1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
|
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ld
import (
"cmd/internal/sys"
"cmd/link/internal/loader"
"encoding/binary"
"errors"
"log"
"os"
)
// If fallocate is not supported on this platform, return this error. The error
// is ignored where needed, and OutBuf writes to heap memory.
var errNoFallocate = errors.New("operation not supported")
const outbufMode = 0775
// OutBuf is a buffered file writer.
//
// It is similar to the Writer in cmd/internal/bio with a few small differences.
//
// First, it tracks the output architecture and uses it to provide
// endian helpers.
//
// Second, it provides a very cheap offset counter that doesn't require
// any system calls to read the value.
//
// Third, it also mmaps the output file (if available). The intended usage is:
// - Mmap the output file
// - Write the content
// - possibly apply any edits in the output buffer
// - possibly write more content to the file. These writes take place in a heap
// backed buffer that will get synced to disk.
// - Munmap the output file
//
// And finally, it provides a mechanism by which you can multithread the
// writing of output files. This mechanism is accomplished by copying a OutBuf,
// and using it in the thread/goroutine.
//
// Parallel OutBuf is intended to be used like:
//
// func write(out *OutBuf) {
// var wg sync.WaitGroup
// for i := 0; i < 10; i++ {
// wg.Add(1)
// view, err := out.View(start[i])
// if err != nil {
// // handle output
// continue
// }
// go func(out *OutBuf, i int) {
// // do output
// wg.Done()
// }(view, i)
// }
// wg.Wait()
// }
type OutBuf struct {
arch *sys.Arch
off int64
buf []byte // backing store of mmap'd output file
heap []byte // backing store for non-mmapped data
name string
f *os.File
encbuf [8]byte // temp buffer used by WriteN methods
isView bool // true if created from View()
}
func (out *OutBuf) Open(name string) error {
if out.f != nil {
return errors.New("cannot open more than one file")
}
f, err := os.OpenFile(name, os.O_RDWR|os.O_CREATE|os.O_TRUNC, outbufMode)
if err != nil {
return err
}
out.off = 0
out.name = name
out.f = f
return nil
}
func NewOutBuf(arch *sys.Arch) *OutBuf {
return &OutBuf{
arch: arch,
}
}
var viewError = errors.New("output not mmapped")
func (out *OutBuf) View(start uint64) (*OutBuf, error) {
return &OutBuf{
arch: out.arch,
name: out.name,
buf: out.buf,
heap: out.heap,
off: int64(start),
isView: true,
}, nil
}
var viewCloseError = errors.New("cannot Close OutBuf from View")
func (out *OutBuf) Close() error {
if out.isView {
return viewCloseError
}
if out.isMmapped() {
out.copyHeap()
out.purgeSignatureCache()
out.munmap()
}
if out.f == nil {
return nil
}
if len(out.heap) != 0 {
if _, err := out.f.Write(out.heap); err != nil {
return err
}
}
if err := out.f.Close(); err != nil {
return err
}
out.f = nil
return nil
}
// ErrorClose closes the output file (if any).
// It is supposed to be called only at exit on error, so it doesn't do
// any clean up or buffer flushing, just closes the file.
func (out *OutBuf) ErrorClose() {
if out.isView {
panic(viewCloseError)
}
if out.f == nil {
return
}
out.f.Close() // best effort, ignore error
out.f = nil
}
// isMmapped returns true if the OutBuf is mmaped.
func (out *OutBuf) isMmapped() bool {
return len(out.buf) != 0
}
// Data returns the whole written OutBuf as a byte slice.
func (out *OutBuf) Data() []byte {
if out.isMmapped() {
out.copyHeap()
return out.buf
}
return out.heap
}
// copyHeap copies the heap to the mmapped section of memory, returning true if
// a copy takes place.
func (out *OutBuf) copyHeap() bool {
if !out.isMmapped() { // only valuable for mmapped OutBufs.
return false
}
if out.isView {
panic("can't copyHeap a view")
}
bufLen := len(out.buf)
heapLen := len(out.heap)
total := uint64(bufLen + heapLen)
if heapLen != 0 {
if err := out.Mmap(total); err != nil { // Mmap will copy out.heap over to out.buf
Exitf("mapping output file failed: %v", err)
}
}
return true
}
// maxOutBufHeapLen limits the growth of the heap area.
const maxOutBufHeapLen = 10 << 20
// writeLoc determines the write location if a buffer is mmaped.
