1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
|
// Copyright (C) 2010-2015 Internet Systems Consortium, Inc. ("ISC")
//
// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0. If a copy of the MPL was not distributed with this
// file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include <config.h>
#include <stdint.h>
#include <sstream>
#include <ostream>
#include <util/buffer.h>
#include <dns/messagerenderer.h>
#include <dns/rrttl.h>
#include <boost/lexical_cast.hpp>
#include <algorithm>
#include <cctype>
using namespace std;
using namespace isc::dns;
using namespace isc::util;
namespace {
// We wrap the C isalpha, because it seems to be overloaded with something.
// Then the find_if doesn't work.
bool
myIsalpha(char c) {
return (isalpha(c) != 0);
}
// The conversion of units to their size
struct Unit {
char unit;
uint32_t multiply;
uint32_t max_allowed;
};
Unit units[] = {
{ 'S', 1, 0xffffffff / 1 },
{ 'M', 60, 0xffffffff / 60 },
{ 'H', 60 * 60, 0xffffffff / (60 * 60) },
{ 'D', 24 * 60 * 60, 0xffffffff / (24 * 60 * 60) },
{ 'W', 7 * 24 * 60 * 60, 0xffffffff / (7 * 24 * 60 * 60) }
};
}
namespace isc {
namespace dns {
namespace {
bool
parseTTLString(const string& ttlstr, uint32_t& ttlval, string* error_txt) {
if (ttlstr.empty()) {
if (error_txt != NULL) {
*error_txt = "Empty TTL string";
}
return (false);
}
// We use a larger data type to handle negative number cases.
uint64_t val = 0;
const string::const_iterator end = ttlstr.end();
string::const_iterator pos = ttlstr.begin();
try {
// When we detect we have some units
bool units_mode = false;
while (pos != end) {
// Find the first unit, if there's any.
const string::const_iterator unit = find_if(pos, end, myIsalpha);
// No unit
if (unit == end) {
if (units_mode) {
// We had some units before. The last one is missing unit.
if (error_txt != NULL) {
*error_txt = "Missing the last unit: " + ttlstr;
}
return (false);
} else {
// Case without any units at all. Just convert and store
// it.
val = boost::lexical_cast<uint64_t>(ttlstr);
break;
}
}
// There's a unit now.
units_mode = true;
// Find the unit and get the size.
uint32_t multiply = 1; // initialize to silence compiler warnings
uint32_t max_allowed = 0xffffffff;
bool found = false;
for (size_t i = 0; i < sizeof(units) / sizeof(*units); ++i) {
if (toupper(*unit) == units[i].unit) {
found = true;
multiply = units[i].multiply;
max_allowed = units[i].max_allowed;
break;
}
}
if (!found) {
if (error_txt != NULL) {
*error_txt = "Unknown unit used: " +
boost::lexical_cast<string>(*unit) + " in: " + ttlstr;
}
return (false);
}
// Now extract the number.
if (unit == pos) {
if (error_txt != NULL) {
*error_txt = "Missing number in TTL: " + ttlstr;
}
return (false);
}
const uint64_t value =
boost::lexical_cast<uint64_t>(string(pos, unit));
if (value > max_allowed) {
if (error_txt != NULL) {
*error_txt = "Part of TTL out of range: " + ttlstr;
}
return (false);
}
// seconds cannot be out of range at this point.
const uint64_t seconds = value * multiply;
assert(seconds <= 0xffffffff);
// Add what we found
val += seconds;
// Check the partial value is still in range (the value can only
// grow, so if we get out of range now, it won't get better, so
// there's no need to continue).
if (val < seconds || val > 0xffffffff) {
if (error_txt != NULL) {
*error_txt = "Part of TTL out of range: " + ttlstr;
}
return (false);
}
// Move to after the unit.
pos = unit + 1;
}
} catch (const boost::bad_lexical_cast&) {
if (error_txt != NULL) {
*error_txt = "invalid TTL: " + ttlstr;
}
return (false);
}
if (val <= 0xffffffff) {
ttlval = val;
} else {
// This could be due to negative numbers in input, etc.
if (error_txt != NULL) {
*error_txt = "TTL out of range: " + ttlstr;
}
return (false);
}
return (true);
}
}
RRTTL::RRTTL(const std::string& ttlstr) {
string error_txt;
if (!parseTTLString(ttlstr, ttlval_, &error_txt)) {
isc_throw(InvalidRRTTL, error_txt);
}
}
RRTTL*
RRTTL::createFromText(const string& ttlstr) {
uint32_t ttlval;
if (parseTTLString(ttlstr, ttlval, NULL)) {
return (new RRTTL(ttlval));
}
return (NULL);
}
RRTTL::RRTTL(InputBuffer& buffer) {
if (buffer.getLength() - buffer.getPosition() < sizeof(uint32_t)) {
isc_throw(IncompleteRRTTL, "incomplete wire-format TTL value");
}
ttlval_ = buffer.readUint32();
}
const string
RRTTL::toText() const {
ostringstream oss;
oss << ttlval_;
return (oss.str());
}
void
RRTTL::toWire(OutputBuffer& buffer) const {
buffer.writeUint32(ttlval_);
}
void
RRTTL::toWire(AbstractMessageRenderer& renderer) const {
renderer.writeUint32(ttlval_);
}
ostream&
operator<<(ostream& os, const RRTTL& rrttl) {
os << rrttl.toText();
return (os);
}
}
}
|