromCUSym(s loader.Sym) string {
return strings.TrimPrefix(d.ldr.SymName(s), dwarf.InfoPrefix+".pkg.")
}
// On AIX, the symbol table needs to know where are the compilation units parts
// for a specific package in each .dw section.
// dwsectCUSize map will save the size of a compilation unit for
// the corresponding .dw section.
// This size can later be retrieved with the index "sectionName.pkgName".
var dwsectCUSizeMu sync.Mutex
var dwsectCUSize map[string]uint64
// getDwsectCUSize retrieves the corresponding package size inside the current section.
func getDwsectCUSize(sname string, pkgname string) uint64 {
return dwsectCUSize[sname+"."+pkgname]
}
func addDwsectCUSize(sname string, pkgname string, size uint64) {
dwsectCUSizeMu.Lock()
defer dwsectCUSizeMu.Unlock()
dwsectCUSize[sname+"."+pkgname] += size
}
|