summaryrefslogtreecommitdiffstats
path: root/src/image/draw/draw_test.go
blob: a34d1c3e6e8ab95778fcc4dea657e1a20e68b58b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package draw

import (
	"image"
	"image/color"
	"image/png"
	"os"
	"testing"
	"testing/quick"
)

// slowestRGBA is a draw.Image like image.RGBA but it is a different type and
// therefore does not trigger the draw.go fastest code paths.
//
// Unlike slowerRGBA, it does not implement the draw.RGBA64Image interface.
type slowestRGBA struct {
	Pix    []uint8
	Stride int
	Rect   image.Rectangle
}

func (p *slowestRGBA) ColorModel() color.Model { return color.RGBAModel }

func (p *slowestRGBA) Bounds() image.Rectangle { return p.Rect }

func (p *slowestRGBA) At(x, y int) color.Color {
	return p.RGBA64At(x, y)
}

func (p *slowestRGBA) RGBA64At(x, y int) color.RGBA64 {
	if !(image.Point{x, y}.In(p.Rect)) {
		return color.RGBA64{}
	}
	i := p.PixOffset(x, y)
	s := p.Pix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857
	r := uint16(s[0])
	g := uint16(s[1])
	b := uint16(s[2])
	a := uint16(s[3])
	return color.RGBA64{
		(r << 8) | r,
		(g << 8) | g,
		(b << 8) | b,
		(a << 8) | a,
	}
}

func (p *slowestRGBA) Set(x, y int, c color.Color) {
	if !(image.Point{x, y}.In(p.Rect)) {
		return
	}
	i := p.PixOffset(x, y)
	c1 := color.RGBAModel.Convert(c).(color.RGBA)
	s := p.Pix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857
	s[0] = c1.R
	s[1] = c1.G
	s[2] = c1.B
	s[3] = c1.A
}

func (p *slowestRGBA) PixOffset(x, y int) int {
	return (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*4
}

func convertToSlowestRGBA(m image.Image) *slowestRGBA {
	if rgba, ok := m.(*image.RGBA); ok {
		return &slowestRGBA{
			Pix:    append([]byte(nil), rgba.Pix...),
			Stride: rgba.Stride,
			Rect:   rgba.Rect,
		}
	}
	rgba := image.NewRGBA(m.Bounds())
	Draw(rgba, rgba.Bounds(), m, m.Bounds().Min, Src)
	return &slowestRGBA{
		Pix:    rgba.Pix,
		Stride: rgba.Stride,
		Rect:   rgba.Rect,
	}
}

func init() {
	var p any = (*slowestRGBA)(nil)
	if _, ok := p.(RGBA64Image); ok {
		panic("slowestRGBA should not be an RGBA64Image")
	}
}

// slowerRGBA is a draw.Image like image.RGBA but it is a different type and
// therefore does not trigger the draw.go fastest code paths.
//
// Unlike slowestRGBA, it still implements the draw.RGBA64Image interface.
type slowerRGBA struct {
	Pix    []uint8
	Stride int
	Rect   image.Rectangle
}

func (p *slowerRGBA) ColorModel() color.Model { return color.RGBAModel }

func (p *slowerRGBA) Bounds() image.Rectangle { return p.Rect }

func (p *slowerRGBA) At(x, y int) color.Color {
	return p.RGBA64At(x, y)
}

func (p *slowerRGBA) RGBA64At(x, y int) color.RGBA64 {
	if !(image.Point{x, y}.In(p.Rect)) {
		return color.RGBA64{}
	}
	i := p.PixOffset(x, y)
	s := p.Pix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857
	r := uint16(s[0])
	g := uint16(s[1])
	b := uint16(s[2])
	a := uint16(s[3])
	return color.RGBA64{
		(r << 8) | r,
		(g << 8) | g,
		(b << 8) | b,
		(a << 8) | a,
	}
}

func (p *slowerRGBA) Set(x, y int, c color.Color) {
	if !(image.Point{x, y}.In(p.Rect)) {
		return
	}
	i := p.PixOffset(x, y)
	c1 := color.RGBAModel.Convert(c).(color.RGBA)
	s := p.Pix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857
	s[0] = c1.R
	s[1] = c1.G
	s[2] = c1.B
	s[3] = c1.A
}

func (p *slowerRGBA) SetRGBA64(x, y int, c color.RGBA64) {
	if !(image.Point{x, y}.In(p.Rect)) {
		return
	}
	i := p.PixOffset(x, y)
	s := p.Pix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857
	s[0] = uint8(c.R >> 8)
	s[1] = uint8(c.G >> 8)
	s[2] = uint8(c.B >> 8)
	s[3] = uint8(c.A >> 8)
}

