summaryrefslogtreecommitdiffstats
path: root/src/crypto/ed25519/ed25519.go
blob: d43dd12d083dfba6869840085d6641de0faa17ae (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Package ed25519 implements the Ed25519 signature algorithm. See
// https://ed25519.cr.yp.to/.
//
// These functions are also compatible with the “Ed25519” function defined in
// RFC 8032. However, unlike RFC 8032's formulation, this package's private key
// representation includes a public key suffix to make multiple signing
// operations with the same key more efficient. This package refers to the RFC
// 8032 private key as the “seed”.
package ed25519

import (
	"bytes"
	"crypto"
	"crypto/internal/edwards25519"
	cryptorand "crypto/rand"
	"crypto/sha512"
	"errors"
	"io"
	"strconv"
)

const (
	// PublicKeySize is the size, in bytes, of public keys as used in this package.
	PublicKeySize = 32
	// PrivateKeySize is the size, in bytes, of private keys as used in this package.
	PrivateKeySize = 64
	// SignatureSize is the size, in bytes, of signatures generated and verified by this package.
	SignatureSize = 64
	// SeedSize is the size, in bytes, of private key seeds. These are the private key representations used by RFC 8032.
	SeedSize = 32
)

// PublicKey is the type of Ed25519 public keys.
type PublicKey []byte

// Any methods implemented on PublicKey might need to also be implemented on
// PrivateKey, as the latter embeds the former and will expose its methods.

// Equal reports whether pub and x have the same value.
func (pub PublicKey) Equal(x crypto.PublicKey) bool {
	xx, ok := x.(PublicKey)
	if !ok {
		return false
	}
	return bytes.Equal(pub, xx)
}

// PrivateKey is the type of Ed25519 private keys. It implements crypto.Signer.
type PrivateKey []byte

// Public returns the PublicKey corresponding to priv.
func (priv PrivateKey) Public() crypto.PublicKey {
	publicKey := make([]byte, PublicKeySize)
	copy(publicKey, priv[32:])
	return PublicKey(publicKey)
}

// Equal reports whether priv and x have the same value.
func (priv PrivateKey) Equal(x crypto.PrivateKey) bool {
	xx, ok := x.(PrivateKey)
	if !ok {
		return false
	}
	return bytes.Equal(priv, xx)
}

// Seed returns the private key seed corresponding to priv. It is provided for
// interoperability with RFC 8032. RFC 8032's private keys correspond to seeds
// in this package.
func (priv PrivateKey) Seed() []byte {
	seed := make([]byte, SeedSize)
	copy(seed, priv[:32])
	return seed
}

// Sign signs the given message with priv.
// Ed25519 performs two passes over messages to be signed and therefore cannot
// handle pre-hashed messages. Thus opts.HashFunc() must return zero to
// indicate the message hasn't been hashed. This can be achieved by passing
// crypto.Hash(0) as the value for opts.
func (priv PrivateKey) Sign(rand io.Reader, message []byte, opts crypto.SignerOpts) (signature []byte, err error) {
	if opts.HashFunc() != crypto.Hash(0) {
		return nil, errors.New("ed25519: cannot sign hashed message")
	}

	return Sign(priv, message), nil
}

// GenerateKey generates a public/private key pair using entropy from rand.
// If rand is nil, crypto/rand.Reader will be used.
func GenerateKey(rand io.Reader) (PublicKey, PrivateKey, error) {
	if rand == nil {
		rand = cryptorand.Reader
	}

	seed := make([]byte, SeedSize)
	if _, err := io.ReadFull(rand, seed); err != nil {
		return nil, nil, err
	}

	privateKey := NewKeyFromSeed(seed)
	publicKey := make([]byte, PublicKeySize)
	copy(publicKey, privateKey[32:])

	return publicKey, privateKey, nil
}

// NewKeyFromSeed calculates a private key from a seed. It will panic if
// len(seed) is not SeedSize. This function is provided for interoperability
// with RFC 8032. RFC 8032's private keys correspond to seeds in this
// package.
func NewKeyFromSeed(seed []byte) PrivateKey {
	// Outline the function body so that the returned key can be stack-allocated.
	privateKey := make([]byte, PrivateKeySize)
	newKeyFromSeed(privateKey, seed)
	return privateKey
}