// We maintain two write buffers, an mmapped section, and a heap section for
// writing. When the mmapped section is full, we switch over the heap memory
// for writing.
func (out *OutBuf) writeLoc(lenToWrite int64) (int64, []byte) {
// See if we have enough space in the mmaped area.
bufLen := int64(len(out.buf))
if out.off+lenToWrite <= bufLen {
return out.off, out.buf
}
// Not enough space in the mmaped area, write to heap area instead.
heapPos := out.off - bufLen
heapLen := int64(len(out.heap))
lenNeeded := heapPos + lenToWrite
if lenNeeded > heapLen { // do we need to grow the heap storage?
// The heap variables aren't protected by a mutex. For now, just bomb if you
// try to use OutBuf in parallel. (Note this probably could be fixed.)
if out.isView {
panic("cannot write to heap in parallel")
}
// See if our heap would grow to be too large, and if so, copy it to the end
// of the mmapped area.
if heapLen > maxOutBufHeapLen && out.copyHeap() {
heapPos -= heapLen
lenNeeded = heapPos + lenToWrite
heapLen = 0
}
out.heap = append(out.heap, make([]byte, lenNeeded-heapLen)...)
}
return heapPos, out.heap
}
func (out *OutBuf) SeekSet(p int64) {
out.off = p
}
func (out *OutBuf) Offset() int64 {
return out.off
}
// Write writes the contents of v to the buffer.
func (out *OutBuf) Write(v []byte) (int, error) {
n := len(v)
pos, buf := out.writeLoc(int64(n))
copy(buf[pos:], v)
out.off += int64(n)
return n, nil
}
func (out *OutBuf) Write8(v uint8) {
pos, buf := out.writeLoc(1)
buf[pos] = v
out.off++
}
// WriteByte is an alias for Write8 to fulfill the io.ByteWriter interface.
func (out *OutBuf) WriteByte(v byte) error {
out.Write8(v)
return nil
}
func (out *OutBuf) Write16(v uint16) {
out.arch.ByteOrder.PutUint16(out.encbuf[:], v)
out.Write(out.encbuf[:2])
}
func (out *OutBuf) Write32(v uint32) {
out.arch.ByteOrder.PutUint32(out.encbuf[:], v)
out.Write(out.encbuf[:4])
}
func (out *OutBuf) Write32b(v uint32) {
binary.BigEndian.PutUint32(out.encbuf[:], v)
out.Write(out.encbuf[:4])
}
func (out *OutBuf) Write64(v uint64) {
out.arch.ByteOrder.PutUint64(out.encbuf[:], v)
out.Write(out.encbuf[:8])
}
func (out *OutBuf) Write64b(v uint64) {
binary.BigEndian.PutUint64(out.encbuf[:], v)
out.Write(out.encbuf[:8])
}
func (out *OutBuf) WriteString(s string) {
pos, buf := out.writeLoc(int64(len(s)))
n := copy(buf[pos:], s)
if n != len(s) {
log.Fatalf("WriteString truncated. buffer size: %d, offset: %d, len(s)=%d", len(out.buf), out.off, len(s))
}
out.off += int64(n)
}
// WriteStringN writes the first n bytes of s.
// If n is larger than len(s) then it is padded with zero bytes.
func (out *OutBuf) WriteStringN(s string, n int) {
out.WriteStringPad(s, n, zeros[:])
}
// WriteStringPad writes the first n bytes of s.
// If n is larger than len(s) then it is padded with the bytes in pad (repeated as needed).
func (out *OutBuf) WriteStringPad(s string, n int, pad []byte) {
if len(s) >= n {
out.WriteString(s[:n])
} else {
out.WriteString(s)
n -= len(s)
for n > len(pad) {
out.Write(pad)
n -= len(pad)
}
out.Write(pad[:n])
}
}
// WriteSym writes the content of a Symbol, and returns the output buffer
// that we just wrote, so we can apply further edit to the symbol content.
// For generator symbols, it also sets the symbol's Data to the output
// buffer.
func (out *OutBuf) WriteSym(ldr *loader.Loader, s loader.Sym) []byte {
if !ldr.IsGeneratedSym(s) {
P := ldr.Data(s)
n := int64(len(P))
pos, buf := out.writeLoc(n)
copy(buf[pos:], P)
out.off += n
ldr.FreeData(s)
return buf[pos : pos+n]
} else {
n := ldr.SymSize(s)
pos, buf := out.writeLoc(n)
out.off += n
ldr.MakeSymbolUpdater(s).SetData(buf[pos : pos+n])
return buf[pos : pos+n]
}
}
|