func (p *slowerRGBA) PixOffset(x, y int) int {
	return (y-p.Rect.Min.Y)*p.Stride + (x-p.Rect.Min.X)*4
}

func convertToSlowerRGBA(m image.Image) *slowerRGBA {
	if rgba, ok := m.(*image.RGBA); ok {
		return &slowerRGBA{
			Pix:    append([]byte(nil), rgba.Pix...),
			Stride: rgba.Stride,
			Rect:   rgba.Rect,
		}
	}
	rgba := image.NewRGBA(m.Bounds())
	Draw(rgba, rgba.Bounds(), m, m.Bounds().Min, Src)
	return &slowerRGBA{
		Pix:    rgba.Pix,
		Stride: rgba.Stride,
		Rect:   rgba.Rect,
	}
}

func init() {
	var p any = (*slowerRGBA)(nil)
	if _, ok := p.(RGBA64Image); !ok {
		panic("slowerRGBA should be an RGBA64Image")
	}
}

func eq(c0, c1 color.Color) bool {
	r0, g0, b0, a0 := c0.RGBA()
	r1, g1, b1, a1 := c1.RGBA()
	return r0 == r1 && g0 == g1 && b0 == b1 && a0 == a1
}

func fillBlue(alpha int) image.Image {
	return image.NewUniform(color.RGBA{0, 0, uint8(alpha), uint8(alpha)})
}

func fillAlpha(alpha int) image.Image {
	return image.NewUniform(color.Alpha{uint8(alpha)})
}

func vgradGreen(alpha int) image.Image {
	m := image.NewRGBA(image.Rect(0, 0, 16, 16))
	for y := 0; y < 16; y++ {
		for x := 0; x < 16; x++ {
			m.Set(x, y, color.RGBA{0, uint8(y * alpha / 15), 0, uint8(alpha)})
		}
	}
	return m
}

func vgradAlpha(alpha int) image.Image {
	m := image.NewAlpha(image.Rect(0, 0, 16, 16))
	for y := 0; y < 16; y++ {
		for x := 0; x < 16; x++ {
			m.Set(x, y, color.Alpha{uint8(y * alpha / 15)})
		}
	}
	return m
}

func vgradGreenNRGBA(alpha int) image.Image {
	m := image.NewNRGBA(image.Rect(0, 0, 16, 16))
	for y := 0; y < 16; y++ {
		for x := 0; x < 16; x++ {
			m.Set(x, y, color.RGBA{0, uint8(y * 0x11), 0, uint8(alpha)})
		}
	}
	return m
}

func vgradCr() image.Image {
	m := &image.YCbCr{
		Y:              make([]byte, 16*16),
		Cb:             make([]byte, 16*16),
		Cr:             make([]byte, 16*16),
		YStride:        16,
		CStride:        16,
		SubsampleRatio: image.YCbCrSubsampleRatio444,
		Rect:           image.Rect(0, 0, 16, 16),
	}
	for y := 0; y < 16; y++ {
		for x := 0; x < 16; x++ {
			m.Cr[y*m.CStride+x] = uint8(y * 0x11)
		}
	}
	return m
}

func vgradGray() image.Image {
	m := image.NewGray(image.Rect(0, 0, 16, 16))
	for y := 0; y < 16; y++ {
		for x := 0; x < 16; x++ {
			m.Set(x, y, color.Gray{uint8(y * 0x11)})
		}
	}
	return m
}

func vgradMagenta() image.Image {
	m := image.NewCMYK(image.Rect(0, 0, 16, 16))
	for y := 0; y < 16; y++ {
		for x := 0; x < 16; x++ {
			m.Set(x, y, color.CMYK{0, uint8(y * 0x11), 0, 0x3f})
		}
	}
	return m
}

func hgradRed(alpha int) Image {
	m := image.NewRGBA(image.Rect(0, 0, 16, 16))
	for y := 0; y < 16; y++ {
		for x := 0; x < 16; x++ {
			m.Set(x, y, color.RGBA{uint8(x * alpha / 15), 0, 0, uint8(alpha)})
		}
	}
	return m
}

func gradYellow(alpha int) Image {
	m := image.NewRGBA(image.Rect(0, 0, 16, 16))
	for y := 0; y < 16; y++ {
		for x := 0; x < 16; x++ {
			m.Set(x, y, color.RGBA{uint8(x * alpha / 15), uint8(y * alpha / 15), 0, uint8(alpha)})
		}
	}
	return m
}

type drawTest struct {
	desc     string
	src      image.Image
	mask     image.Image
	op       Op
	expected color.Color
}