func newKeyFromSeed(privateKey, seed []byte) {
	if l := len(seed); l != SeedSize {
		panic("ed25519: bad seed length: " + strconv.Itoa(l))
	}

	h := sha512.Sum512(seed)
	s, err := edwards25519.NewScalar().SetBytesWithClamping(h[:32])
	if err != nil {
		panic("ed25519: internal error: setting scalar failed")
	}
	A := (&edwards25519.Point{}).ScalarBaseMult(s)

	publicKey := A.Bytes()

	copy(privateKey, seed)
	copy(privateKey[32:], publicKey)
}

// Sign signs the message with privateKey and returns a signature. It will
// panic if len(privateKey) is not PrivateKeySize.
func Sign(privateKey PrivateKey, message []byte) []byte {
	// Outline the function body so that the returned signature can be
	// stack-allocated.
	signature := make([]byte, SignatureSize)
	sign(signature, privateKey, message)
	return signature
}

func sign(signature, privateKey, message []byte) {
	if l := len(privateKey); l != PrivateKeySize {
		panic("ed25519: bad private key length: " + strconv.Itoa(l))
	}
	seed, publicKey := privateKey[:SeedSize], privateKey[SeedSize:]

	h := sha512.Sum512(seed)
	s, err := edwards25519.NewScalar().SetBytesWithClamping(h[:32])
	if err != nil {
		panic("ed25519: internal error: setting scalar failed")
	}
	prefix := h[32:]

	mh := sha512.New()
	mh.Write(prefix)
	mh.Write(message)
	messageDigest := make([]byte, 0, sha512.Size)
	messageDigest = mh.Sum(messageDigest)
	r, err := edwards25519.NewScalar().SetUniformBytes(messageDigest)
	if err != nil {
		panic("ed25519: internal error: setting scalar failed")
	}

	R := (&edwards25519.Point{}).ScalarBaseMult(r)

	kh := sha512.New()
	kh.Write(R.Bytes())
	kh.Write(publicKey)
	kh.Write(message)
	hramDigest := make([]byte, 0, sha512.Size)
	hramDigest = kh.Sum(hramDigest)
	k, err := edwards25519.NewScalar().SetUniformBytes(hramDigest)
	if err != nil {
		panic("ed25519: internal error: setting scalar failed")
	}

	S := edwards25519.NewScalar().MultiplyAdd(k, s, r)

	copy(signature[:32], R.Bytes())
	copy(signature[32:], S.Bytes())
}

// Verify reports whether sig is a valid signature of message by publicKey. It
// will panic if len(publicKey) is not PublicKeySize.
func Verify(publicKey PublicKey, message, sig []byte) bool {
	if l := len(publicKey); l != PublicKeySize {
		panic("ed25519: bad public key length: " + strconv.Itoa(l))
	}

	if len(sig) != SignatureSize || sig[63]&224 != 0 {
		return false
	}

	A, err := (&edwards25519.Point{}).SetBytes(publicKey)
	if err != nil {
		return false
	}

	kh := sha512.New()
	kh.Write(sig[:32])
	kh.Write(publicKey)
	kh.Write(message)
	hramDigest := make([]byte, 0, sha512.Size)
	hramDigest = kh.Sum(hramDigest)
	k, err := edwards25519.NewScalar().SetUniformBytes(hramDigest)
	if err != nil {
		panic("ed25519: internal error: setting scalar failed")
	}

	S, err := edwards25519.NewScalar().SetCanonicalBytes(sig[32:])
	if err != nil {
		return false
	}

	// [S]B = R + [k]A --> [k](-A) + [S]B = R
	minusA := (&edwards25519.Point{}).Negate(A)
	R := (&edwards25519.Point{}).VarTimeDoubleScalarBaseMult(k, minusA, S)

	return bytes.Equal(sig[:32], R.Bytes())
}