var drawTests = []drawTest{
	// Uniform mask (0% opaque).
	{"nop", vgradGreen(255), fillAlpha(0), Over, color.RGBA{136, 0, 0, 255}},
	{"clear", vgradGreen(255), fillAlpha(0), Src, color.RGBA{0, 0, 0, 0}},
	// Uniform mask (100%, 75%, nil) and uniform source.
	// At (x, y) == (8, 8):
	// The destination pixel is {136, 0, 0, 255}.
	// The source pixel is {0, 0, 90, 90}.
	{"fill", fillBlue(90), fillAlpha(255), Over, color.RGBA{88, 0, 90, 255}},
	{"fillSrc", fillBlue(90), fillAlpha(255), Src, color.RGBA{0, 0, 90, 90}},
	{"fillAlpha", fillBlue(90), fillAlpha(192), Over, color.RGBA{100, 0, 68, 255}},
	{"fillAlphaSrc", fillBlue(90), fillAlpha(192), Src, color.RGBA{0, 0, 68, 68}},
	{"fillNil", fillBlue(90), nil, Over, color.RGBA{88, 0, 90, 255}},
	{"fillNilSrc", fillBlue(90), nil, Src, color.RGBA{0, 0, 90, 90}},
	// Uniform mask (100%, 75%, nil) and variable source.
	// At (x, y) == (8, 8):
	// The destination pixel is {136, 0, 0, 255}.
	// The source pixel is {0, 48, 0, 90}.
	{"copy", vgradGreen(90), fillAlpha(255), Over, color.RGBA{88, 48, 0, 255}},
	{"copySrc", vgradGreen(90), fillAlpha(255), Src, color.RGBA{0, 48, 0, 90}},
	{"copyAlpha", vgradGreen(90), fillAlpha(192), Over, color.RGBA{100, 36, 0, 255}},
	{"copyAlphaSrc", vgradGreen(90), fillAlpha(192), Src, color.RGBA{0, 36, 0, 68}},
	{"copyNil", vgradGreen(90), nil, Over, color.RGBA{88, 48, 0, 255}},
	{"copyNilSrc", vgradGreen(90), nil, Src, color.RGBA{0, 48, 0, 90}},
	// Uniform mask (100%, 75%, nil) and variable NRGBA source.
	// At (x, y) == (8, 8):
	// The destination pixel is {136, 0, 0, 255}.
	// The source pixel is {0, 136, 0, 90} in NRGBA-space, which is {0, 48, 0, 90} in RGBA-space.
	// The result pixel is different than in the "copy*" test cases because of rounding errors.
	{"nrgba", vgradGreenNRGBA(90), fillAlpha(255), Over, color.RGBA{88, 46, 0, 255}},
	{"nrgbaSrc", vgradGreenNRGBA(90), fillAlpha(255), Src, color.RGBA{0, 46, 0, 90}},
	{"nrgbaAlpha", vgradGreenNRGBA(90), fillAlpha(192), Over, color.RGBA{100, 34, 0, 255}},
	{"nrgbaAlphaSrc", vgradGreenNRGBA(90), fillAlpha(192), Src, color.RGBA{0, 34, 0, 68}},
	{"nrgbaNil", vgradGreenNRGBA(90), nil, Over, color.RGBA{88, 46, 0, 255}},
	{"nrgbaNilSrc", vgradGreenNRGBA(90), nil, Src, color.RGBA{0, 46, 0, 90}},
	// Uniform mask (100%, 75%, nil) and variable YCbCr source.
	// At (x, y) == (8, 8):
	// The destination pixel is {136, 0, 0, 255}.
	// The source pixel is {0, 0, 136} in YCbCr-space, which is {11, 38, 0, 255} in RGB-space.
	{"ycbcr", vgradCr(), fillAlpha(255), Over, color.RGBA{11, 38, 0, 255}},
	{"ycbcrSrc", vgradCr(), fillAlpha(255), Src, color.RGBA{11, 38, 0, 255}},
	{"ycbcrAlpha", vgradCr(), fillAlpha(192), Over, color.RGBA{42, 28, 0, 255}},
	{"ycbcrAlphaSrc", vgradCr(), fillAlpha(192), Src, color.RGBA{8, 28, 0, 192}},
	{"ycbcrNil", vgradCr(), nil, Over, color.RGBA{11, 38, 0, 255}},
	{"ycbcrNilSrc", vgradCr(), nil, Src, color.RGBA{11, 38, 0, 255}},
	// Uniform mask (100%, 75%, nil) and variable Gray source.
	// At (x, y) == (8, 8):
	// The destination pixel is {136, 0, 0, 255}.
	// The source pixel is {136} in Gray-space, which is {136, 136, 136, 255} in RGBA-space.
	{"gray", vgradGray(), fillAlpha(255), Over, color.RGBA{136, 136, 136, 255}},
	{"graySrc", vgradGray(), fillAlpha(255), Src, color.RGBA{136, 136, 136, 255}},
	{"grayAlpha", vgradGray(), fillAlpha(192), Over, color.RGBA{136, 102, 102, 255}},
	{"grayAlphaSrc", vgradGray(), fillAlpha(192), Src, color.RGBA{102, 102, 102, 192}},
	{"grayNil", vgradGray(), nil, Over, color.RGBA{136, 136, 136, 255}},
	{"grayNilSrc", vgradGray(), nil, Src, color.RGBA{136, 136, 136, 255}},
	// Same again, but with a slowerRGBA source.
	{"graySlower", convertToSlowerRGBA(vgradGray()), fillAlpha(255),
		Over, color.RGBA{136, 136, 136, 255}},
	{"graySrcSlower", convertToSlowerRGBA(vgradGray()), fillAlpha(255),
		Src, color.RGBA{136, 136, 136, 255}},
	{"grayAlphaSlower", convertToSlowerRGBA(vgradGray()), fillAlpha(192),
		Over, color.RGBA{136, 102, 102, 255}},
	{"grayAlphaSrcSlower", convertToSlowerRGBA(vgradGray()), fillAlpha(192),
		Src, color.RGBA{102, 102, 102, 192}},
	{"grayNilSlower", convertToSlowerRGBA(vgradGray()), nil,
		Over, color.RGBA{136, 136, 136, 255}},
	{"grayNilSrcSlower", convertToSlowerRGBA(vgradGray()), nil,
		Src, color.RGBA{136, 136, 136, 255}},
	// Same again, but with a slowestRGBA source.
	{"graySlowest", convertToSlowestRGBA(vgradGray()), fillAlpha(255),
		Over, color.RGBA{136, 136, 136, 255}},
	{"graySrcSlowest", convertToSlowestRGBA(vgradGray()), fillAlpha(255),
		Src, color.RGBA{136, 136, 136, 255}},
	{"grayAlphaSlowest", convertToSlowestRGBA(vgradGray()), fillAlpha(192),
		Over, color.RGBA{136, 102, 102, 255}},
	{"grayAlphaSrcSlowest", convertToSlowestRGBA(vgradGray()), fillAlpha(192),
		Src, color.RGBA{102, 102, 102, 192}},
	{"grayNilSlowest", convertToSlowestRGBA(vgradGray()), nil,
		Over, color.RGBA{136, 136, 136, 255}},
	{"grayNilSrcSlowest", convertToSlowestRGBA(vgradGray()), nil,
		Src, color.RGBA{136, 136, 136, 255}},
	// Uniform mask (100%, 75%, nil) and variable CMYK source.
	// At (x, y) == (8, 8):
	// The destination pixel is {136, 0, 0, 255}.
	// The source pixel is {0, 136, 0, 63} in CMYK-space, which is {192, 89, 192} in RGB-space.
	{"cmyk", vgradMagenta(), fillAlpha(255), Over, color.RGBA{192, 89, 192, 255}},
	{"cmykSrc", vgradMagenta(), fillAlpha(255), Src, color.RGBA{192, 89, 192, 255}},
	{"cmykAlpha", vgradMagenta(), fillAlpha(192), Over, color.RGBA{178, 67, 145, 255}},
	{"cmykAlphaSrc", vgradMagenta(), fillAlpha(192), Src, color.RGBA{145, 67, 145, 192}},
	{"cmykNil", vgradMagenta(), nil, Over, color.RGBA{192, 89, 192, 255}},
	{"cmykNilSrc", vgradMagenta(), nil, Src, color.RGBA{192, 89, 192, 255}},
	// Variable mask and uniform source.
	// At (x, y) == (8, 8):
	// The destination pixel is {136, 0, 0, 255}.
	// The source pixel is {0, 0, 255, 255}.
	// The mask pixel's alpha is 102, or 40%.
	{"generic", fillBlue(255), vgradAlpha(192), Over, color.RGBA{81, 0, 102, 255}},
	{"genericSrc", fillBlue(255), vgradAlpha(192), Src, color.RGBA{0, 0, 102, 102}},
	// Same again, but with a slowerRGBA mask.
	{"genericSlower", fillBlue(255), convertToSlowerRGBA(vgradAlpha(192)),
		Over, color.RGBA{81, 0, 102, 255}},
	{"genericSrcSlower", fillBlue(255), convertToSlowerRGBA(vgradAlpha(192)),
		Src, color.RGBA{0, 0, 102, 102}},
	// Same again, but with a slowestRGBA mask.
	{"genericSlowest", fillBlue(255), convertToSlowestRGBA(vgradAlpha(192)),
		Over, color.RGBA{81, 0, 102, 255}},
	{"genericSrcSlowest", fillBlue(255), convertToSlowestRGBA(vgradAlpha(192)),
		Src, color.RGBA{0, 0, 102, 102}},
	// Variable mask and variable source.
	// At (x, y) == (8, 8):
	// The destination pixel is {136, 0, 0, 255}.
	// The source pixel is:
	//   - {0, 48, 0, 90}.
	//   - {136} in Gray-space, which is {136, 136, 136, 255} in RGBA-space.
	// The mask pixel's alpha is 102, or 40%.
	{"rgbaVariableMaskOver", vgradGreen(90), vgradAlpha(192), Over, color.RGBA{117, 19, 0, 255}},
	{"grayVariableMaskOver", vgradGray(), vgradAlpha(192), Over, color.RGBA{136, 54, 54, 255}},
}

func makeGolden(dst image.Image, r image.Rectangle, src image.Image, sp image.Point, mask image.Image, mp image.Point, op Op) image.Image {
	// Since golden is a newly allocated image, we don't have to check if the
	// input source and mask images and the output golden image overlap.
	b := dst.Bounds()
	sb := src.Bounds()
	mb := image.Rect(-1e9, -1e9, 1e9, 1e9)
	if mask != nil {
		mb = mask.Bounds()
	}
	golden := image.NewRGBA(image.Rect(0, 0, b.Max.X, b.Max.Y))
	for y := r.Min.Y; y < r.Max.Y; y++ {
		sy := y + sp.Y - r.Min.Y
		my := y + mp.Y - r.Min.Y
		for x := r.Min.X; x < r.Max.X; x++ {
			if !(image.Pt(x, y).In(b)) {
				continue
			}
			sx := x + sp.X - r.Min.X
			if !(image.Pt(sx, sy).In(sb)) {
				continue
			}
			mx := x + mp.X - r.Min.X
			if !(image.Pt(mx, my).In(mb)) {
				continue
			}

			const M = 1<<16 - 1
			var dr, dg, db, da uint32
			if op == Over {
				dr, dg, db, da = dst.At(x, y).RGBA()
			}
			sr, sg, sb, sa := src.At(sx, sy).RGBA()
			ma := uint32(M)
			if mask != nil {
				_, _, _, ma = mask.At(mx, my).RGBA()
			}
			a := M - (sa * ma / M)
			golden.Set(x, y, color.RGBA64{
				uint16((dr*a + sr*ma) / M),
				uint16((dg*a + sg*ma) / M),
				uint16((db*a + sb*ma) / M),
				uint16((da*a + sa*ma) / M),
			})
		}
	}
	return golden.SubImage(b)
}

func TestDraw(t *testing.T) {
	rr := []image.Rectangle{
		image.Rect(0, 0, 0, 0),
		image.Rect(0, 0, 16, 16),
		image.Rect(3, 5, 12, 10),
		image.Rect(0, 0, 9, 9),
		image.Rect(8, 8, 16, 16),
		image.Rect(8, 0, 9, 16),
		image.Rect(0, 8, 16, 9),
		image.Rect(8, 8, 9, 9),
		image.Rect(8, 8, 8, 8),
	}
	for _, r := range rr {
	loop:
		for _, test := range drawTests {
			for i := 0; i < 3; i++ {
				dst := hgradRed(255).(*image.RGBA).SubImage(r).(Image)
				// For i != 0, substitute a different-typed dst that will take
				// us off the fastest code paths. We should still get the same
				// result, in terms of final pixel RGBA values.
				switch i {
				case 1:
					dst = convertToSlowerRGBA(dst)
				case 2:
					dst = convertToSlowestRGBA(dst)
				}

				// Draw the (src, mask, op) onto a copy of dst using a slow but obviously correct implementation.
				golden := makeGolden(dst, image.Rect(0, 0, 16, 16), test.src, image.ZP, test.mask, image.ZP, test.op)
				b := dst.Bounds()
				if !b.Eq(golden.Bounds()) {
					t.Errorf("draw %v %s on %T: bounds %v versus %v",
						r, test.desc, dst, dst.Bounds(), golden.Bounds())
					continue
				}
				// Draw the same combination onto the actual dst using the optimized DrawMask implementation.
				DrawMask(dst, image.Rect(0, 0, 16, 16), test.src, image.ZP, test.mask, image.ZP, test.op)
				if image.Pt(8, 8).In(r) {
					// Check that the resultant pixel at (8, 8) matches what we expect
					// (the expected value can be verified by hand).
					if !eq(dst.At(8, 8), test.expected) {
						t.Errorf("draw %v %s on %T: at (8, 8) %v versus %v",
							r, test.desc, dst, dst.At(8, 8), test.expected)
						continue
					}
				}
				// Check that the resultant dst image matches the golden output.
				for y := b.Min.Y; y < b.Max.Y; y++ {
					for x := b.Min.X; x < b.Max.X; x++ {
						if !eq(dst.At(x, y), golden.At(x, y)) {
							t.Errorf("draw %v %s on %T: at (%d, %d), %v versus golden %v",
								r, test.desc, dst, x, y, dst.At(x, y), golden.At(x, y))
							continue loop
						}
					}
				}
			}
		}
	}
}

func TestDrawOverlap(t *testing.T) {
	for _, op := range []Op{Over, Src} {
		for yoff := -2; yoff <= 2; yoff++ {
		loop:
			for xoff := -2; xoff <= 2; xoff++ {
				m := gradYellow(127).(*image.RGBA)
				dst := m.SubImage(image.Rect(5, 5, 10, 10)).(*image.RGBA)
				src := m.SubImage(image.Rect(5+xoff, 5+yoff, 10+xoff, 10+yoff)).(*image.RGBA)
				b := dst.Bounds()
				// Draw the (src, mask, op) onto a copy of dst using a slow but obviously correct implementation.
				golden := makeGolden(dst, b, src, src.Bounds().Min, nil, image.ZP, op)
				if !b.Eq(golden.Bounds()) {
					t.Errorf("drawOverlap xoff=%d,yoff=%d: bounds %v versus %v", xoff, yoff, dst.Bounds(), golden.Bounds())
					continue
				}
				// Draw the same combination onto the actual dst using the optimized DrawMask implementation.
				DrawMask(dst, b, src, src.Bounds().Min, nil, image.ZP, op)
				// Check that the resultant dst image matches the golden output.
				for y := b.Min.Y; y < b.Max.Y; y++ {
					for x := b.Min.X; x < b.Max.X; x++ {
						if !eq(dst.At(x, y), golden.At(x, y)) {
							t.Errorf("drawOverlap xoff=%d,yoff=%d: at (%d, %d), %v versus golden %v", xoff, yoff, x, y, dst.At(x, y), golden.At(x, y))
							continue loop
						}
					}
				}
			}
		}
	}
}

// TestNonZeroSrcPt checks drawing with a non-zero src point parameter.
func TestNonZeroSrcPt(t *testing.T) {
	a := image.NewRGBA(image.Rect(0, 0, 1, 1))
	b := image.NewRGBA(image.Rect(0, 0, 2, 2))
	b.Set(0, 0, color.RGBA{0, 0, 0, 5})
	b.Set(1, 0, color.RGBA{0, 0, 5, 5})
	b.Set(0, 1, color.RGBA{0, 5, 0, 5})
	b.Set(1, 1, color.RGBA{5, 0, 0, 5})
	Draw(a, image.Rect(0, 0, 1, 1), b, image.Pt(1, 1), Over)
	if !eq(color.RGBA{5, 0, 0, 5}, a.At(0, 0)) {
		t.Errorf("non-zero src pt: want %v got %v", color.RGBA{5, 0, 0, 5}, a.At(0, 0))
	}
}

func TestFill(t *testing.T) {
	rr := []image.Rectangle{
		image.Rect(0, 0, 0, 0),
		image.Rect(0, 0, 40, 30),
		image.Rect(10, 0, 40, 30),
		image.Rect(0, 20, 40, 30),
		image.Rect(10, 20, 40, 30),
		image.Rect(10, 20, 15, 25),
		image.Rect(10, 0, 35, 30),
		image.Rect(0, 15, 40, 16),
		image.Rect(24, 24, 25, 25),
		image.Rect(23, 23, 26, 26),
		image.Rect(22, 22, 27, 27),
		image.Rect(21, 21, 28, 28),
		image.Rect(20, 20, 29, 29),
	}
	for _, r := range rr {
		m := image.NewRGBA(image.Rect(0, 0, 40, 30)).SubImage(r).(*image.RGBA)
		b := m.Bounds()
		c := color.RGBA{11, 0, 0, 255}
		src := &image.Uniform{C: c}
		check := func(desc string) {
			for y := b.Min.Y; y < b.Max.Y; y++ {
				for x := b.Min.X; x < b.Max.X; x++ {
					if !eq(c, m.At(x, y)) {
						t.Errorf("%s fill: at (%d, %d), sub-image bounds=%v: want %v got %v", desc, x, y, r, c, m.At(x, y))
						return
					}
				}
			}
		}
		// Draw 1 pixel at a time.
		for y := b.Min.Y; y < b.Max.Y; y++ {
			for x := b.Min.X; x < b.Max.X; x++ {
				DrawMask(m, image.Rect(x, y, x+1, y+1), src, image.ZP, nil, image.ZP, Src)
			}
		}
		check("pixel")
		// Draw 1 row at a time.
		c = color.RGBA{0, 22, 0, 255}
		src = &image.Uniform{C: c}
		for y := b.Min.Y; y < b.Max.Y; y++ {
			DrawMask(m, image.Rect(b.Min.X, y, b.Max.X, y+1), src, image.ZP, nil, image.ZP, Src)
		}
		check("row")
		// Draw 1 column at a time.
		c = color.RGBA{0, 0, 33, 255}
		src = &image.Uniform{C: c}
		for x := b.Min.X; x < b.Max.X; x++ {
			DrawMask(m, image.Rect(x, b.Min.Y, x+1, b.Max.Y), src, image.ZP, nil, image.ZP, Src)
		}
		check("column")
		// Draw the whole image at once.
		c = color.RGBA{44, 55, 66, 77}
		src = &image.Uniform{C: c}
		DrawMask(m, b, src, image.ZP, nil, image.ZP, Src)
		check("whole")
	}
}

func TestDrawSrcNonpremultiplied(t *testing.T) {
	var (
		opaqueGray       = color.NRGBA{0x99, 0x99, 0x99, 0xff}
		transparentBlue  = color.NRGBA{0x00, 0x00, 0xff, 0x00}
		transparentGreen = color.NRGBA{0x00, 0xff, 0x00, 0x00}
		transparentRed   = color.NRGBA{0xff, 0x00, 0x00, 0x00}

		opaqueGray64        = color.NRGBA64{0x9999, 0x9999, 0x9999, 0xffff}
		transparentPurple64 = color.NRGBA64{0xfedc, 0x0000, 0x7654, 0x0000}
	)

	// dst and src are 1x3 images but the dr rectangle (and hence the overlap)
	// is only 1x2. The Draw call should affect dst's pixels at (1, 10) and (2,
	// 10) but the pixel at (0, 10) should be untouched.
	//
	// The src image is entirely transparent (and the Draw operator is Src) so
	// the two touched pixels should be set to transparent colors.
	//
	// In general, Go's color.Color type (and specifically the Color.RGBA
	// method) works in premultiplied alpha, where there's no difference
	// between "transparent blue" and "transparent red". It's all "just
	// transparent" and canonically "transparent black" (all zeroes).
	//
	// However, since the operator is Src (so the pixels are 'copied', not
	// 'blended') and both dst and src images are *image.NRGBA (N stands for
	// Non-premultiplied alpha which *does* distinguish "transparent blue" and
	// "transparent red"), we prefer that this distinction carries through and
	// dst's touched pixels should be transparent blue and transparent green,
	// not just transparent black.
	{
		dst := image.NewNRGBA(image.Rect(0, 10, 3, 11))
		dst.SetNRGBA(0, 10, opaqueGray)
		src := image.NewNRGBA(image.Rect(1, 20, 4, 21))
		src.SetNRGBA(1, 20, transparentBlue)
		src.SetNRGBA(2, 20, transparentGreen)
		src.SetNRGBA(3, 20, transparentRed)

		dr := image.Rect(1, 10, 3, 11)
		Draw(dst, dr, src, image.Point{1, 20}, Src)

		if got, want := dst.At(0, 10), opaqueGray; got != want {
			t.Errorf("At(0, 10):\ngot  %#v\nwant %#v", got, want)
		}
		if got, want := dst.At(1, 10), transparentBlue; got != want {
			t.Errorf("At(1, 10):\ngot  %#v\nwant %#v", got, want)
		}
		if got, want := dst.At(2, 10), transparentGreen; got != want {
			t.Errorf("At(2, 10):\ngot  %#v\nwant %#v", got, want)
		}
	}

	// Check image.NRGBA64 (not image.NRGBA) similarly.
	{
		dst := image.NewNRGBA64(image.Rect(0, 0, 1, 1))
		dst.SetNRGBA64(0, 0, opaqueGray64)
		src := image.NewNRGBA64(image.Rect(0, 0, 1, 1))
		src.SetNRGBA64(0, 0, transparentPurple64)
		Draw(dst, dst.Bounds(), src, image.Point{0, 0}, Src)
		if got, want := dst.At(0, 0), transparentPurple64; got != want {
			t.Errorf("At(0, 0):\ngot  %#v\nwant %#v", got, want)
		}
	}
}

// TestFloydSteinbergCheckerboard tests that the result of Floyd-Steinberg
// error diffusion of a uniform 50% gray source image with a black-and-white
// palette is a checkerboard pattern.
func TestFloydSteinbergCheckerboard(t *testing.T) {
	b := image.Rect(0, 0, 640, 480)
	// We can't represent 50% exactly, but 0x7fff / 0xffff is close enough.
	src := &image.Uniform{color.Gray16{0x7fff}}
	dst := image.NewPaletted(b, color.Palette{color.Black, color.White})
	FloydSteinberg.Draw(dst, b, src, image.Point{})
	nErr := 0
	for y := b.Min.Y; y < b.Max.Y; y++ {
		for x := b.Min.X; x < b.Max.X; x++ {
			got := dst.Pix[dst.PixOffset(x, y)]
			want := uint8(x+y) % 2
			if got != want {
				t.Errorf("at (%d, %d): got %d, want %d", x, y, got, want)
				if nErr++; nErr == 10 {
					t.Fatal("there may be more errors")
				}
			}
		}
	}
}

// embeddedPaletted is an Image that behaves like an *image.Paletted but whose
// type is not *image.Paletted.
type embeddedPaletted struct {
	*image.Paletted
}

// TestPaletted tests that the drawPaletted function behaves the same
// regardless of whether dst is an *image.Paletted.
func TestPaletted(t *testing.T) {
	f, err := os.Open("../testdata/video-001.png")
	if err != nil {
		t.Fatalf("open: %v", err)
	}
	defer f.Close()
	video001, err := png.Decode(f)
	if err != nil {
		t.Fatalf("decode: %v", err)
	}
	b := video001.Bounds()

	cgaPalette := color.Palette{
		color.RGBA{0x00, 0x00, 0x00, 0xff},
		color.RGBA{0x55, 0xff, 0xff, 0xff},
		color.RGBA{0xff, 0x55, 0xff, 0xff},
		color.RGBA{0xff, 0xff, 0xff, 0xff},
	}
	drawers := map[string]Drawer{
		"src":             Src,
		"floyd-steinberg": FloydSteinberg,
	}
	sources := map[string]image.Image{
		"uniform":  &image.Uniform{color.RGBA{0xff, 0x7f, 0xff, 0xff}},
		"video001": video001,
	}

	for dName, d := range drawers {
	loop:
		for sName, src := range sources {
			dst0 := image.NewPaletted(b, cgaPalette)
			dst1 := image.NewPaletted(b, cgaPalette)
			d.Draw(dst0, b, src, image.Point{})
			d.Draw(embeddedPaletted{dst1}, b, src, image.Point{})
			for y := b.Min.Y; y < b.Max.Y; y++ {
				for x := b.Min.X; x < b.Max.X; x++ {
					if !eq(dst0.At(x, y), dst1.At(x, y)) {
						t.Errorf("%s / %s: at (%d, %d), %v versus %v",
							dName, sName, x, y, dst0.At(x, y), dst1.At(x, y))
						continue loop
					}
				}
			}
		}
	}
}

func TestSqDiff(t *testing.T) {
	// This test is similar to the one from the image/color package, but
	// sqDiff in this package accepts int32 instead of uint32, so test it
	// for appropriate input.

	// canonical sqDiff implementation
	orig := func(x, y int32) uint32 {
		var d uint32
		if x > y {
			d = uint32(x - y)
		} else {
			d = uint32(y - x)
		}
		return (d * d) >> 2
	}
	testCases := []int32{
		0,
		1,
		2,
		0x0fffd,
		0x0fffe,
		0x0ffff,
		0x10000,
		0x10001,
		0x10002,
		0x7ffffffd,
		0x7ffffffe,
		0x7fffffff,
		-0x7ffffffd,
		-0x7ffffffe,
		-0x80000000,
	}
	for _, x := range testCases {
		for _, y := range testCases {
			if got, want := sqDiff(x, y), orig(x, y); got != want {
				t.Fatalf("sqDiff(%#x, %#x): got %d, want %d", x, y, got, want)
			}
		}
	}
	if err := quick.CheckEqual(orig, sqDiff, &quick.Config{MaxCountScale: 10}); err != nil {
		t.Fatal(err)
	}
}